
Scalable Querying Services over Fuzzy Ontologies ∗

Jeff Z. Pan
Dept. of Computing Science

Univ. of Aberdeen
Aberdeen, UK

Giorgos Stamou, Giorgos
Stoilos

Dept. of Computer Science
NTUA

Athens, Greece

Stuart Taylor, Edward
Thomas

Dept. of Computing Science
Univ. of Aberdeen

Aberdeen, UK

ABSTRACT
Fuzzy ontologies are envisioned to be useful in the Seman-
tic Web. Existing fuzzy ontology reasoners are not scalable
enough to handle the scale of data that the Web provides.
In this paper, we propose a framework of fuzzy query lan-
guages for fuzzy ontologies, and present query answering
algorithms for these query languages over fuzzy DL-Lite on-
tologies. Moreover, this paper reports on implementation
of our approach in the fuzzy DL-Lite query engine in the
ONTOSEARCH2 system and preliminary, but encouraging,
benchmarking results. To the best of our knowledge, this is
the first ever scalable query engine for fuzzy ontologies.

Categories and Subject Descriptors
I.2.3 [Deduction and Theorem Proving]: Uncertainty,
“fuzzy”, and probabilistic reasoning; I.2.4 [Knowledge Rep-
resentation Formalisms and Methods]: Representation
Languages

General Terms
Language, Algorithm, Experimentation

Keywords
Semantic Web, Lightweight Ontology Language, Fuzzy On-
tology, Scalable Query Answering, Fuzzy SPARQL

1. INTRODUCTION
Fuzzy ontologies are envisioned to be useful in the Web.

On the one hand, ontologies serve as basic semantic infras-
tructure, providing shared understanding of certain domain
across different applications, so as to facilitate machine un-
derstanding of Web resources. On the other hand, being
able to handle fuzzy and imprecise information is crucial to
the Web. Web data are likely to be uncertain or conflicting
and could raise trust issues. It has been argued that uncer-
tainty representation and reasoning could help to harmonise
and integrate Web data from different sources. To this end,
W3C has recently set up an incubator group on Uncertainty
Reasoning for the Web1.

∗This paper is based on a poster titled “Expressive Query-
ing over Fuzzy DL-Lite Ontologies” presented in the 2007
International Workshop on Description Logics (DL2007).
1http://www.w3.org/2005/Incubator/urw3

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

Although recently there have been quite a lot of work on
Description Logics (DLs) based fuzzy ontology languages,
e.g., [27, 26, 17, 12, 2, 25], there exist no fuzzy ontology rea-
soners that could be efficient and/or scalable enough to han-
dle the scale of data that the Web provides. Interestingly,
there currently exist two fuzzy ontology reasoners, namely
the tableaux based fuzzy reasoner FiRE2 [25, 24], which
supports a nominal and datatype-free subset of fuzzy-OWL
DL, i.e. fuzzy-SHIN , and the mixed integer programming
fuzzy reasoner fuzzyDL3, which supports fuzzy-OWL Lite,
namely fuzzy-SHIf (D) [28]. Like their crisp counterparts,
fuzzy-SHIN and fuzzy-SHIf (D) come with (at least) EX-
PTIME computational complexity, thus the scalability of
the above systems is doubtful. Following current research
developments in crisp DLs, there is an effort on lightweight
fuzzy ontology languages. In particular, Straccia [29] ex-
tended the DL-Lite ontology language [5] to fuzzy DL-Lite.
DL-Lite, which is expressive enough to represent most fea-
tures of UML class diagrams, enables highly efficient query
answering procedures by making use of database technolo-
gies. There are major limitations on Straccia’s query lan-
guage for fuzzy DL-Lite: the proposed query language has
the same syntax as the query language of the crisp DL-Lite,
and thus does not allow one to specify either thresholds
for query atoms (such as “tell me e-shops that are popular
[with degrees at least 0.8] and sell good books [with degrees
at least 0.9]”), or weights and preferences on query atoms
(such as “get me all cars that are fast and fancy but con-
sider speed more important [with weight 0.7] than design
[with weight 0.3]”), so as to exploit fuzzy assertions in fuzzy
ontologies. To the best of our knowledge, there exist no re-
port on scalable query engines for fuzzy DL-Lite, let alone
supporting more expressive fuzzy query languages.

This paper makes the following major contributions:

1. It proposes a general framework, which consists of
threshold queries and general fuzzy queries (Section
3.1), for querying over fuzzy ontologies, covering all the
existing query languages for fuzzy ontologies as well as
some new ones that can be customised by users. Com-
paring with Straccia’s query language, the threshold
query language is flexible as it allows one to specify a
threshold for each query atom (as shown in the above
example). In fact, entailment of threshold queries gen-
eralises the entailment problem of fuzzy assertions. On
the other hand, the general fuzzy query language is a

2http://www.image.ece.ntua.gr/∼nsimou
3http://gaia.isti.cnr.it/∼straccia

general form of the fuzzy threshold query language,
which in turn is a general form of Straccia’s query lan-
guage. General fuzzy queries are motivated by the
field of fuzzy information retrieval [8] where weighted
Boolean queries [33] have been proposed for retriev-
ing fuzzy information from fuzzy relational databases.
Our general fuzzy query language generalises most for-
mer approaches of weighted Boolean queries [20, 3,
34, 4] and several new approaches, like the p-norm
approach [21], the geometric mean approach [6], the
so called fuzzy weighted t-norm queries from Chor-
taras et. al. [7], which in turn generalise weighted min
queries [23], and aggregation queries from Vojtas [32].
Thus, the main strength of the general fuzzy query
language is the openness of the use of semantics of
conjunction and that of the degree-associated atoms.
Consequently, the framework can accommodate differ-
ent intuitive meaning on the associated degrees, like
preferences, degrees of importance, fuzzy thresholds
and more.

2. It not only provides an abstract syntax (Section 3.1)
for the proposed framework, but also shows how to ex-
tend the SPARQL (a well known Semantic Web query
language) syntax for the proposed query languages in
the framework (Section 3.2). Our extension uses spe-
cially formatted SPARQL comments, thus the fuzzy
queries are still valid SPARQL queries, and it does not
affect current SPARQL tools and implementations.

3. It not only proposes the syntax of query languages, but
also provides semantics (Section 3.1) and algorithms
for answering such queries over arbitrary fuzzy DL-Lite
ontologies together with sound and complete proofs
(w.r.t. the semantics); and the algorithms cover all the
mentioned languages in the framework (Section 3.3).

4. To the best of our knowledge, it presents the first ever
scalable query engine for fuzzy ontologies, based on
the ONTOSEARCH2 system4 [16], which consists of,
among others, a query engine for DL-Lite and one for
fuzzy DL-Lite. The performance of the fuzzy DL-
Lite query engine is evaluated against a benchmark
(a fuzzy variant of the Lehigh University Benchmark
(LUBM) [10], called f-LUBM) that we propose, which
is the first of its kind and against which future imple-
mentations can also be evaluated. The query engine is
able to handle millions of individuals, according to the
preliminary but encouraging evaluation (Section 4).

5. It presents a use cases about searching ontology based
on keyword-plus-entailment searches, so as to show
how to apply our efficient querying support for fuzzy
ontologies. The use case application is available online
(Section 5).

