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The numerical stability of barycentric Lagrange
interpolation
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The Lagrange representation of the interpolating polynomial can be rewritten in two
more computationally attractive forms: a modified Lagrange form and a barycentric
form. We give an error analysis of the evaluation of the interpolating polynomial using
these two forms. The modified Lagrange formula is shown to be backward stable. The
barycentric formula has a less favourable error analysis, but is forward stable for any set of
interpolating points with a small Lebesgue constant. Therefore the barycentric formula can
be significantly less accurate than the modified Lagrange formula only for a poor choice of
interpolating points. This analysis provides further weight to the argument of Berrut and
Trefethen that barycentric Lagrange interpolation should be the polynomial interpolation
method of choice.
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1. Introduction

The Lagrange polynomial interpolation formula is widely regarded as being of mainly
theoretical interest, as reference to almost any numerical analysis textbook reveals. Yet
several authors, including Henrici (1982), Rutishauser (1990), Salzer (1972), Werner
(1984) and Winrich (1969), have noted that certain variants of the Lagrange formula are
indeed of practical use. Berrut & Trefethen (2004) have recently collected and explained
the attractive features of two modified Lagrange formulae. They argue convincingly that
interpolation via a barycentric Lagrange formula ought to be the standard method of
polynomial interpolation. A question raised but not answered by Berrut and Trefethen is
the effect of rounding errors on the two formulae. The purpose of this work, which was
begun after reading a draft of Berrut & Trefethen (2004), is to answer this question.

We begin, in Section 2, by deriving a condition number for polynomial interpolation.
Error analyses of the modified Lagrange formula and barycentric formula are given in
Sections 3 and 4, respectively. The modified Lagrange formula is shown to be backward
stable and the barycentric formula is shown to be forward stable for sets of interpolation
points with a small Lebesgue constant. In both cases, stability is defined with respect to
perturbations in the function values but not the interpolation points. We give numerical
experiments to illustrate the potential difference in accuracy of the two formulae in
Section 5 and then present conclusions in Section 6.
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Ours is not the first numerical investigation of the modified Lagrange formula. Rack
& Reimer (1982) give a rounding error analysis that concludes with a weaker bound than
(3.4) below and they do not identify the backward stability of the formula.

We restrict our attention to the effect of rounding errors on barycentric interpolation.
For full details of the many interesting properties of barycentric interpolation the reader
should consult Berrut & Trefethen (2004).

2. Condition number

We are interested in the problem of finding the polynomialpn(x) of degree at mostn
that interpolates to the dataf j at the distinct pointsx j , j = 0: n. We consider fixed
interpolation pointsx j , afixed evaluation pointx , and a varying vectorf . Wewill therefore
also denotepn(x) by p f (x). Inequalities between vectors are interpreted componentwise.

To aid the interpretation of our error bounds we need to define and evaluate a condition
number forpn . Recall that the Lagrange form ofpn(x) is

pn(x) =
n∑

j=0

f j� j (x), � j (x) =

n∏
k=0, k �= j

(x − xk)

n∏
k=0, k �= j

(x j − xk)

· (2.1)

DEFINITION 2.1 The condition number ofpn at x with respect tof is, for pn(x) �= 0,

cond(x, n, f ) = lim
ε→0

sup

{ ∣∣∣∣ p f (x) − p f +∆ f (x)

εp f (x)

∣∣∣∣ : |∆ f | � ε| f |
}

.

In the notation cond(x, n, f ) the term ‘n’ indicates the dependence of cond on the points
x j .

LEMMA 2.2

cond(x, n, f ) =
∑n

j=0 |� j (x) f j |
|pn(x)| � 1, (2.2)

and for any∆ f with |∆ f | � ε| f | we have

|p f (x) − p f +∆ f (x)|
|p f (x)| � cond(x, n, f )ε·

Proof. From

p f (x) − p f +∆ f (x) =
n∑

j=0

� j (x)∆ f j

it is immediate that the claimed expression is an upper bound for cond(x, n, f ), and it is
clearly at least 1. Equality is attained for∆ f j = ε sign(� j (x))| f j |. The inequality follows
trivially. �
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3. Modified Lagrange formula

A trivial rewriting of (2.1) is

pn(x) = �(x)

n∑
j=0

w j

x − x j
f j , (3.1)

where

�(x) =
n∏

j=0

(x − x j )

and

w j = 1∏
k �= j (x j − xk)

· (3.2)

This is called the ‘first form of the barycentric interpolation formula’ by Rutishauser
(1990).

