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Abstract—Distributed computing demands training methods 

that handle distributed input data. While training, as the parties 

that collaborate are concerned about the privacy of their data, 

the concept of privacy preservation should be extended in data 

mining classifiers. In this paper, data holders make practical use 

of their data to construct a precise classifier model by not 

revealing either their training data or the intermediate results. 

We propose a privacy preserving two-party Naive Bayes 

classifier for horizontally partitioned distributed data. This 

protocol is built such that both the parties through their random 

shares compute probabilities, mean and variance. To classify a 

new instance with numeric attributes, parties need to jointly 

cooperate with each other. The correctness and the security 

analysis of our algorithm are provided. 

 

Index Terms—Privacy preserving, data mining, horizontal 

partitioned, paillier cryptosystem, RSA cryptosystem, secure 

computations, homomorphic property, commutative property. 

 

I. INTRODUCTION 

The ability to store personal data has increased and the 

advanced capability of the data mining algorithms to extract 

this information has enhanced the need of privacy 

preservation while mining data. In privacy preserving data 

publishing different transformation techniques such as 

randomization, k-anonmity and ℓ-diversity are linked with 

privacy [1]-[3]. The perturbed data can be used in 

combination with the traditional data mining methods such as 

association rule mining, classification or clustering. Other 

form of privacy includes changing the results of data mining 

applications to preserve privacy. An example of this approach 

is association rule hiding methods [4]. In [1] the data mining 

will be performed by third party. Before the data could be 

handed over to a third party the confidential values in the 

database, such as the salary of employees, needed to be 

perturbed in a way that the original probability distribution 

could be estimated from the perturbed data but not the 

original data values. A decision tree [5] is constructed from 

the perturbed data within a certain error margin that the 

authors approve. The authors in [6] involves two parties with 

private data sources who would like to do data mining without 

seeing each other’s data and propose cryptographic 

techniques to achieve that. They also demonstrated their 

approach on decision tree construction. In [7], [8] Yao’s 

millionaire’s problem, two millionaires want to find out who 
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is richer, but without revealing their wealth to the each other. 

Here the ability to compare or compute numerical data is 

decisive in most data mining tasks. The definition of privacy 

is based on equivalence to having a trusted third party perform 

the computation. The third party acts in complete segregation, 

calculates the result and reveals them. After revealing the 

results, the trusted party need not remember everything it has 

seen. Finding such a third party is very rare resulting in secure 

multiparty computations being constructed such that no party 

learns more than it what the third party would reveal. 

This instigated research in secure multi-party computation 

which includes two or more players who securely compute on 

their joint inputs. Nothing but the final result of the 

computation will be revealed to the parties. Also, no party will 

know the inputs of the other parties. Any computation which 

can be done in polynomial time by one party can be performed 

securely by multiple parties [9]. However, the vital 

understanding needed in these standard protocols is 

encryption. The definition of security in secure multiparty 

protocols should intuitively be similar to protocols where all 

players send their inputs to an honest third party, which 

performs the computation and returns the results to the players. 

This perfect protocol is clearly secure, since no player sees 

anything else than its own inputs and outputs. Some of the 

well-known public-key encryption schemes used in these 

protocols is RSA and ElGamal. RSA encrypts messages of 

approximately 1024 bits in ciphertexts of 1024 bits. El-Gamal 

is an elliptic curve based encryption which can handle 

messages of around 160 bits that are much smaller than what 

RSA can handle. Public key encryption schemes are easier to 

use and administrate.  

A concept used in computing a wide range of functions 

with computational security is homomorphic encryption. 