2. PRELIMINARIES

2.1 DL-based Ontologies and Query Answer-
ing

Due to the limitation of space, we do not provide a formal
introduction of Description Logics (DLs), but rather point

4http://www.ontosearch.org/

the reader to [1]. It should be noted that, even for the small-
est propositionally closed DL ALC (which only provides the
class constructors ¬C, C uD, C tD,∃R.C and ∀R.C), the
complexity of logical entailment is Exptime. Recently, Cal-
vanese et. al. proposed DL-Lite, which has a low reasoning
overhead (worst case polynomial time) [5]. A DL-Lite on-
tology (O) is a set of axioms of the following forms:

1. class inclusion axioms: B v C where B is a basic class
B := A | ∃R | ∃R¯ and C is a general class C :=
B | ¬B | C1 u C2 (where A denotes an named class
and R denotes a named property);

2. functional property axioms: Func(R), Func(R)̄, where
R is a named property;

3. individual axioms: B(a), R(a, b) where a and b are
named individuals.

Description Logics have a well-defined model-theoretic se-
mantics, which are provided in terms of interpretations. An
interpretation I is a pair (∆I , ·I), where ∆I is a non-empty
set of objects and ·I is an interpretation function, which
maps each class C to a subset CI ⊆ ∆I and each property
R to a subset RI ⊆ ∆I ×∆I .

Typical reasoning ontology services include ontology con-
sistency checking (i.e., whether there exists an interpretation
of an ontology), subsumption checking (i.e., whether the in-
terpretation of a class C1 is a subset of the interpretation
of a class C2 in all interpretations of the ontology), instance
checking (i.e. whether an assertion is logically implied by an
ontology) and query answering. In this paper, we will focus
on query answering. A conjunctive query (CQ) q is of the
form

q(X)← ∃Y .conj(X, Y) (1)

or simply q(X) ← conj(X, Y), where q(X) is called the
head, conj(X, Y) is called the body, X are called the dis-
tinguished variables, Y are existentially quantified variables
called the non-distinguished variables, and conj(X, Y) is a
conjunction of atoms of the form A(v), R(v1, v2), where A, R
are respectively named classes and named properties, v, v1

and v2 are individual variables in X and Y or individual
names in O. As usual, an interpretation I satisfies an ontol-
ogy O if it satisfies all the axioms in O; in this case, we say
I is a model of O. Given an evaluation [X 7→ S] (where S is
a set of individuals), if every model I of O satisfies q[X 7→S],
we say O entails q[X 7→S]; in this case, S is called a solu-
tion of q. A disjunctive query (DQ) is a set of conjunctive
queries sharing the same head. Theoretically, allowing only
named classes and properties as atoms is not a restriction,
as we can always define such named classes and properties
in ontologies. Practically, this should not be an issue as
querying against named relations is a usual practice when
people query over relational databases.

After some careful query rewriting by DL-Lite reason-
ers [5], query answering over DL-Lite ontologies can be car-
ried out by an SQL engine, so as to take advantage of exist-
ing query optimisation strategies and algorithms provided
by modern database management systems.

2.2 f-DL-LITE
Straccia [29] proposed fuzzy DL-Lite (or f-DL-Lite for

short), which extends DL-Lite core with fuzzy assertions of

the forms B(a) ≥ n, R(a, b) ≥ n, where B is basic class, R
is a property, a and b are individuals and n is a real number
in the range [0, 1]. The semantics of f-DL-Lite ontologies is
defined in terms of fuzzy interpretations [27]. A fuzzy in-
terpretation is a pair I = (∆I , ·I) where the domain ∆I is
a non-empty set of objects and ·I is a fuzzy interpretation
function, which maps:

• an individual a to an element of aI ∈ ∆I ,

• a named class A to a membership function AI : ∆I →
[0, 1], and

• a named property R to a membership function RI :
∆I ×∆I → [0, 1].

Using the fuzzy set theoretic operations [11], fuzzy inter-
pretations can be extended to interpret f-DL-Lite class and
property descriptions. Following Straccia [29], we use the
Lukasiewicz negation, c(a) = 1 − a and the Gödel t-norm
for interpreting conjunctions, t(a, b) = min(a, b). The se-
mantics of f-DL-Lite class and property descriptions, and
f-DL-Lite axioms are depicted in Table 1. Given the above
semantics, it is obvious that crisp assertions B(a), R(a, b)
are special forms of fuzzy assertions where n = 1.

Syntax Semantics
∃R (∃R)I(o1) = sup

o2∈∆I
{RI(o1, o2)}

¬B (¬B)I(o) = 1−BI(o)
C1 u C2 (C1 u C2)

I(o) = t(CI
1 (o), CI

2 (o))
R− (R−)I(o2, o1) = RI(o1, o2)

B v C ∀o ∈ ∆I , BI(o) ≤ CI(o)
Func(R) ∀o1 ∈ ∆I ,]{o2 | RI(o1, o2) > 0} = 1
B(a) ≥ n BI(aI) ≥ n

R(a, b) ≥ n RI(aI , bI) ≥ n

Table 1: Semantics of f-DL-Lite class and property
descriptions, and f-DL-Lite axioms

Similarly to crisp DL lite, fuzzy-DL-Lite, provides means
to specify role-typing and participation constraints but in-
terestingly it assigns fuzzy meaning on them. More pre-
cisely, a role-typing assertion of the form ∃R v A1 (resp.
∃R− v A2) states that the first (resp. second) component
of R belongs to A1 (resp. A2) at-least to the membership
degree that the relation R holds, i.e. RI(aI , bI) ≤ AI

1 (aI)
(resp. (R−)I(bI , aI) = RI(aI , bI) ≤ AI

2 (bI)).

2.3 Abstract and RDF/XML Syntax
Since DL-Lite (resp. f-DL-Lite) is a sub-language of OWL

(resp. f-OWL DL), we provide an abstract and RDF/XML
syntax for DL-Lite and f-DL-Lite ontologies in this sub-
section, following the paradigm of OWL DL [18]. OWL
DL ontologies in RDF/XML syntax can be generated from
those written in the abstract syntax, using the official map-
ping between the two kind of syntax provided in [18]. Our
proposed abstract syntax for DL-Lite core is based on that
of the DL-Lite specified in the OWL1.1 member submission
(an extension of OWL DL) in the tractable fragments doc-
ument [9]. It is slightly different from that in the OWL 1.1
document, mainly due to the fact that it uses the OWL DL
syntax (which is slightly different from that of OWL 1.1)
and RDF/XML serialisation.