For our error analysis we use the standard model of floating point arithmetic (Higham,
2002, Section 2.2):

f l(x op y) = (x op y)(1 + δ)±1, |δ| � u, op = +, −, ∗, /,

whereu is the unit roundoff. Our bounds are expressed in terms of the constant

γk = ku

1 − ku
,

whereku < 1 is assumed. We also employ the relative error counter,〈k〉:

〈k〉 =
k∏

i=1

(1 + δi )
ρi , ρi = ±1, |δi | � u· (3.3)

For clarity, we will write 〈k〉 j to denote that thek rounding errors in question depend on
j . We will use the fact that|〈k〉 − 1| � γk = ku/(1 − ku) (Higham, 2002, Lemma 3.1).
Finally, we assume that thexi , fi andx are floating point numbers.

LEMMA 3.1 The computed weightŝw j satisfy

ŵ j = w j 〈2n〉 j , j = 0: n,

while the computed̂�(x) satisfies

�̂(x) = �(x)〈2n + 1〉·
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Proof.

f l

(∏
k �= j

(x j − xk)

)
= f l

(∏
k �= j

f l(x j − xk)

)

= f l

(∏
k �= j

(x j − xk)〈1〉 j

)
= 〈n − 1〉 j 〈n〉 j

∏
k �= j

(x j − xk)

= 〈2n − 1〉 j

∏
k �= j

(x j − xk),

wheren rounding errors come from additions andn − 1 from multiplications. The final
division contributes one further rounding error. The expression for�̂ is derived similarly,
since� involvesn + 1 subtractions andn multiplications. �

THEOREM 3.2 The computed̂pn(x) from (3.1) satisfies

p̂n(x) = �(x)

n∑
j=0

w j

x − x j
f j 〈5n + 5〉 j ·

Proof. We have

p̂n(x) = �̂(x)〈1〉
n∑

j=0

ŵ j

x − x j
f j 〈3〉 j 〈n〉 j ,

where the factor〈3〉 accounts for the subtraction in the denominator, the division and the
multiplication, and the factor〈n〉 accounts for the errors in summation, no matter which
ordering is used (Higham, 2002, Chapter 4). Using Lemma 3.1 we obtain

p̂n(x) = �(x)〈2n + 2〉
n∑

j=0

w j 〈2n〉 j

x − x j
f j 〈3〉 j 〈n〉 j ,

which yields the result on collecting the rounding error terms. �

This is a strong result: it says that̂pn(x) is the exact value atx of the interpolant of a
perturbed problem in which the perturbations are small relative changes in the dataf . In
other words, formula (3.1) is a backward stable means of evaluatingpn(x). Wecan hardly
expect better: these errors are of the same form, and only O(n) times larger than, the errors
in rounding thef j to floating point form.

A forward error bound follows trivially on invoking Lemma 2.2:

|pn(x) − p̂n(x)|
|pn(x)| � γ5n+5cond(x, n, f )· (3.4)

It is easy to see that there exist rounding errors such that this bound is approximately
attained, in the sense that the left-hand side is within a constant factor of the right-hand
side. Theorem 3.2 and (3.4) justify the use of the formula (3.1) by Duttet al. (1993).
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If the x j or x are not floating point numbers then there can be large relative errors in the
differencesf l( f l(x j ) − f l(xk)) and f l( f l(x) − f l(x j )). However, the computed̂pn(x)

can nevertheless be interpreted as the exact result corresponding to slightly perturbedx and
pointsx j (namely, the rounded values) and slightly perturbed pointsf j ; so if p̂n(x) has a
large relative error then the problem itself must be ill conditioned with respect to variations
in x and thex j and f j .

4. Barycentric formula

The function valuesfi ≡ 1 are obviously interpolated bypn(x) = 1, and hence (3.1) gives
1 = �(x)

∑n
j=0 w j/(x − x j ). Using this equation to eliminate�(x) in (3.1) yields

pn(x) =

n∑
j=0

w j

x − x j
f j

n∑
j=0

w j

x − x j

, (4.1)

which is called the ‘second (proper) form of the barycentric formula’ by Rutishauser
(1990).

