

Present Status of GOCI/COMS and GOCI-2

Yu-Hwan Ahn

Korea Ocean Satellite Center KORDI

Satellite Configuration

• Mass at launch: 2500 kg

• Design life time: 10 years

Operational life: 7.7 years from launch

Launcher: Ariane 5

GOCI Instrument Design

◆ Overview of GOCI Instrument

- Shutter wheel & Mechanism
- Pointing Mirror & Mechanism
- Optics
- Filter wheel & Mechanism
- Detector & FEE
- PIP
- IEU

(Z+ Earth)

Volume	1.39m x 0.89m x 0.85m
Mass	< 84kg (including IEU)
Power	< 100W (including thermal control)

KORDI Issues-Radiometric Calibration

- Number of bad sensor pixels
- => Not meeting Radiometric Requirements
 - KORDI's Request: should be reduced to 0.01%, not 0.1%.
 - Status: 0.01% confirmed by Test Results
- 2nd Diffuser (Diffuser Aging Monitoring Device) size
 - KORDI's Request : DAMD should be identical to solar difffuser to monitor the aging.
 - Status: Small sized (half of diameter) 2nd diffuser is implemented replaced from calibration plate.

Radiometric calibration

- Accuracy requirement : < 4%
 - -> lower than 3.8% (Solar calibration only)

GOCI Radiance Calculation Equation

$$\widetilde{L} = \frac{1}{T_{\text{int}}} \frac{\overline{S}}{\widetilde{G}} \left[1 - \frac{\widetilde{b} \, \overline{S}^2}{\widetilde{G}^3 + 3\widetilde{b} \, \overline{S}^2} \left(1 + 3 \left(\frac{\widetilde{b} \, \overline{S}^2}{\widetilde{G}^3 + 3\widetilde{b} \, \overline{S}^2} \right)^2 \right) \right]$$

Identification of error sources

On-ground characterization parameters

- ✓ Diffusion factor of SD
- ✓ FMD of DAMD

In-orbit operation environment

- ✓ Reflectivity variation of pointing mirror
- ✓ Gain variation during one day
- ✓ Offset variation during one slot imaging
- ✓ System noise (SNR)
- ✓ SD aging factor estimation error
- ✓ DAMD aging

GOCI radiometric model error

 Simplification of nonlinearity due to dark current

Analytic calculation of estimation error

Derivation error propagation coefficients from radiance equation

&

Error source estimation from On-ground test results achieved at GOCI level and equipment level

Then

Calculation of radiance estimation error using propagation coefficients and error

Validation of analytic method through GOCI simulation model

Simulation of **Sun radiance acquisition** with GOCI for single pixel (using GOCI simulation model)

&

Simulation of **Sea radiance acquisition** with GOCI for single pixel (using GOCI simulation model)

ጴ

Radiance calculation using simulated GOCI signals

Extraction of radiance estimation error using simulation results (1000 times)

Comparison between analytical result and simulated result

Shipment to Korea

• GOCI has shipped to Korea in Nov. 24, 2008

GOCI/COMS Integration

- GOCI has been successfully integrated into COMS in KARI / Korea
- GOCI/COMS final ground test campaign is on going in KARI.

Following Activities

- Launch Schedule : Nov. 2009
- Launch Vehicle : Ariane-V (ESA)
 - Location : Kourou Space Center, French Guiana

GOCI-2

(2010 - 2016)

Multiple purpose GEO satellite(A &B) COMS

Meteorological satellite (MI-2)

Ocean payload (GOCI-2) 60M\$

Atmospheric chemistry payload

Communication payload Meteorological payload Ocean payload(GOCI)

- Data Collection System(DCS ?)
- => Confirmed by Ministries
 Under evaluation for funding / National scientific committee

KORDI GOCI-2 Mission Requirements

- Main Mission
 - Succession and expansion of the GOCI-1 missions
- Newly assigned Mission to GOCI–2
 - Establishment of Ocean Observation System to monitor long-term climate change with Full Disk Observation.
 - Environment Monitoring for the efficient management of coastal waters with High Resolution(GSD 250m) Local Area Observation.

