Incremental Semantic Role Labeling with Tree Adjoining Grammar

Ioannis Konstas

Joint work with Frank Keller, Vera Demberg and Mirella Lapata

Institute for Language, Cognition and Computation University of Edinburgh

2 October 2014

Human language processing is *incremental*: we update our parse of the input for each new word that comes in.

Human language processing is *incremental:* we update our parse of the input for each new word that comes in.

Incrementality leads to local ambiguity, which we can observe in *garden path sentences:*

- (1) a. The old man the boat.
 - b. I convinced her children are noisy.

Many garden paths are not due to syntactic ambiguity alone, they also involve *semantic role ambiguity*

Many garden paths are not due to syntactic ambiguity alone, they also involve *semantic role ambiguity*

- (2) The athlete realised her goals ...
 - a. ... at the competition.
 - b. ... were out of reach.

This indicates that humans *incrementally* assign semantic roles.

Many garden paths are not due to syntactic ambiguity alone, they also involve *semantic role ambiguity*

(2) The athlete realised her goals ...

- a. ... at the competition.
- b. ... were out of reach.

This indicates that humans *incrementally* assign semantic roles.

Let's look at this example in more detail.

Human Language Processing - Example

 $\langle A0, athlete, realised \rangle$

Human Language Processing - Example

 $\begin{array}{l} \langle A0, athlete, realised \rangle \\ \langle [A1, A2], nil, realised \rangle \end{array}$

Human Language Processing - Example

 $\begin{array}{l} \langle A0, athlete, realised \rangle \\ \langle A1, goals, realised \rangle \end{array}$

Human Language Processing - Example

Incremental Semantic Role Labeling

• Determine Semantic Role Labels as the input unfolds

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:
 - Identify Arguments and Predicates

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:
 - Identify Arguments and Predicates
 - 2 Assign correct role labels

- Determine Semantic Role Labels as the input unfolds
- Given a sentence prefix and its partial syntactic structure:
 - Identify Arguments and Predicates
 - Assign correct role labels
- Assign incomplete semantic roles

Non-incremental SRL

Pipeline approach

- Liu and Sarkar (2007)
- Màrquez et al. (2008)
- Björkelund et al. (2009) (MATE)

Model

Psycholinguistically Motivated TAG (PLTAG), is a variant of tree-adjoining grammar (Demberg et al., 2014):

• in standard TAG, the lexicon consists of initial trees and auxiliary trees (both are lexicalized);

- in standard TAG, the lexicon consists of initial trees and auxiliary trees (both are lexicalized);
- it adds unlexicalized predictive trees to achieve connectivity;

- in standard TAG, the lexicon consists of initial trees and auxiliary trees (both are lexicalized);
- it adds unlexicalized predictive trees to achieve connectivity;
- the standard TAG operations are substitution and adjunction;

- in standard TAG, the lexicon consists of initial trees and auxiliary trees (both are lexicalized);
- it adds unlexicalized predictive trees to achieve connectivity;
- the standard TAG operations are substitution and adjunction;
- it adds verification to verify predictive trees;

Psycholinguistically Motivated TAG (PLTAG), is a variant of tree-adjoining grammar (Demberg et al., 2014):

- in standard TAG, the lexicon consists of initial trees and auxiliary trees (both are lexicalized);
- it adds unlexicalized predictive trees to achieve connectivity;
- the standard TAG operations are substitution and adjunction;
- it adds verification to verify predictive trees;

PLTAG supports parsing with incremental, fully connected structures.

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Lexicon:

- Standard TAG lexicon
- Predictive lexicon (PLTAG)

- Substitution
- Adjunction
- Verification (PLTAG)

Comparison with TAG

TAG derivations are not always incremental.

Comparison with TAG

PLTAG derivation are always incremental and fully connected.

Semantic Roles in Lexicon

Used information for verb predicates *only*, derived from PropBank (Palmer, 2005)

Argument Identification - Role Label Disambiguation

Argument Identification

Argument Identification - Role Label Disambiguation

Argument Identification

Role Label Disambiguation

- Train PLTAG on sections WSJ 02-21 (79.41% F₁)
- Train classifiers on CoNLL 2009 (Ident.: 92.18%, Lab.: 82.37%)
- Gold lexicon entries during parsing CoNLL-SRL-only task

- Train PLTAG on sections WSJ 02-21 (79.41% F₁)
- Train classifiers on CoNLL 2009 (Ident.: 92.18%, Lab.: 82.37%)
- Gold lexicon entries during parsing CoNLL-SRL-only task

Evaluation

- Full sentence Accuracy (F₁)
- Unlabelled Prediction Score (UPS)
- Combined Incremental SRL Score (CISS)

- Train PLTAG on sections WSJ 02-21 (79.41% F₁)
- Train classifiers on CoNLL 2009 (Ident.: 92.18%, Lab.: 82.37%)
- Gold lexicon entries during parsing CoNLL-SRL-only task

Evaluation

- Full sentence Accuracy (F₁)
- Unlabelled Prediction Score (UPS)
- Combined Incremental SRL Score (CISS)