With homomorphic encryption we can avoid the bitwise 

encryption from the scrambled circuits. Homomorphic 

encryption schemes are a particular class of public key 

encryption schemes. The first homomorphic cryptosystem, 

called the Goldwasser-Micali (GM) cryptosystem, was 

proposed in [9]. Due to its prohibitive message expansion 

during encryption, this approach is not useful for data mining 

applications. The extension of the GM cryptosystem is the 

Benaloh cryptosystem [9] which allows the encryption of 

larger block sizes at a time. Although the message expansion 

is not as bad as in the GM cryptosystem, it is still not suitable 

for data mining applications. Furthermore, the fact that the 

decryption is based on exhaustive search over all possible 

plain-texts also makes the Benaloh cryptosystem unpractical 

for privacy preserving data mining. The authors of [9] use 

homomorphic encryption for computing secure scalar 

products used in privacy preserving data mining. A more 
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recent scheme is the Paillier cryptosystem [10], which avoids 

many of the drawbacks of the earlier homomorphic 

cryptosystems. The Paillier cryptosystem provides fast 

encryption and decryption algorithms, and it encrypts 

1024-bit messages in ciphertexts of at least 2048-bits, which 

is reasonable if we work with large plaintexts [11] discusses 

the usage of homomorphic encryption methods for privacy 

preserving k-means clustering. 

We propose a light-weight two-party distributed algorithm 

for privacy preserving Naive Bayesian classification with 

horizontally partitioned dataset. Horizontal partition of data 

means that the same sets of information about different 

entities are distributed on different sites. An example in 

distributed data mining where privacy can be of importance is 

in the field of medical research. All the features involved in 

distributed data mining are known to the sites. Hospitals 

holding patient information such as age, location, type of 

disease, treatment and result of treatment. These hospitals can 

cooperate with each other to identify whether the type of 

treatment given to a person is successful or not.  

A. Homomorphic Property 

Homomorphic encryption is a form of encryption which 

allows specific computations to be carried out on ciphertext 

and obtain an encrypted result which decrypted matches the 

result of operations performed on the plaintext. For instance, 

one person could add two encrypted numbers and then 

another person could decrypt the result, without either of them 

being able to find the value of the individual numbers. 

Encryption techniques such as ElGamal [12] and Paillier [10] 

have the homomorphic property, i.e. for messages m1 and m2 

D(E (m1, r1). g
m2

) = m1+m2 mod n without decrypting any of 

the two encrypted messages.  

Also D (E (m1, r1)×E (m2, r2) mod n
2
) = m1 + m2 mod n. 

D indicates decryption and E indicates encryption.  

In our algorithms, a homomorphic cryptographic scheme of 

Paillier is utilized. This asymmetric public key cryptography 

[10], [13] approach of encryption is largely used in privacy 

preserving data mining methods. The scheme is an additive 

homomorphic cryptosystem that are used in algorithms where 

secure computations need to be performed. Paillier is a public 

key encryption scheme which can be defined on any cyclic 

group. The original cryptosystem provides semantic security 

against chosen-plaintext attacks.  

Paillier schemes have probabilistic [14] property, which 

means beside the plain texts, encryption operation needs a 

random number as input. Under this property there can be 

many encryptions for the same message. Therefore no 

individual party can decrypt any message by itself. 

B. Commutative Property 

The asymmetric (public key) encryption scheme that 

performs E1(E2(M)) = E2(E1(M)), where E1 and E2 are the 

encryption keys used in party 1 and 2 and M is the message 

then it is said that the scheme is commutative [15]. This 

encryption technique [15]-[17] founded by Rivest, Shamir & 

Adleman of MIT in 1977 is best known and widely used 

public-key scheme known to have a commutative property. It 

is based on exponentiation in a finite (Galois) field over 

integers modulo a prime. This method uses large integers (e.g. 

1024 bits). Apply the EME-OAEP [17] encoding operation to 

the message M and the encoding parameters P to produce an 

encoded message EM to encrypt the message. Then convert 

this encoded message EM to an integer message 

representative m. Apply the RSAEP encryption primitive to 

the public key (n, e) and the message m to produce an integer 

ciphertext C. Convert this ciphertext to ciphertext of length k 

octets. To decrypt the ciphertext C the owner, uses their 

private key K ={d, p, q} convert the ciphertext C to an integer 

ciphertext representive C. Use the RSA decryption primitive 

to the private key K and the ciphertext c to produce an integer 

message representative m. Convert the message 

representative m to an encoded message EM of length k-1 

octets. Further apply the EME-OAEP decoding operation to 

the encoded message EM and the encoding parameter P to 

recover a message M. In our approach this property is used to 

perform computations such as secure product and secure 

division. 