GOCI-2 User Requirements and Feasibility Study

GOCI-2 User Requirments

Key Requirements

Spectral Band: 13 bands (cf. GOCI = 8 Bands)

- Resolution(GSD): 250m & 1km (cf. GOCI = 500m)

Temporal Resolution : every 1 h & 12–24h

Observation Coverage

Local Area(GOCI Coverage) – GSD: ~250m

Full Disk Coverage – GSD: ~1000m

Nighttime Observation

Additional Panchromatic Filter

Panchromatic Filter (400~900nm)

Dedicated Low Noise Detector for Nighttime Observation

Coverage

• Monitoring of the Global/Local ocean environment

KORDI GOCI-2 User Requirments

Comparison with GOCI

	GOCI	GOCI-2	
Orbit type	GEO	GEO	
# of Bands	8	13	
Spatial Resolution	500m x 500m	250m x 250m 1km x 1km	
Coverage	Local Area (Korean Peninsula)	Local Area & Full disk	
SNR	~1000	~ 1500	
Temporal Resolution	1 Hour	1 Hour 12-24H	

KORDI Technical Analysis for Resolution

=> Due to low spatial resolution, ocean contamination by land signal can't be applicable.
Korea Ocean Satellite Center, KORDI

- Spectral Bands Requirements
 - 13 Bands (GOCI: 8 Bands)
 - Nighttime Observation, Enhanced Atmospheric Correction Accuracy

Radiance: W/m²/um/sr

Band				Nominal Radiance	Maximum Ocean Radiance	Saturation Radiance	Maximum Cloud Radiance		SNR	Primary use
1	GOCI-B1	412nm	20nm	100.0	150.0	152.0	601.6	0.100	1000	Yellow substance and turbidity
2	GOCI-B2	443nm	20nm	92.5	145.8	148.0	679.1	0.085	1090	Chlorophyll absorption maximum
3	GOCI-B3	490nm	20nm	72.2	115.5	116.0	682.1	0.067	1170	Chlorophyll and other pigments
4	(KGOCI)	520nm	20nm							Red Tide
5	GOCI-B4	555nm	20nm	55.3	85.2	87.0	649.7	0.056	1070	Turbidity, suspended sediment
6	(KGOCI)	625nm	20nm							SS & Red Tide
7	GOCI-B5	660nm	10nm	32.0	58.3	61.0	589.0	0.032	1010	Baseline of fluorescence signal, Chlorophyll, suspended sediment
8	GOCI-B6	685nm	10nm	27.1	46.2	47.0	549.3	0.031	870	Atmospheric correction and fluorescence signal
9	GOCI-B7	745nm	20nm	17.7	33.0	33.0	429.8	0.020	860	Atmospheric correction and baseline of fluorescence signal
10	(KGOCI)	765nm	20nm							Aerosol Properties, Atmospheric Properties
11	GOCI-B8	865nm	40nm	12.0	23.4	24.0	343.8	0.016	750	Aerosol optical thickness, vegetation, water vapor reference over the ocean
12		905nm	40nm							Atmospheric Properties, Cloud Properties
13		650nm	500nm	6.5E-6						Night Band (Night time fishing boat activities)

Korea Ocean Satellite Center, KORDI

- 5 additional bands and Full Disk Coverage
 - Technical impact
 - Long integration time
 - Increased Data: 9 times larger than GOCI
 - Increased data transmitting rate :9 times larger than GOCI
 - Solution
 - · Data communication band: L-band to X-band
 - => X band : about 23 time faster than L-band
 - -> Feasible
 - * GOES-R(X-Band): 140Mbps (A. Krimchansky et. al, 2006)
 - * GOCI(L-Band): 6.2Mbps, MI(L-Band): 2.6Mbps
 - => Required transfer rate : ~ 60Mbps

- How to accomplish the resolution with GSD 250m
 - Solution with modifying GOCI design
 - Reduced CCD Pixel Size : 14.81 -> 7.0μm

(B. Zhukov, et. Al, 2005)

- Heritage: BIRD satellite- 7μm pixel size CCD [payload: WAOSS-B]
- Increased Aperture Size (14cm -> 30cm)

- To compensate SNR & MTF degradation due to reduced pixel size

and increasing light gathering nower

구분	KAI-16000	GX-20	WFC3	GOCI
Company	Kodak (Japan)	Samsung (Korea)	E2V (UK)	E2V (UK)
Туре	CCD	CMOS	CCD	CMOS
Pixel	4,872×3,248	4,672×3,104	2x2051x4096	1,415x1,431
Pixel Size	7.4μ m $ imes7.4\mu$ m	5.0μm×5.0μm	15.0μ m $\times 15.0 \mu$ m	14.81μm×11.53μm
Detector Size	36.1×24.0mm	15.6x23.4 mm	62.1x61.4mm	18.1x22.1 mm
Spectral Range	400~900nm	400~900nm	200~1000nm	400~900nm