Besides disallowing several expressive OWL DL construc-
tors, DL-Lite restricts the use of several of the allowed con-
structors and especially w.r.t. which side of class axioms
they can appear. Thus, the definition of an abstract syn-
tax is slightly trickier than that of OWL. In OWL DL, for
example, disjointness, equivalence and subclass axioms are
defined by the following abstract syntax:

axiom ::= ‘DisjointClasses(’ description description
{ description } ‘)’ |

‘EquivalentClasses(’ description { description } ‘)’ |
‘SubClassOf(’ description description ‘)’

where “description” can be any OWL DL class description.
In DL-Lite, only basic classes are allowed on the left-hand
side of axioms, while general classes are allowed only on the
right-hand side. Thus, the above abstract syntax should be
adjusted to:

axiom ::= ‘DisjointClasses(’ basicClass basicClass
{ basicClass } ‘)’ |

‘EquivalentClasses(’ basicClass { basicClass } ‘)’ |
‘SubClassOf(’ basicClass generalClass ’)’

where “basicClass” and “generalClass” represent the basic
and general classes of DL-Lite, respectively. The abstract
syntax for these two elements should also follow the restric-
tions of DL-Lite; e.g., a “generalClass” can be an inter-
section of classes while a basic class is not. By using the
RDF/XML serialisation mapping described for OWL DL,
one is able to obtain DL-Lite and f-DL-Lite ontologies in
RDF/XML syntax. For example, the following class axiom
in RDF/XML syntax is a valid DL-Lite axiom,

<owl:Class rdf:ID="C">
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class>
<owl:complementOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#R"/>
<owl:someValuesFrom rdf:resource="&owl;Thing"/>

</owl:Restriction>
</owl:complementOf>

</owl:Class>
<owl:Class>

<owl:complementOf rdf:resource="#A"/>
</owl:Class>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

which corresponds to the axiom C v ¬∃R u ¬A.
Finally, fuzziness in the individual axioms of f-DL-Lite is

defined by a restriction of the abstract syntax of facts of
f-OWL DL presented in [26], since we are only allowing the
inequality “≥”. The abstract syntax is the following:

individual ::= ‘Individual(’ [individualID] {annotation}
{‘type’(type ‘)’ [ineqType] [degree]}
{value [ineqType] [degree] } ‘)’

ineqType ::= ‘>=’

degree ::= real-number-between-0-and-1-inclusive

Similarly, we can follow the RDF/XML serialization pro-
posed in [26] to have fuzzy individual axioms in a f-DL-Lite
file. For example, stating that o is Heavy to degree at-least
0.7 could be specified by the following RDF/XML syntax.

<Heavy rdf:about="o" owlx:ineqType="≥" owlx:degree="0.7"/>

The full specification of the f-DL-Lite (and consequently
DL-Lite) abstract syntax can be found in the Appendix.
The ONTOSEARCH2 system allows users to submit their
crisp and fuzzy ontologies to its repository. Furthermore, it
provides an RDF/XML syntax checker for DL-Lite.

3. QUERYING F-DL-LITE ONTOLOGIES
In this section, we present a general framework for rep-

resenting expressive fuzzy queries over f-DL-Lite ontologies.
More precisely, we will introduce two query languages for f-
DL-Lite ontologies. The first language extends conjunctive
queries with thresholds for atoms in queries. Entailment of
threshold queries generalises the entailment problem of fuzzy
assertions. The second language is a general fuzzy query lan-
guage, motivated by the field of fuzzy information retrieval
[8], where weighted Boolean queries have been proposed [33,
20, 3, 34]. As it was showed in [4] most of these approached
could be represented under a general framework using gen-
eral fuzzy operators, like t-norms and fuzzy implications.
Our general fuzzy query language extends these results by
allowing more fuzzy operators and thus generalising many
of the recent approaches like the query language proposed
in [29] for fuzzy DL-Lite, weighted t-norm queries [7], which
in turn generalise weighted min queries [23], p-norms [21],
fuzzy aggregations [32] and the geometric mean [6]. In order
to enable such types of queries in the Semantic Web, we also
propose the extension of the SPARQL [19] query language,
so as to represent the queries in our general framework. In
what follows, we first introduce these new query languages,
providing their syntax and semantics. We then present the
extension of SPARQL, and finally we provide algorithms of
query answering for queries in the proposed query languages.

3.1 Two New Query Languages

3.1.1 Threshold Queries
As noted in [5] in DL-Lite the instance checking prob-

lem is a special case of conjunctive queries. Since f-DL-Lite
extends DL-Lite with fuzzy assertions, it would be natural
to define a query language so that the entailment of such
queries could generalise entailment checking of fuzzy asser-
tions. Accordingly, we define conjunctive threshold queries
(CTQ) which extend atoms A(v), R(v1, v2) in conjunctive
queries of the form (1) into the following forms A(v) ≥
t1, R(v1, v2) ≥ t2, where t1, t2 ∈ (0, 1] are thresholds. It
turns out that threshold queries are very important types of
queries since in [13] the authors used them in order to devise
a reasoning algorithm for the fuzzy language fuzzy-CARIN.

Example 1. We can query models who are tall with a
degree no less than 0.7 and light with a degree no less than
0.8 with the following conjunctive threshold query:

q(v)← Model(v) ≥ 1, Tall(v) ≥ 0.7, Light(v) ≥ 0.8.

It is obvious that threshold queries are more flexible than
queries of the form (1) in that users can specify different
thresholds for different atoms in their queries.

Formally, given an f-DL-Lite ontology O, a conjunctive
threshold query qT and an evaluation [X 7→ S], we say O

entails qT (denoted as O |= qT) if every interpretation I of
O satisfies the following condition: for each atom A(v) ≥
t1 (R(v1, v2) ≥ t2) of qT , we have AI(v)X 7→S ≥ t1 (resp.
RI(v1, v2)X 7→S ≥ t2). In this case, S is called a solution of
qT . A disjunctive threshold query (DTQ) is a set of con-
junctive threshold queries sharing the same head.

3.1.2 General Fuzzy Queries
Since f-DL-Lite associates assertions with degrees of truth,

another useful feature for its query language is to associate
degrees of truth with answers in answer sets of queries over
f-DL-Lite ontologies. In threshold queries, an evaluation
[X 7→ S] either satisfies the query entailment or not; hence,
answers of such queries are crisp. In this subsection, we
introduce general fuzzy queries which allow fuzzy answers.
Syntactically, like the query language proposed in [33] and
threshold queries, general fuzzy conjunctive queries (GFCQ)
extend the atoms A(v), R(v1, v2) of conjunctive queries of
the form (1) into ones with the following form A(v) : k1, R(v1,
v2) : k2, where k1, k2 ∈ (0, 1] are degrees. .

The strength of the general fuzzy query language is the
openness of the use of fuzzy operations. Indeed, as many
theoretical and practical studies [32, 4] have pointed out,
the choice of fuzzy operations is usually context dependent.
Following the style of the semantics of fuzzy-SWRL [17] the
existential quantifier is interpreted as sup, while we leave
the semantics of the conjunction (G) and that of the degree-
associated atoms (a) open. To simplify the presentation of
the semantics, we use a unified representation atomi(v̄) for
atoms in general fuzzy conjunctive queries. Given an f-DL-
Lite ontology O, an interpretation I of O, a general fuzzy
conjunctive query qF and an evaluation [X 7→ S], the degree
of truth of qF under I is

d = sup
S′∈∆I×···×∆I

{Gn
i=1 a(ki, atomI

i (v̄)[X 7→S,Y 7→S′])}

where ki ∈ (0, 1] are degrees (1 ≤ i ≤ n), atomi are atoms
in the query, G is the semantic function for conjunctions and
a is the semantic function for degree-associated atoms. S : d
is called a candidate solution of qF . When d > 0, S : d is
called a solution of qF . Furthermore, the semantic functions
should satisfy the following condition:

If atomI
i (v̄)[X 7→S,Y 7→S′]) = 0 for all possible S′, d = 0. (2)

A general fuzzy disjunctive query (GFDQ) is a set of gen-
eral fuzzy conjunctive queries sharing the same head. The
disjunction is interpreted as the s-norm (u) of disjuncts.