 

II. PRIVACY PRESERVING NAIVE BAYES CLASSIFICATION 

USING RANDOM SHARES 

The protocols presented work well on horizontally 

partitioned data and do not compromise on security. Here all 

the attributes are known to the parties involved in building up 

the model. The numerator, denominator, mean and variance 

are maintained as random shares in either of the parties. 

However the final probability and variance is known only to 

Party A. The total number of instances belonging to a 

particular class is also unknown by either of the parties 

involved in the computation. However collaboration between 

the parties is essential for classifying a new instance with 

numeric attributes. The approaches of computing the 

probability for categorical and numeric attributes are 

dissimilar. 

A. Categorical Attributes 

Protocol 1 indicates the computation of probability for a 

value of the categorical attribute held by both the parties. The 

Party X locally compute the count of the number of instances 

that an attribute value i belongs to class y (C
x
yi) and the 

number of instances that belong to class y (n
x
y) from their 

training data. Each of them then communicate with each other 

to compute the function v1/(v2+v3) using protocol 2 which 

uses the commutative property of RSA-OAEP encryption 

method. Now each of these parties have 2 random shares each 

as the result of the computation i.e. h
A

1i, h
A

2i in Party A and 

h
B

1i and h
B

2i in Party B for attribute value i. Further 

homomorphic encryption property of Paillier’s is used to find 

the sum of h
A

1i, h
A

2i (Party A) h
B

1i, h
B

2i (Party B). In Protocol 2, 

for a range of values i, Party A performs v1/ (v2+i) - R, 19 

rounds it up by a few decimal points and converts it into a 

Biginteger, where R is a random value. These range of values 

are encrypted using RSA and sent to Party B. Party B chooses 

the v3th encrypted value, encrypts its value and forwards it to 

Party A. Party A decrypts the received encrypted value and 

forwards it to Party B which has the value v1/ (v2+i) - R. This 

is possible because of the commutative property of RSA 

approach. 

Protocol 1: Handling a categorical attribute 
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Requirements: 2 parties, r class values, x attribute values 

C
x
yi  represents number of instances with party Px having 

class y and attribute value i. 

n
x
y  represents number of instances with party Px having 

class y. 

For all attribute value i = 1 to x 

For all class value y do 

Party A locally computes C
A

yi and n
A

y for every attribute 

value i. 

Party B locally computes C
B

yi and n
B

y for every attribute 

value i. 

Party A and Party B use algorithm 2 to jointly compute h
A

1i 

+ h
B

1i= C
A

yi/(n
A

y + n
B

y), where h
A

1i is the random share 

maintained in Party A and h
B

1i is the random share in Party B. 

Similarly Party A and Party B use algorithm 2 to jointly 

compute h
A

2i + h
B

2i = C
B

yi/( n
B

y + n
A

y), where h
A

2i is the random 

share maintained in Party A and h
B

2i is the random share in 

Party B . 

Party B performs E (h
B

1i + h
B

2i) using paillier encryption 

with the public key forwarded by Party A and forwards it to A. 

Party A performs D (E (h
A

1i+ h
A

2i) × E(h
B

1i + h
B

2i))/1000 to 

obtain the probability. 

End for 

Note: Since Homomorphic encryption approach is used D 

(E (Sum1). E (Sum2)) = Sum1 + Sum2. 

To indicate the class to which the test/new tuple with 

categorical attributes can be classified by party A without any 

collaboration. 

Protocol 2: To compute v1/(v2+v3) 

Where v1 and v2 are known to Party A and v3 is known 

only to Party B.  

1) Party A computes (v1/(v2+(i/1000))×1000 – R , for a 

range of i = 0 to n, where R is the random value and n is 

the maximum value that Party B can have.  

2) Party A further encrypts all the values using RSA and 

sends it to Party B in the increasing order of i.  

3) Party B selects the (v3×1000)
th

 encrypted value and 

further encrypts it and sends it to Party A.  

4) Party A decrypts the value obtained and forwards this 

value to Party B.  

5) Party B decrypts the value and has the random share h
B
.  