Since this formula is obtained by using a mathematical identity that does not
necessarily hold in floating point arithmetic, this second formula might be expected to
have different stability properties to the first.

Working in the same way as in the proof of Theorem 3.2, we find that

p̂n(x) =

n∑
j=0

w j 〈2n〉 j

x − x j
f j 〈n + 3〉 j

n∑
j=0

w j 〈2n〉 j

x − x j
〈n + 2〉 j

〈1〉

=

n∑
j=0

w j

x − x j
f j 〈3n + 4〉 j

n∑
j=0

w j

x − x j
〈3n + 2〉 j

·

This result does not admit any useful interpretation in terms of backward error. But it does
lead readily to a forward error bound, which is stated in the next result. We note first that
the equality (2.2) can be rewritten

cond(x, n, f ) =

n∑
j=0

∣∣∣∣ w j f j

x − x j

∣∣∣∣∣∣∣∣∣ n∑
j=0

w j f j

x − x j

∣∣∣∣∣
·
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THEOREM 4.1 The computed̂pn(x) from (4.1) satisfies

|pn(x) − p̂n(x)|
|pn(x)| � (3n + 4)u

∑n
j=0

∣∣∣ w j
x−x j

f j

∣∣∣∣∣∣∑n
j=0

w j
x−x j

f j

∣∣∣
+(3n + 2)u

∑n
j=0

∣∣∣ w j
x−x j

∣∣∣∣∣∣∑n
j=0

w j
x−x j

∣∣∣ + O(u2)

= (3n + 4)u cond(x, n, f )

+(3n + 2)u

∑n
j=0

∣∣∣ w j
x−x j

∣∣∣∣∣∣∑n
j=0

w j
x−x j

∣∣∣ + O(u2) (4.2)

= (3n + 4)u cond(x, n, f )

+(3n + 2)u cond(x, n, 1) + O(u2), (4.3)

where the argument ‘1’ denotes the function with constant value 1. There exist rounding
errors such that this bound is attained to within a constant factor.

We see from (4.2) that the forward error bound for the barycentric formula contains
an extra term not present in that for the first formula: a term that measures the amount
of cancellation in the denominator. Since the denominator is independent off , it is
clear that for suitable choices off and thex j , the bound (4.2) can be arbitrarily larger
than cond(x, n, f )u. For example, if we takef1 = 1 and f j = 0 for j > 1, then
cond(x, n, f ) = 1, while for suitable choice of thex j the second term in (4.2) can be
arbitrarily large. However, from (4.3) we see that the error bound is significantly larger
than that for the modified Lagrange formula only if cond(x, n, 1) � cond(x, n, f ): a
circumstance that intuitively seems unlikely.

To gain more insight, we assume that the pointsx j lie in [−1, 1] and express the bound
in terms ofΛn , the Lebesgue constant associated with the pointsx j , defined by Rivlin
(1981, Chapter 4)

Λn = sup
f ∈C([−1,1])

‖Pn f ‖
‖ f ‖ ,

where Pn is the operator mappingf to its interpolating polynomial at thex j , ‖ f ‖ =
maxx∈[−1,1] | f (x)|, andC([−1, 1]) is the space of all continuous functions on[−1, 1]. It
can be shown that (Cheney & Light, 2000, Chapter 2)

Λn = sup
x∈[−1,1]

n∑
j=0

|� j (x)|·

Noting that cond(x, n, 1) = ∑n
j=0 |� j (x)|, we can weaken (4.3) to obtain the following

result.

COROLLARY 4.2 The computed̂pn(x) from (4.1) satisfies

|pn(x) − p̂n(x)|
|pn(x)| � (3n + 4)u cond(x, n, f ) + (3n + 2)u Λn + O(u2)· (4.4)



STABILITY OF BARYCENTRIC LAGRANGE INTERPOLATION 553

For the Chebyshev points of the first kind (the zeros of the degreen + 1 Chebyshev
polynomial) and the Chebyshev points of the second kind (the extreme points of the degree
n Chebyshev polynomial),

Λn � 2

π
log(n + 1) + 1·

For other ‘good’ sets of points,Λn is also slowly growing. For equally spaced points,
Λn grows exponentially at a rate proportional to 2n/(n logn). For details of these results
see Brutman (1997) or Cheney & Light (2000, Chapter 3). We can conclude that while
the barycentric formula is not forward stable in general, it can be significantly less
accurate than the modified Lagrange formula only for a poor choice of interpolating
points and specialf . More specifically, for both sets of Chebyshev points the barycentric
formula is guaranteed to be forward stable—that is, it produces relative errors bounded by
g(n)ucond(x, n, f ), with g aslowly growing function ofn.