In what follows, we give some examples of the semantic
functions for conjunctions and degree-associated atoms.

1. Fuzzy threshold queries: If we use t-norms (t) as the
semantic function for conjunctions and R-implications
(ωt) [11] as the semantic function for degree-associated
atoms, we get fuzzy threshold queries, in which the
degree of truth of qF under I is

d = sup
S′∈∆I×···×∆I

{tn
i=1 ωt(ki, atomI

i (v̄)[X 7→S,Y 7→S′])}.

Given some S′, if for all atoms we have atomI
i (v̄)[X 7→S ,

Y 7→S′] ≥ ki, since ωt(x, y) = 1 when y ≥ x [11], we have
d = 1; this corresponds to threshold queries introduced
earlier. On the other hand, different from threshold
queries, if 0 < atomI

i (v̄)[X 7→S,Y 7→S′] < ki, then d 6= 0

because of use of the R-implication which filters (pe-
nalises) the degree atomI

i (v̄)[X 7→S,Y 7→S′] against the
fuzzy threshold ki.

As it was shown in [4] many of the approaches for
weighted Boolean queries that have been proposed [3,
20] are actually special cases of fuzzy threshold queries.

2. Straccia’s query language [29] : It is also a sub-language
of the fuzzy threshold query language, where all ki = 1.
Since ωt(1, y) = y [11], the degree of truth of qF under
I is

d = sup
S′∈∆I×···×∆I

{tn
i=1 atomI

i (v̄)[X 7→S,Y 7→S′]}.

3. Fuzzy aggregation queries: If we use fuzzy aggregation

functions [11], such as G(x) =
∑n

i=1 xi∑n
i=1 ki

, for conjunc-

tions and a(ki, y) = ki ∗ y as the semantic function
for degree-associated atoms, we get fuzzy aggregation
queries, in which the degree of truth of qF under I is

d = sup
S′∈∆I×···×∆I

∑n
i=1 ki ∗ atomI

i (v̄)[X 7→S,Y 7→S′]∑n
i=1 ki

.

Moreover, we can show that many existing approaches
of weighted Boolean queries could be represented un-
der the framework of fuzzy aggregation queries. More
precisely, Salton, Fox and Wu [21] proposed the model
of p-norms where the semantic function is given by the
following equation:

d = sup
S′∈∆I×···×∆I

(∑n
i=1 (atomI

i (v̄)[X 7→S,Y 7→S′])
w

n

)1/w

where w1 = w2 = . . . = wn = w and w ∈ (0, +∞].
On the other hand, S.J. Chen and S.M. Chen [6] pro-
pose the geometric mean [11] as a semantic function
for weighted Boolean queries:

d = sup
S′∈∆I×···×∆I

(
n∏

i=1

atomI
i (v̄)[X 7→S,Y 7→S′]

)1/w

.

Under the framework of fuzzy aggregation functions
both these equations are special cases of the gener-
alized mean function which is given by the equation

dw =
(∑n

i=1 aw
i

n

)1/w

where w ∈ R∗. If w ∈ (0, +∞]

then we have the approach of Salton et. al. [21], while
if w → 0, then function d converges to the geomet-
ric mean [11]. Additionally, from this analysis we can
very easily suggest a totally new semantic function by
letting w = −1, which gives the function of harmonic
mean:

d = sup
S′∈∆I×···×∆I

n∑n
i=1

1
atomI

i (v̄)[X 7→S,Y 7→S′]

.

4. Fuzzy weighted t-norm queries: If we use generalised
weighted t-norms [7] as the semantic function for con-
junction, we get fuzzy weighted queries, in which the
degree of truth of qF under I is

d = sup
S′∈∆I×···×∆I

{
n

min
i=1

u(k−ki, t(k, atomI
i (v̄)[X 7→S,Y 7→S′]))},

where k = maxn
i=1 ki. The main idea of this type of

queries is that they provide an aggregation type of op-
eration, on the other hand an entry with a low value
for a low-weighted criterion should not be critically pe-
nalized. Moreover, lowering the weight of a criterion
in the query should not lead to a decrease of the rel-
evance score, which should mainly be determined by
the high-weighted criteria (see [7] for more details).

Yager [34], proposes the use of and S-implication [11]
(in contrast to R-implications of fuzzy threshold queries),
i.e. the function:

d = sup
S′∈∆I×···×∆I

{
n

min
i=1

u(1−ki, atomI
i (v̄)[X 7→S,Y 7→S′])},

This is a special case of fuzzy weighted t-norms, where
k = 1, since t(1, a) = a. A similar approach was pro-
posed by Sanchez [23].

It is easy to show that all the above four specific fuzzy
query languages satisfy the condition (2).

3.2 Supporting Querying with SPARQL
After presenting the abstract syntax and semantics of our

proposed languages, in this section, we show how to extend
the syntax of SPARQL [19], a well known Semantic Web
query language, for the proposed languages. We call our
extension f-SPARQL. SPARQL is a query language (candi-
date recommendation from the W3C Data Access Working
Group) for getting information from RDF graphs. SPARQL
allows for a query to constitute of triple patterns, conjunc-
tions, disjunctions and optional patterns. A SPARQL query
is a quadruple Q = (V, P, DS, SM), where V is a result
form, P is a graph pattern, DS a data set and SM a set
of solution modifiers. Among others, SPARQL allows for
select queries, formed in a SELECT-FROM-WHERE manner.
The result form represents the set of variables appearing in
the SELECT, the dataset forms the FROM part, constituted
by a set of IRIs of RDF documents, while the graph pattern
forms the WHERE part which is constituted by a set of RDF
triples.

Query ::= Prologue (SelectQuery | ConstructQuery
| DescribeQuery | AskQuery)

SelectQuery ::= ‘SELECT’ (‘DISTINCT’ | ‘REDUCED’)?
(Var+ | ‘*’) DatasetClause*
WhereClause SolutionModifier

WhereClause ::= ‘WHERE’? GroupGraphPattern
GroupGraphPattern ::= ‘{’ TriplesBlock? ((GraphPatternNotTriples

| Filter) ‘.’? TriplesBlock?)* ‘}’

In order to maintain backward compatibility with exist-
ing SPARQL tools, we propose to use specially formatted
SPARQL comments to specify extra information needed in
our proposed languages (see Table 2). Firstly, one should
declare the query type before a select query. For example,
#TQ# declares a threshold query, while #GFCQ:SEM=FUZZY

THRESHOLD# declares a general fuzzy query, with the fuzzy
threshold semantic functions. Secondly, following each triple
in the WHERE clause, one can use #TH# (resp. #DG#) to
specify a threshold in a threshold query (resp. a degree in
a general fuzzy query). For instance, the threshold query
presented in Example 1 (Section 3.1) can be represented by
the following f-SPARQL query:

#TQ#

Query ::= Prologue (QueryType SelectQuery |
ConstructQuery | DescribeQuery | AskQuery)

TriplesBlock ::= TriplesSameSubject (‘.’ TripleWeight Degree TriplesBlock?)?