Note: Party A has the random share h
A
 = R and the 

random share h
B 

= (v1/(v2+(v3/1000))×1000) – R. 

B. Numeric Attributes  

Protocol 3 securely computes variance and standard 

deviation of numeric attributes. Each of the parties locally 

calculates S
X

y and N
x
y. Party A and B communicate using 

protocol 2 to obtain random shares h
A

1, h
B

1 as result of S
A

y/ 

(N
A

y + N
B

y) and h
A

2 , h
B

2 as the result of S
B

y/ (N
B

y + N
A

y). To 

evaluate variance, each of the parties needs to evaluate 

Σ(xjy-mean)
2
 of j

th
 numeric value that belongs to a class y . The 

value xjy is present in both the parties and mean is maintained 

by them as random shares. Hence computation is performed 

by using these random shares. Protocol 4 used for secure 

product computation. Since the mean is unknown to both the 

parties and maintained in the form of random shares, parties 

have to collaborate to compute the probability of the new 

instance belonging to a class.  

Protocol 3: For a numeric attribute 

Input: xjy -> value of instance j having class value y.  

S
x
y -> represents the sum of instances having class value y  

N
x
y -> represents of instances having class value y in Party x  

h
x
k P

x
k, V

x
k-> kth random share maintained by Party x 

For all class values y do  

{Party A locally computes S
A 

y =∑ jx jy and N
A

y  

Party B locally computes S
B
 y = ∑ jx jy and N

B
y  

Party A and B use algorithm 2 to jointly Compute h
A

1 + h
B

1 

= S
A

y/ (N
A

y + N
B

y) and  

Party A and B use algorithm 2 to jointly Compute h
A

2 + h
B

2 

= S
B

y/ (N
B

y + N
A

y)  

Note: - Mean = h
A

1 + h
B

1+ h
A

2 + h
B

2 .  

To compute variance  

Party A locally computes  

For each of its instance j   

1. tj
A
 = xjy-(h

A
1 + h

A
2)/1000.  

2. tempj
A 

= (tj
A
)

2
 that belongs to the class y .  

Party A computes Sum
A 

= Σj=1
NA

 tj
A
.  

Party A and B use algorithm 4(secure product) to jointly 

compute P
A

1 + P
B

1 = 2×SumA×((h
B

1+ h
B

2)/1000). 

Party A and B use algorithm 4(secure product) to jointly 

compute V
A

1 + V
B

1 = N
A

y×((h
B

1+ h
B

2)/1000).  

Party A locally computes Num
A
= Σ j=1

n
 tempj

A 
+P

A
1 + V

A
1.  

Party B locally computes  

For each of its instance j  

1. tj
B
 = xjy-(h

B
1 + h

B
2)/1000.  

2. tempj
B
= (tj

B
)

2
 that belongs to the class y.  

Party B computes Sum
B

 = Σj=1
NB

 tj
B
.  

Party A and B use algorithm 4(secure product) to jointly 

compute P
A

2 + P
B

2 = 2×Sum
B
×((h

A
1+ h

A
2)/1000). 

Party A and B use algorithm 4(secure product) to jointly 

compute V
A

2 + V
B

2 = N
B

y×((h
A

1+ h
A

2)/1000).  

Party B locally computes Num
B
= Σ j=1

n 
tempj

B
 +P

B
2 + V

B
2.  

Party A obtains Var
A

y = Num
A
 + V

A
2 +P

A
2.  

Party B obtains Var
B

y = Num
B
 + V

B
1 + P

B
1.  

Party B performs E(Var
B

y) using Paillier encryption and 

send to Party A. 

Party A performs E(Var
A

y) and then Vary= D(E(Var
A

y) × 

E(Var
B

y)). 

Party A now has Ny = N
A

y-1. It computes Stan_dev
2
y = 

Vary / (Ny+ N
B

y) using protocol 2.  

Stan_dev
2 
is forwarded to Party B.  

}  

To indicate the class to which the test/new tuple with a 

numeric attribute can be classified into is computed as 

follows:  

For each of the class value I: 

P (given that (attribute_value = test_record_numeric_value) 

|Classi) = (1/(sqrt(2×π) 

×Stan_dev)×exp(-(test_record_numeric_value–Mean)/(2×St

an_dev(Classi)) 

Party A computes Val
A
= - (h

A
1+ h

A
2)/1000)/2 × Stan_devy. 