System Comparison

- *i*SRL -Oracle
- *i*SRL
- Majority-Baseline
- Malt-Baseline

Results - Full sentence

Ioannis Konstas (ILCC)

Results - Incremental

Unlabelled Argument Score (UAS) F_1

Results - Incremental

Ioannis Konstas (ILCC)

Conclusions

- New task of Incremental Semantic Role Labeling
- Our system combines:
 - Psycholinguistically Motivated TAG (PLTAG)
 - Semantic Role Lexicon
 - Incremental Role Propagation Algorithm (IRPA)
 - Argument Identification, Role Disambiguation Classifiers
- Outperforms baselines
- Performs well incrementally: predicts (in)-complete triples early in the sentence

- $\bullet~$ Use $\imath SRL$ labels as pivotal points and score with model of semantics
- PLTAG Parser Reranker

- $\bullet~$ Use $\imath SRL$ labels as pivotal points and score with model of semantics
- PLTAG Parser Reranker

Banks $y^* \qquad f(d_1^*) \times \alpha$ $\hat{y} \qquad \begin{pmatrix} f(d_{11}) \times \alpha \\ f(d_{21}) \times \alpha \\ f(d_{31}) \times \alpha \\ f(d_{31}) \times \alpha \\ f(d_{51}) \times \alpha \end{pmatrix}$ $\alpha \leftarrow \alpha + f(d_1^*) - f(d_{41})$

- Use <code><code>rSRL</code> labels as pivotal points and score with model of semantics</code>
- PLTAG Parser Reranker

- Use *i*SRL labels as pivotal points and score with model of semantics
- PLTAG Parser Reranker

Banksrefusedto
$$y^*$$
 $f(d_1^*) \times \alpha$ $f(d_2^*) \times \alpha$ $f(d_3^*) \times \alpha$ \hat{y} $\begin{pmatrix} f(d_1) \times \alpha \\ f(d_{21}) \times \alpha \\ f(d_{22}) \times \alpha \\ f(d_{22}) \times \alpha \\ f(d_{22}) \times \alpha \\ f(d_{22}) \times \alpha \\ f(d_{23}) \times \alpha \\$

- Use *i*SRL labels as pivotal points and score with model of semantics
- PLTAG Parser Reranker

Banksrefusedtoopen
$$y^*$$
 $f(d_1^*) \times \alpha$ $f(d_2^*) \times \alpha$ $f(d_3^*) \times \alpha$ $f(d_4^*) \times \alpha$ \hat{y} $\begin{pmatrix} f(d_{11}) \times \alpha \\ f(d_{21}) \times \alpha \\ f(d_{31}) \times \alpha \\ f(d_{41}) \times \alpha \end{pmatrix}$ $\begin{pmatrix} f(d_{12}) \times \alpha \\ f(d_{22}) \times \alpha \rightarrow \hat{y_2} \\ f(d_{32}) \times \alpha \\ f(d_{52}) \times \alpha \end{pmatrix}$ $\begin{pmatrix} f(d_{13}) \times \alpha \\ f(d_{33}) \times \alpha \\ f(d_{43}) \times \alpha \end{pmatrix}$ $\begin{pmatrix} f(d_{14}) \times \alpha \\ f(d_{24}) \times \alpha \rightarrow \hat{y_4} \\ f(d_{52}) \times \alpha \\ f(d_{52}) \times \alpha \end{pmatrix}$ $\alpha \leftarrow \alpha + f(d_1^*) - f(d_{41})$ $\alpha \leftarrow \alpha + f(d_2^*) - f(d_{22})$ $\alpha \leftarrow \alpha + f(d_3^*) - f(d_{23})$ $\alpha \leftarrow \alpha + f(d_3^*) - f(d_{23})$

Features

- Baseline PLTAG probability model score
- Syntactic Features
 - Current lexicon entry
 - Previous lexicon entry
 - Bigram lexicon entries
 - Unlexicalised features
- Current SRL triple(s)
- Semantic Score

Features

- Baseline PLTAG probability model score
- Syntactic Features
 - Current lexicon entry
 - Previous lexicon entry
 - Bigram lexicon entries
 - Unlexicalised features
- Current SRL triple(s)
- Semantic Score

Semantic Score

- Blacoe and Lapata, 2013: CDT model trained using SRL instead of dependencies
- Sayeed and Demberg, ongoing: Baroni and Lenci, 2010 -inspired also trained using SRL instead of dependencies
- Baselines (No syntax)
 - Mikolov et al., 2013
 - Mitchell and Lapata, 2010

Semantic Score

- Blacoe and Lapata, 2013: CDT model trained using SRL instead of dependencies
- Sayeed and Demberg, ongoing: Baroni and Lenci, 2010 -inspired also trained using SRL instead of dependencies
- Baselines (No syntax)
 - Mikolov et al., 2013
 - Mitchell and Lapata, 2010

Multiple Triples (vary composition function)

Next Steps

Thank you