QueryType ::= ‘#TQ# \n’ | ‘#GFCQ:SEM=’ FuzzySemantics ‘# \n’

FuzzySemantics ::= ‘AGGREGATION’ | ‘FUZZYTHRESHOLD’ |
‘FUZZYTHRESHOLD-1’ | ‘FUZZYWEIGHTEDNORMS’

TripleWeight ::= ‘#TH#’ | ‘#DG#‘

degree ::= real-number-between-0-and-1-upper-inclusive

Table 2: Syntax of Fuzzy SPARQL

SELECT ?x WHERE {

?x rdf:type Model . #TH# 1.0

?x rdf:type Tall . #TH# 0.7

?x rdf:type Light . #TH# 0.8

}

In the case of general fuzzy queries, one must specify the se-
mantic functions (i.e. a and G). Below is an example fuzzy
threshold query.

#GFCQ:SEM=FUZZYTHRESHOLD#

SELECT ?x WHERE {

?x rdf:type Model . #DG# 1.0

?x rdf:type Tall . #DG# 0.7

?x rdf:type Light . #DG# 0.8

}

Table 2 presents the f-SPARQL syntax. f-SPARQL ex-
tends two of SPARQL’s elements, namely the “Query” and
the “TriplesBlock” element. As illustrated above, each select
query is extended with the element QueryType. In particu-
lar, for general fuzzy queries, the declaration ‘#GFCQ:SEM=’
is followed by the element FuzzySemantics, which is used
to specify the semantic functions, such as the ones we pre-
sented in the previous section. More precisely, we use the
keywords ‘FUZZYTHRESHOLD’, ‘FUZZYTHRESHOLD-
1’, ‘AGGREGATION’ and ‘FUZZYWEIGHTEDNORMS’
to indicate the four fuzzy general queries we introduced in
Section 3.1.2. When one uses ‘FUZZYTHRESHOLD-1’, the
fuzzy threshold is set as 1, and the values specified by the
#TH# comments are ignored. Finally, the “TriplesBlock”
element is extended with the elements TripleWeight and De-
gree, which are used to associated a threshold or weight with
each triple of the SPARQL query.

3.3 Query Answering
It should be noted that the query languages in the previ-

ous sections can be used with any fuzzy ontology languages.
In order to provide efficient query answering services using
our proposed query languages, we choose f-DL-Lite as our
fuzzy ontology language. This sub-section provides algo-
rithm to answer threshold queries and general fuzzy queries
over f-DL-Lite ontologies.

Algorithms for answering queries in f-DL-Lite mainly con-
sist of four steps (like the algorithm for crisp DL-Lite [5]):
(i) normalisation of the set T of the class axioms of O by
the procedure Normalise(T), which returns the normalised
set T ′ of class axioms; (ii) normalisation and storage of the
set A of individual axioms in O by the procedure Store(A)
that normalise A and returns the relational database DB(A)
of A, as well as checking the consistency of O by the pro-
cedure Consistency(O, T ′); (iii) reformulation of the input

query q against the normalised set T of the class axioms
by the procedure PerfectRef(q, T ′), which returns a set Q
of (conjunctive) queries; (iv) transformation of the set Q
of (conjunctive) queries into SQL queries by the procedure
SQL(Q), as well as the evaluation of SQL(Q) by the proce-
dure Eval(SQL(Q), DB(A)).

As steps (i) and (ii) are very similar to those for the crisp
case, here we focus on steps (iii) and (iv) on answering con-
junctive threshold queries and general fuzzy queries.

3.3.1 Answering Threshold Queries
Given an f-DL-Lite ontology O, a conjunctive threshold

query qT , the procedure AnswerT(O, qT) computes the solu-
tions of qT w.r.t. O, following the above steps (i) - (iv).

Algorithm A-1: AnswerT(O, qT)

1: T = Class-Axioms(O)
2: T ′ = Normalise(T) //normalisation of class axioms
3: A = Individual-Axioms(O)
4: DB(A) = Store(A) //normalisation and storage of individual

axioms
5: if Consistency(O, T ′) = false then
6: return inconsistent //O is inconsistent
7: end if
8: return Eval(SQLT(PerfectRefT(qT ,T ′)),DB(A))

Algorithm A-2: SQLT(Q)

1: QS := ∅
2: for every query q in Q do
3: sc:=Select-Clause(q) //construct the select-clause of q
4: fc:=From-Clause(q) //construct the from-clause of q
5: wc1:=WC-Binding(q) //construct the part of the where-

clause about binding
6: wc2:=WC-Threshold(q) //construct the part of the where-

clause that relates to thresholds
7: QS := QS ∪ Construct-SQL(sc,fc,wc1,wc2)
8: end for
9: return QS

The algorithms need some explanations. Firstly, if O is
inconsistent, query answering is meaningless, since every tu-
ple is a solution of every query w.r.t. O.

Secondly, the procedure PerfectRefT(qT ,T ′) of reformulat-
ing an input conjunctive threshold query qT (into a set of
conjunctive queries) is essentially the same as the PerfectRef
(q,T ′) for DL-Lite [5]. Here we do not repeat PerfectRef(q,T ′)
but explain its main ideas instead. PerfectRefT(qT ,T ′) rewrites
atoms in qT based on positive inclusions (PIs) in T ′. For
example, given a PI B v B1, if B1(v) ≥ k is an atom of
qT and B is a named class A (resp. of the form ∃R, or of
the form ∃R−), B1(v) ≥ k can be rewritten as A(v) ≥ k
(resp. R(v,) ≥ k, or R(, v) ≥ k, where represent non-

distinguished non-shared variables5). The generated query
can be further written, based on the PIs in T ′. It can be
shown that such rewriting process always terminates [5], and
it produces a set of generated conjunctive queries from the
input query qTQ.

Thirdly, the procedure SQLT(Q) transforms a set of con-
junctive threshold queries into SQL queries in an obvious
way, taking into accounts the thresholds. Namely, it use
Select-Clause, From-Clause, WC-Binding and WC-Threshold
to construct the select-clauses, from-clauses and where-clauses
of SQL queries, respectively. Due to limitation of space, we
do not provide full details of these procedures but illustrate
them with the following example. Given the query q(v) ←
Model(v) ≥ 1, Tall(v) ≥ 0.7, Light(v) ≥ 0.8, Select-Clause(q)
returns the select-clause ‘SELECT tabModel[0]’, From-Clause(q)
returns the from-clause ‘FROM tabModel, tabTall, tabLight’, WC-
Binding(q) returns the binding part of the where-clause ‘WH-
ERE tabModel[0] = tabTall[0], tabModel[0] = tabLight[0]’ and WC-
Threshold(q) returns the threshold-related part of the where-
clause ‘tabModel[1] ≥ 1, tabTall[1] ≥ 0.7, tabLight[1] ≥ 0.8’.
Construct-SQL puts all these together and returns the cor-
responding SQL query ‘SELECT tabModel[0] FROM tabModel,
tabTall, tabLight WHERE tabModel[0] = tabTall[0], tabModel[0] =
tabLight[0], tabModel[1] ≥ 1, tabTall[1] ≥ 0.7, tabLight[1] ≥ 0.8’.