The barycentric formula has a practical advantage over the modified Lagrange formula,
as noted by Berrut and Trefethen. Since thew j appear linearly in both the numerator and
denominator they can be rescaled (w j ← αw j ) to avoid overflow and underflow; see
Berrut & Trefethen (2004) for a suggested general scaling. It is also worth noting that for
both sets of Chebyshev points simple explicit formulae are known for the (suitably scaled)
w j (Berrut & Trefethen, 2004; Salzer, 1972).

5. Numerical experiments

We report an experiment whose purpose is to verify the conclusions of the error analysis
and also to provide a comparison between the formulae analysed here and the Newton
divided difference form. The computations were performed in MATLAB , for which u ≈
10−16.

We take 30 equally spaced pointsx j on [−1, 1] (thus n = 29) and setf j = 0 for
j = 0: n − 1 and fn=1. We evaluate the interpolant at 100 equally spaced points on
[−1+103ε, 1−103ε], whereε = 2u (MATLAB ’s eps). The ‘exact’ values were obtained by
computing in 50 digit arithmetic using MATLAB ’s Symbolic Math Toolbox. Figure 1 plots
the errors for the modified Lagrange formula, (3.1), the barycentric formula, (4.1), and the
Newton divided difference form, with the latter form evaluated by nested multiplication.
In this figure thex j are in increasing order. In Fig. 2 thex j have been re-ordered to be in
decreasing order.

In this example, cond(x, n, f ) ≡ 1, so a forward stable method should give a computed
p̂n(x) with relative error of orderu. In Fig. 1 we see that the modified Lagrange formula,
(3.1), performs stably, as it must do in view of our error analysis. The barycentric formula,
(4.1), performs unstably, and given thatΛn = 3× 106, we see that the bound (4.4) is fairly
sharp at the ends of the interval. The same comments apply to Fig. 2 (note the different
scales on they-axes). The Newton divided difference formula performs stably in Fig. 1 but
very unstably in Fig. 2.

Finally, to balance this very extreme example we give a more typical one. This example
differs from the first only in that the function values come from the Runge function
f (x) = 1/(1 + 25x2) and the pointsx j are the Chebyshev points of the first kind. Here,
maxx cond(x, n, f ) = 7·5. The points are in increasing order in Fig. 3 and in decreasing
order in Fig. 4. The modified Lagrange formula and the barycentric formula behave in a
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FIG. 1. Relative errors in computedpn(x) for 30 equally spaced pointsxi in increasing order.
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FIG. 2. Relative errors in computedpn(x) for 30 equally spaced pointsxi in decreasing order.

forward stable way for both orderings, but the Newton divided difference formula becomes
very unstable asx approaches one end of the interval in each case.
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FIG. 3. Relative errors in computedpn(x) for 30 Chebyshev pointsxi of the first kind in increasing order and
f (x) = 1/(1 + 25x2).
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FIG. 4. Relative errors in computedpn(x) for 30 Chebyshev pointsxi of the first kind in decreasing order and
f (x) = 1/(1 + 25x2).

6. Conclusions

The modified Lagrange formula (3.1) for polynomial interpolation is backward stable
with respect to perturbations in the function values. The barycentric formula (4.1) is not
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backward stable, but it is forward stable for any set of interpolating points with a small
Lebesgue constant, which roughly means points that are clustered towards the ends of
the interval rather than equally spaced. Our analysis therefore provides support for the
argument of Berrut & Trefethen (2004) that barycentric Lagrange interpolation should be
the interpolation method of choice.

We are not aware of any error analysis for construction and evaluation of the Newton
divided difference formula at arbitrary points. The rounding error analysis in Higham
(2002, Section 5.3), which covers construction followed by evaluation at the interpolation
points only, could be extended to handle arbitrary points. However, it is clear from the
analysis in Higham (2002, Section 5.3) and from the experiments reported here that the
errors from the Newton form are very dependent on the ordering and can be unacceptably
large even for Chebyshev points.
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