Party B computes Val
B
= ((h

B
1+ h

B
2)/1000)/ 2 × Stan_devy 

send Paillier encrypted E(Val
B
) to Party A. 

Party A computes Val = D(E(Val
A
)×E(Val

B
)), to further 

obtain 

P (given that (attribute_value = 

test_record_numeric_value)|Classy) = 1/(sqrt(2π)×stan_dev) 

×exp
-Val 
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Protocol 4 initiated by Party 1 having a value m1, generates 

a random value and performs m1×p – R for a range of values 

indicated by p. Each of the p values obtained is encrypted and 

forwarded to Party 2 in the increasing order of p. Party 2 

selects the m2
th

 encrypted value , further encrypt it and 

forward it to Party 1. Party 1 then decrypts the received value 

sends it to Party 2 which further decrypts it and retains the 

random share of the product. 

Protocol 4: Securely computing the Product 

1. m1 at Party 1 is modified to m1=m1×1000 to 

2. For p = range of n values 

2.1. It then generates a random number R and computes the 

product M = m1× p – R.  

2.2. M is encrypted using RSA.  

2.3. The encrypted result is forwarded to Party 2.  

3. Party 2 also performs m2 = m2 × 1000  

3.1. Of the p encrypted values sent by Party 1, Party 2 

selects the m2
th

 value.  

3.2. It further encrypts the value (RSA) to get E`.  

3.3. E` is communicated to Party 1.  

4. Party 1 decrypts using RSA to obtain D`.  

5. Party 2 decrypts using RSA to obtain D.  

6. Obtain the final result by performing D = D/1000000.  

Note: random share r1 at Party 1 is R and share at party 2 r2 

is m1×m2 –R such that r1+r2 = m1×m2 . 

 

III. SECURITY ANALYSIS  

In semihonest model, the parties follow the protocol and 

may try to analyze the intermediate results obtained during 

protocol execution. To assure security we must assure that the 

parties learn nothing from the information they get doing the 

protocol process. A standard way to show this is to construct a 

simulator which can simulate what the party can see in the 

protocol given only the input and output of the protocol for 

this party. Since the privacy-preserving protocols 1 and 3 use 

protocol 2 and 4 as building blocks, we initially analyze the 

security of protocols 2 and 4 before performing a security 

analysis on protocols 1 and 3. Protocol 2 and 4 use the 

RSA-OAEP encryption which is semantically secure [17] 

where each ciphertext can be simulated by a random 

ciphertext.  

The simulator in party 1 performs the computation and 

generates a random ciphertext. In steps 2 and 3, party 1 does 

what it is supposed to do in the protocol. In step 4, party 1 

decrypts the encrypted value that it receives and sends it to 

party 2. The simulator for party 2 receives random ciphertexts 

in step 2. It selects one of the values and generates a random 

encryption of it in step 3. In step 5, it decrypts the received 

random ciphertext and does what it should do in the protocol.  

Security in protocol 1 results in probability known to party 

1 and total variance and standard deviation known to party 1 

in protocol 3. In the training round, most of the message 

transmissions are taking place inside the calls of protocols 2 

and 4. Paillier Homomorphic encryption scheme is used to 

finally compute the sum of the shares maintained at both 

parties. This encryption approach is also semantically secure 

as mentioned earlier .Simulators are used by both parties to 

generate h
A

1i, h
B

1i, h
A

2i, h
B

2i in protocol 1. P
A

2, P
B

2, V
A

2, V
B

2 in 

protocol 3. 

IV. ANALYSIS OF COMPLEXITY AND ACCURACY LOSS 

A. Securely Computing Protocol 2 and Protocol 4 

This protocol includes n encryptions, where n is the 

parameter of the function an encryption followed with 

decryptions from party 1 and 2. Hence the total computation 

cost is T = (n+1)×En + 2Dn, where En and Dn are the cost of 

encryption and decryption. 