Theorem 1. Let O be an f-DL-Lite ontology, qT a con-
junctive threshold query and S a tuple of constants. S is a
solution of qT w.r.t. O iff S ∈ AnswerT(O, qT).

Proof: (Sketch) The proof of correctness is straight for-
ward. The procedure AnswerT differs from that of DL-Lite
mainly in that it needs to take care of the thresholds (line
6 of Algorithm A-2) when constructing SQL queries. Given
an evaluation [X 7→ S] an atom A(v) ≥ t1 (R(v1, v2) ≥ t2),
if tabA[X 7→S] [1] ≥ t1 (resp. tabR[X 7→S] [2] ≥ t2), then we have

AI(v)[X 7→S] ≥ t1 (resp. RI(v1, v2)[X 7→S] ≥ t2). The proof
for the other direction is similar.

3.3.2 Answering General Fuzzy Queries
Similarly, given an f-DL-Lite ontology O, a general fuzzy

conjunctive query qF , the procedure AnswerF(O, qF) com-
putes the solutions of qF w.r.t. O.

Algorithm A-3: AnswerF(O, qF , a, G)

1: T = Class-Axioms(O)
2: T ′ = Normalise(T) //normalisation of class axioms
3: A = Individual-Axioms(O)
4: DB(A) = Store(A) //normalisation and storage of individual

axioms
5: if Consistency(O, T ′) = false then
6: return inconsistent //O is inconsistent
7: end if
8: q = Remove-Degrees(qF) //q is transformed from qF by re-

moving the degrees from qF

9: return Cal(qF , EvalSQL(PerfectRef(q,T ′)),DB(A)), a, G)

Algorithm A-4: Cal(qF , SS, a, G)

1: ANS := ∅
2: for every tuple S ∈ SS do
3: ANS := ANS∪ Cal-Soln(qF , S, a, G) //Calculate the solu-

tion S : d based on the semantic functions a and G
4: end for

5A variable is non-shared if it does not appear in the body
of the query for more than once.

5: return ANS

The main tasks of AnswerF are (i) to look for candidate
solutions in which the degree is larger than 0, and then (ii) to
calculate the precise degree. The task (i) can be performed
by the DL-Lite query engine, since in the crisp case, the
degree is either 0 or 1 (larger than 0). In other words, the
DL-Lite procedures Eval, SQL, PerfectRef can be reused here
(line 9 of Algorithm A-3). The task (ii) is done by the
procedure Cal, which is a general algorithm to calculate the
degree of each tuple S in the answer set SS returned by the
DL-Lite engine, based on the chosen semantic functions a
and G. Accordingly, we have the following theorem.

Theorem 2. Let O be an f-DL-Lite ontology, qF a gen-
eral fuzzy conjunctive query and S : d a pair of a tuple of
constants together with a truth degree, a a semantic func-
tion for conjunctions and G a semantic function for degree-
associated atoms. S : d is a solution of qF w.r.t. O iff
(S : d) ∈ AnswerF(O, qF ,a,G).

4. IMPLEMENTATION AND EVALUATION

4.1 Implementation
Our implementation is based on the ONTOSEARCH2

system6 [16, 31], which is an infrastructure for support-
ing ontology searching and query answering. The f-DL-Lite
query engine is implemented as an extension of the crisp
DL-Lite query engine in ONTOSEARCH2 [15], so as to sup-
port threshold queries and general fuzzy queries. The core
part of the f-DL-Lite query engine includes implementations
of Algorithms A-1 to A-4, which are presented in Section
3.3. The system was written in Java 5 and uses PostgreSQL
8.1 RDBMS for the repository storage. PostgreSQL was
setup with default installation, no additional configuration
was performed.

Users of the f-DL-Lite query engine can submit f-DL-Lite
ontologies via the Web interface of ONTOSEARCH26, and
then submit f-SPARQL queries against their target ontolo-
gies. The fuzzy query engine operates in two modes: TQ
mode (for threshold queries) and GFCQ mode (for general
fuzzy queries). When users submit an f-SPARQL query,
the fuzzy query engine parses it, so as to determine the
query type (whether the query is a threshold query or a
general fuzzy query), as well as the thresholds (for threshold
queries) or degrees (for general fuzzy queries), depending on
the query types. Accordingly, the fuzzy query engine oper-
ates in either TQ mode (Algorithms A-1 and A2) or GFCQ
mode (Algorithms A-3 and A-4).

Besides the DL-Lite query engine and the f-DL-Lite query
engine, the ONTOSEARCH2 system consists of other com-
ponents, such as the ontology search engine. In Section 5, we
will show how the ontology search engine uses the f-DL-Lite
query engine to perform keyword-plus-entailment searches.

4.2 Benchmark and Evaluation
In this section, we present some preliminary evaluation of

the f-DL-Lite query engine presented in Section 4.1. We will
first discuss the benchmark that we used in the evaluation,
and then present the the evaluation results.

To the best of our knowledge, there exists no benchmark
for query answering over fuzzy ontologies that we could use

6http://www.ontosearch.org/

to evaluate our f-DL-Lite query engine. Accordingly, we
propose a fuzzy variant of the well known Lehigh University
Benchmark (LUBM), called f-LUBM, which is the first of
its kind and against which future implementation of f-DL-
Lite query engines can also be evaluated. f-LUBM allows
the use of fuzzy classes and restricts the expressive power
of the underlying ontology to that of f-DL-Lite. More pre-
cisely, we added two fuzzy classes to the LUBM University
ontology, namely “Busy” and “Famous”. The former one
is determined by the number of courses taught or taken by
a member of staff or student, while the latter one is deter-
mined by the number of papers published. The values are
calculated using the s-shaped curve functions kf (n) to cal-
culate the fuzzy value for fame given n papers published,
and kb(n) to calculate the fuzzy value for busyness given n
courses taken:

kf (n) = 2
1+exp(−0.1n)

− 1, kb(n) = 2
1+exp(−0.4n)

− 1

Based on the above two fuzzy classes, 4 extra queries are
introduced to f-LUBM (there are 14 queries in LUBM). The
first two are simple queries that ask for famous ones.

f-LUBM-Q15(v)← Famous(v) ≥ 0.5
f-LUBM-Q16(v)← Famous(v) : 0.5

f-LUBM-15 is a threshold query, while f-LUBM-16 is a gen-
eral fuzzy query. The other two queries ask for all busy
students which were taught by famous members of staff.

f-LUBM-Q17 (v1)← Student(v1), Buzy(v1) ≥ 0.5, Faculty(v2),
Famous(v2) ≥ 0.5, teacherOf(v2, v3),
takesCourse(v1, v3)

f-LUBM-Q18 (v1)← Student(v1), Buzy(v1) : 0.5, Faculty(v2),
Famous(v2) : 0.5, teacherOf(v2, v3),
takesCourse(v1, v3)

Like in LUBM, it is possible to create arbitrarily large
datasets for individual axioms, generated by a Java pro-
gram in f-LUBM (http://www.csd.abdn.ac.uk/∼sttaylor/f-
LUBM.zip). To test the f-DL-Lite query engine, we created
datasets containing 1, 10 and 50 universities, with the largest
data set (for 50 universities) containing 6,888,642 individu-
als. We used fuzzy aggregation queries as representatives for
GFCQs in our test. In order to investigate the overhead of
fuzzy queries, we compare the performance in the f-DL-Lite
query engine with the DL-Lite query engine, which is used
to answer the following two crisp queries.