Correspondingly, the total computation cost of Protocol 4 

is also (n+1)×En + 2Dn. 

B. Computation Time for Training in Protocol 1 

Party 1 and 2 locally perform 2 summations in parallel 

which results in a computation time 2 × p, where p is the time 

for summation. Protocol 2 is called twice resulting in 2 × 

(n+1)×En + 2Dn. Party 1 and 2 encrypt their values using 

Paillier encryption followed with a decryption from party 1. 

Hence the computation time is 2p + 2 × (n+1)×En + 2Dn + 2 Ep 

+ Dp where Ep and Dp are the Paillier encryption and 

decryption time. 

C. Computation Time for Training in Protocol 3  

Party 1 and 2 locally perform 2 summations each in parallel 

resulting in a computation time of 2 × p where p is the time for 

summation. Protocol 2 is called twice resulting in 2 × (n+1)× 

En + 2Dn. Both parties locally perform a division, subtraction 

and squaring for every instance belonging to a class resulting 

in j×(D + S + Q), where D is the time for division and S is the 

computation time for subtraction, Q is the squaring time and j 

is the number of tuples belonging a class y. Both parties 

collaborate to execute secure product twice resulting in a 

computation time of 2(n+1) En + 2Dn. After certain additions, 

encryptions and decryptions the total computation time of this 

protocol is 12p + 5 × (n+1)×En + 2Dn + j×(D + S + Q) + 2 × 

En + Dn. where Ep and Dp are the Paillier encryption and 

decryption time. 

1) Accuracy loss 

Approximations in our algorithms for achieving privacy are 

used in two places. One is in protocol 2 and the other in 

protocol 4. The approximation is introduced by mapping the 

real numbers to fixed-point representations to enable 

cryptographic results and obtain results up to 3 decimal points. 

Suppose a system that uses the protocols uses v bits for 

representation of real numbers. Assuming that the v-bit 

number is chopped off by x-bits then the precision error ratio 

is bounded by Err = 2
v-x

. 

 

V. PERFORMANCE COMPARISON 

In this section, we compare our 2-party protocol with 

kantarcioglu-Vaidya [18] and Xun Yi-Yanchun Zhang [19] 

protocols. Both the protocols depend on the parties receiving 

and sending messages to and fro hence increasing the amount 

of communication between the parties. In our protocol parties 

communicate the encrypted data only while performing 

secure computations. Parties perform their local computations 

with the random values they have. 

Protocol [18] is vulnerable to collusion attack as mentioned 

in [19]. Our protocol assumes no collusion among the two 

parties. kantarcioglu-Vaidya Protocol transmits protocol in 

International Journal of Information and Electronics Engineering, Vol. 6, No. 2, March 2016

70



  

almost natural form and hence is more susceptible to snooping 

attacks. Our protocol encrypts all transmissions from one site 

to another. Visibly, our protocol is more secure than 

kantarcioglu-Vaidya Protocol. Xun Yi-Yanchun Zhang [19] 

protocol does not present any protocols to handle numeric 

attributes. Supervised learning includes attributes that are 

categorical or numeric in nature hence Xun Yi-Yanchun 

Zhang [19] protocol may not be suitable. Also 

kantarcioglu-Vaidya Protocol does not work securely for only 

two parties. 

For the hospital data set maintained at 2 sites. From the 

model obtained the accuracy of the privacy preserving 

classifiers was compared as shown in Fig. 1. The test 

instances considered had only categorical attributes. The 

results showed that Privacy Preserving Naive Bayesian 

Classifier using random shares (PPNBC-Random share) 

classifier. 

 

 
Fig. 1. Comparison of accuracy of the protocols. 

 

VI. CONCLUSION 

In this paper, we present a privacy preserving algorithm for 

Naive Bayesian learning. The protocols guarantee privacy 

using a paradigm cryptographic model. PPNB-Random 

Shares can be securely used on both categorical and numeric 

attributes with reasonable accuracy loss in the results obtained. 

Using these techniques we could further develop algorithms 

for distributed systems with three or more participants. In 

future, we would work on constructing different secure 

protocols for privacy preservation on diverse types of 

classifiers.  
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