crisp-1(v)← Famous(v)
crisp-2(v1)← Student(v1), Buzy(v1), Faculty(v2),

Famous(v2), teacherOf(v2, v3),
takesCourse(v1, v3)

The results are shown in Table 3. The first column lists
the queries used in the test. The second (resp. third and
fourth) column show the time (in millisecond) needed to
answer the queries for 1 university (resp. 10 and 50 uni-
versities). In general, the evaluations match nicely with our
expectation: crisp queries are faster than CTQs as the sys-
tem needs to take care of more joins due to the thresholds,
while CTQs are faster than GFCQs as the former ones do
not require post-processing to calculate the degrees. Fur-
thermore, it is encouraging to see that the performance of
the fuzzy query engine is in most cases close to the perfor-
mance of the crisp query engine. With the smallest data
set, it is has almost identical performance, particularly on
the more complex queries. As more data must be evalu-
ated, the performance drops slightly. For the largest data

Table 3: Results of some f-LUBM queries

Query T [1] (ms) T [10] (ms) T [50] (ms)

f-LUBM-Q15 (TQ) 179 536 1061
f-LUBM-Q16 (GFCQ) 220 683 1887
crisp-1 152 422 891
f-LUBM-Q17 (TQ) 532 845 2922
f-LUBM-Q18 (GFCQ) 520 973 3654
crisp-2 494 892 2523

set (containing 6,888,642 individuals), it only took the f-DL-
Lite query engine (up to) a few seconds to answer each of
the tested queries.

5. USE CASE: ONTOLOGY SEARCHING
This section presents an online application6, the ontol-

ogy search engine in the ONTOSEARCH2 system, of the
f-DL-Lite query engine presented in Section 4. One of the
major limitations of existing ontology search engines is that
searching is only based on keywords and metadata infor-
mation of ontologies, rather than semantic entailments of
ontologies (e.g., one wants to search for ontologies in which
BassClarinet is a sub-class of Woodwind). On the other hand,
searching only based on semantic entailments might not be
ideal either, as synonyms appearing in the metadata could
not be exploited.

By making use of the f-DL-Lite query engine, our ontology
search engine supports keyword-plus-entailment searches, such
as searching for ontologies in which class X is a sub-class of
class Y, and class X is associated with the keywords “Bass”
and “Clarinet”, while class Y is associated with the keyword
“Woodwind”. The search could be represented as the fol-
lowing threshold query:

1: #TQ#

2: SELECT ?x WHERE {

3: ?x hasKeyword i-bass . #TH# 0.6

4: ?x hasKeyword i-clarinet . #TH# 0.6

5: ?x rdfs:subClassOf ?y .

6: ?y hasKeyword i-woodwind . #TH# 0.7}

where i-bass, i-clarinet and i-woodwind are representative
individuals for keywords “Bass”, “Clarinet” and “Wood-
wind”, resp. The thresholds 0.6 and 0.7 can be specified
by users.

In order to support keyword-plus-entailment searches, our
ontology search engine, for each indexed ontology, stores
its semantic approximation (in DL-Lite) [15] and accompa-
nies each ontology in its repository with an f-DL-Lite meta-
ontology, which (i) materialises all TBox reasoning based
on the semantic approximation and, most importantly, (ii)
uses fuzzy assertions to represent associations of each class
(property) and keywords7 appearing in the metadata of the
ontology, with some degrees. Keywords appearing in the on-
tology metadata are associated with scores based on ranking
factors8. We use these scores to calculate the tf · idf [22] for

7As mentioned above, keywords are represented by repre-
sentative individuals.
8http://www.seomoz.org/article/search-ranking-factors

each keyword, and normalise them using a sigmoid function
such as the one shown in (3) to a degree between 0 and 1.

w(n) =
2

1.2−n + 1
− 1 (3)

Hence, the ontology search engine can use the f-DL-Lite
query engine to query across all the meta-ontologies in its
repository, so as to support keyword-plus-entailment searches.
Further discussions of this use case go beyond the scope of
this paper.

6. DISCUSSIONS
How to apply Description Logic based ontologies in the

Web has been a pressing issue for the Semantic Web com-
munity [14]. Web applications require ontology engines to
be able to handle fuzzy and imprecise data in an efficient
and scalable manner, which has been a big challenge for
existing fuzzy ontology engines. In this paper, we tackle
this issue by providing efficient and scalable query services
for lightweight fuzzy ontologies (in f-DL-Lite), based on the
the two novel query languages we proposed for fuzzy on-
tologies. To the best of our knowledge, this paper is the
first to report on implementations and evaluations of scal-
able and expressive conjunctive query answering over fuzzy
ontologies. Our online use case application shows that the
f-DL-Lite query engine can be used to enable keyword-plus-
entailment searches.

Our proposed query languages are related with weighted
Boolean queries [33, 4, 21] proposed in the field fuzzy infor-
mation retrieval [8]. On the one hand, motivated by these
extensions we propose a completely novel query language,
that of threshold queries, which is very important since it
generalises the entailment of fuzzy assertions. On the other
hand, the main strength of the proposed general fuzzy query
language is its openness of the use of semantics generalising
most previous approaches, like those based on fuzzy implica-
tions [4], aggregation functions [21, 6, 32], Straccia’s query
language [29] for fuzzy DL-Lite and weighted t-norm queries
[7]. With the general fuzzy query language, we could pro-
vide top-k query answering service over f-DL-Lite ontolo-
gies, similar to that proposed by Straccia [30] for a variant
of DL-Lite ontologies. In short, the openness of the use of
fuzzy semantics and the generality of the presented algo-
rithms make the fuzzy querying service more adaptable for
different application needs.

One aspect of our future work is to investigate scalable
querying services for more expressive fuzzy ontology lan-
guages, such as Fuzzy OWL [26]. Another part of our fu-
ture work should also consist of a survey on which query
language/semantics could/should be used in what scenarios
in Web applications.

Acknowledgements
This research was partially supported by the Nuffield FONTO-
Rule project (NAL/32794), the FP6 Network of Excellence
EU project Knowledge Web (IST-2004-507842), Integrated
EU project X-Media (IST-2004-026978) and the Advanced
Knowledge Technologies (GR/N15764/01). Giorgos Stoilos
was also partially supported by the Greek Secretariat of Re-
search and Technology (PENED Ontomedia 03 ED 475).

7. REFERENCES
[1] F. Baader, D. L. McGuiness, D. Nardi, and

P. Patel-Schneider, editors. Description Logic
Handbook: Theory, implementation and applications.
Cambridge University Press, 2002.

[2] F. Bobillo, M. Delgado, and J. Gómez-Romero. A
crisp representation for fuzzy SHOIN with fuzzy
nominals and general concept inclusions. In Proc. of
the 2nd International Workshop on Uncertainty
Reasoning for the Semantic Web (URSW 06), Athens,
Georgia, 2006.

[3] A. Bookstein. Fuzzy requests: An approach to
weighted boolean searches. Journal of the Americal
Society for Information Science, 31:240–247, 1980.

[4] G. Bordogna, P. Bosc, and G Pasi. Fuzzy inclusion in
database and information retrieval query
interpretation. In Proceedings of the 1996 ACM
symposium on Applied Computing, pages 547–551,
1996.

[5] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. DL-Lite: Tractable
description logics for ontologies. In Proc. of AAAI
2005, 2005.

[6] S.J. Chen and S.M. Chen. A new method for fuzzy
information retrieval based on geometric-mean
averaging operators. In Workshop on Artificial
Intelligence.

[7] A. Chortaras, G. Stamou, and A. Stafylopatis.
Adaptation of weighted fuzzy programs. In Proc. of
the International Conference on Artificial Neural
Networks (ICANN 2006), pages 45–54. Springer, 2006.

[8] V. Cross. Fuzzy information retrieval. Journal of
Intelligent Information Systems, 3:29–56, 1994.

[9] B. C. Grau. Tractable fragments of the OWL 1.1 web
ontology language.
http://www.w3.org/Submission/owl11-tractable/,
2006.

[10] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark
for OWL Knowledge Base Systems. Journal of Web
Semantics, 3(2):158–182, 2005.

[11] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic:
Theory and Applications. Prentice-Hall, 1995.

[12] Y. Li, B. Xu, J. Lu, and D. Kang. Discrete tableau
algorithms for FSHI. In Proceedings of the
International Workshop on Description Logics (DL
2006), Lake District, UK, 2006.

[13] T. Mailis, G. Stoilos, and G. Stamou. Proceedings of
the first international conference on web reasoning and
rule systems (RR-07), 2007. In Expressive Reasoning
with Horn Rules and Fuzzy Description Logics, 2007.

[14] P. Mika. Ontologies are us: A unified model of social
networks and semantics. In 4th International Semantic
Web Conference (ISWC 2005), 2005.

[15] J. Z. Pan and E. Thomas. Approximating OWL-DL
Ontologies. In Proc. of the 22nd National Conference
on Artificial Intelligence (AAAI-07), 2007. To appear.

[16] J. Z. Pan, E. Thomas, and D. Sleeman.
ONTOSEARCH2: Searching and Querying Web
Ontologies. In Proc. of WWW/Internet 2006, pages
211–218, 2006.

[17] J.Z. Pan, G. Stoilos, G. Stamou, V. Tzouvaras, and
I. Horrocks. f-SWRL: A fuzzy extension of SWRL.

Journal on Data Semantics, Special Issue on
Emergent Semantics, 4090:28–46, 2006.

[18] P. F. Patel-Schneider, P. Hayes, and I. Horrocks.
OWL Web Ontology Language Semantics and
Abstract Syntax. Technical report, W3C, Feb. 2004.
W3C Recommendation.

[19] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF, 2006. W3C Working Draft,
http://www.w3.org/TR/rdf-sparql-query/.

[20] T. Radecki. Fuzzy set theoretical approach to
document retrieval. Journal of Information Processing
& Management, 15:235–245, 1979.

[21] G. Salton, E.A. Fox, and H. Wu. Extended boolean
information retrieval. Journal of Communications of
ACM, 26:1022–1036, 1983.

[22] G. Salton and M. J. McGill. Introduction to modern
information retrieval. McGraw-Hill, 1983.

[23] E. Sanchez. Importance in knowledge systems.
Information Systems, 14(6):455–464, 1989.

[24] G. Stoilos, N. Simou, G. Stamou, and S. Kollias.
Uncertainty and the semantic web. IEEE Intelligent
Systems, 21(5):84–87, 2006.

[25] G. Stoilos, G. Stamou, J. Z. Pan, V. Tzouvaras, and
I. Horrocks. Reasoning with very expressive fuzzy
description logics. Journal of Artificial Intelligence
Research, 30(5):273–320, 2007.

[26] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and
I. Horrocks. Fuzzy OWL: Uncertainty and the
semantic web. In Proc. of the International Workshop
on OWL: Experiences and Directions, 2005.

[27] U. Straccia. Reasoning within fuzzy description logics.
Journal of Artificial Intelligence Research, 14:137–166,
2001.

[28] U. Straccia. Description logics with fuzzy concrete
domains. In 21st Conf. on Uncertainty in Artificial
Intelligence (UAI-05), Edinburgh, 2005.

[29] U. Straccia. Answering vague queries in fuzzy
DL-Lite. In Proceedings of the 11th International
Conference on Information Processing and
Management of Uncertainty in Knowledge-Based
Systems, (IPMU-06), pages 2238–2245, 2006.

[30] U. Straccia. Towards top-k query answering in
description logics: the case of DL Lite. In Proceedings
of the 10th European Conference on Logics in
Artificial Intelligence (JELIA-06), 2006.

[31] E. Thomas, J. Z. Pan, and D. Sleeman.
ONTOSEARCH2: Searching Ontologies Semantically.
In Proc. of OWL Experience Workshop, 2007.

[32] P. Vojtás. Fuzzy logic programming. Fuzzy Sets and
Systems, 124:361–370, 2001.

[33] W.G. Waller and D.H. Kraft. A mathematical model
of a weighted boolean retrieval system. Journal of
Information Processing & Management, 15:247–260,
1979.

[34] R.R Yager. A note on weighted queries in information
retrieval systems. Journal of the Americal Society for
Information Science, 38:23–24, 1987.

APPENDIX

A. ABSTRACT SYNTAX OF F-DL-LITE

This appendix contains a detailed presentation of the ab-
stract syntax of fuzzy-DL-Lite. Firstly, we present the ab-
stract syntax of crisp DL-Lite by restricting the elements of
the OWL DL syntax. Then, we provide the definition of in-
dividual axioms in fuzzy-DL-Lite which additionally contain
a membership degree and an inequality type.

Class Axioms

axiom ::= ‘Class(’ classID [‘Deprecated’] ‘complete’
{annotation} { basicClass } ‘)’

axiom ::= ‘Class(’ classID [‘Deprecated’] ‘partial’
{annotation} { generalClass } ‘)’

axiom ::= ‘DisjointClasses(’ basicClass basicClass
{ basicClass } ‘)’ |

‘EquivalentClasses(’ basicClass { basicClass } ‘)’ |
‘SubClassOf(’ basicClass generalClass ’)’

basicClass ::= classID | restriction

generalClass ::= basicClass | ‘complementOf(’ { basicClass } ‘)’ |
‘intersectionOf(’ { generalClass } ‘)’

restriction ::= ‘restriction(’ individualvaluedPropertyID
‘someValuesFrom(owl:Thing)’ ‘)’

Property Axioms

axiom ::= ‘ObjectProperty(’ individualvaluedPropertyID
[‘Deprecated’] { annotation }
[‘inverseOf(’ individualvaluedPropertyID ‘)’]
[‘Functional’ | ‘InverseFunctional’]
{ ‘domain(’ generalClass ‘)’ } { ‘range(’ generalClass ‘)’ } ‘)’

Fuzzy Assertions

individual ::= ‘Individual(’ [individualID] {annotation}
{‘type’(type ‘)’ [ineqType] [degree]}
{value [ineqType] [degree] } ‘)’

ineqType ::= ‘>=’

degree ::= real-number-between-0-and-1-inclusive

value ::= ‘value(’ individualvaluedPropertyID individualID ’)’ |
‘value(’ individualvaluedPropertyID individual ’)’

type ::= description