- Nighttime Observation
 - 1 band observation (Panchromatic Filter; 400~900nm)
 - Light energy required : ~ 1000 time /GOCI

- How to increased Light gathering power and efficiency
 - Panchromatic Filter (400–900nm) : (~15 times)
 - Increased Max. Integration time (only 1 band / 5 times)
 - Increased Electronic gain in amplifier(2 time)
 - High S/N CCD (2 times lower NEdL)
 - Larger Aperture size (4 times)
 - => 1200 times higher incident power / Feasible

Preliminary Design of GOCI-2

: Is it possible to fabricate FOV-selectable(Local Area, Full Disk) Ocean Sensor?

KORDI GOCI-2 Pre Design: 3 Options

- Key Issue :
 - -> How to fabricate the optical system which offers FOV selection function for Local Area and Full Disk Observation?
- Option 1 : Modified GOCI Design
- Option 2: WFOV with additional optics (2D frame)
 - ZORO Type Telescope (Korean Design)
- Option 3: WFOV with scanning (1D push broom)
 - ABI(Advanced Baseline Imager) Type Imager

KORDI Option 1. Modified GOCI Design

Technical Requirements for Full Disk (WFOV)

- -> Relay Optics with Beam Splitter
- -> Larger Aperture Size, etc.

GOCI has no space for additional optics(Relay Optics, Beal Splitter, etc.)

Re-Design is required for Full Disk Observation.

Feasible Design for FOV switching optics

KORDI Option 2. ZORO Type Telescope

ZORO type Reflective Telescope

- Simultaneous NFOV & WFOV Observation
- Front-end Reflective Telescope + Relay Optics

Туре	Wavelength	Focal Plane (diagonal)	FOV	EFL	f/# (EPD)
Narrow Visible	500 750nm	42 22mm	1.27°×0.84°	1630mm	5.1 (320mm)
Wide Visible	500-750nm	43.33mm	3.7°× 2.2°	670mm	10.0 (67mm)

GOCI vs GOCI-2(ZORO)

· GOCI:

- 500 m in spatial resolution
- Aperture of 140 mm in diameter
- 14 microns in pixel size

GOCI-2 ZORO Type (draft)

- 150-250m in spatial resolution
- Aperture of 300 mm in diameter
- 7 microns in pixel size

KORDI Option 3. ABI Type Telescope

Full Disk observation with scanning

- One of the most feasible solution for Full Disk acquisition
 - 16 bands in Visible and IR
 - SNR: 300
 - FPA: 1D Push Broom
 - Aperture : 27 cm

Conclusion

- 1. GOCI-2 will have full disk coverage with higher resolution and 5 more bands than GOCI.
- 2. By the result of the tentative study, all user requirements are feasible.
- 3. Detailed feasibility study and system design will be followed.
- 4. For the Full Disk Coverage, dedicated optical design is Required.
- 5. All of GOCI-2 Pre designs have a possibility to be selected as GOCI-2 Design.
- 6. In-depth technical feasibility study and tradeoff will be followed.

GOCI-1 data distribution policy

	Data Type	Related S/W	Description	size	Distri- butio n
	GOCI RAW	GDAS & IMPS/DM	Received packet data from satellite	769MB	Х
	GOCI LO	IMPS/DM	Slot Image data + Dark Calibration Data	634MB	Х
IMPS	GOCI L1A	IMPS/PMM	Radiometric corrected data in IRCM	994MB	Х
	GOCI INRSM input file	IMPS/PMM	INRSM input data same as L1A	994MB	Х
	GOCI INRSM output file	IMPS/INRSM	INRSM output data. Whole image data with geometric correction	994MB	Х
	GOCI L1B	IMPS/PMM	Rearranged whole image data including header information	~994MB	0
GDPS	GOCI L1B region	GDPS/GOCI Regional Data Generation Module	on L1B subscened data to pre defined regions		0
	GOCI L2	GDPS/L2 Generation Module	Bio/physical data applied ocean analysis algorithm	~3.5GB	0
-	GOCI L2 region	GDPS/GOGI Regional Data Generation Module	L2 subscened data to pre defined regions	~3.5GB	0
	GOCI L2 LRIT	GDPS/Sample Image Generation Module	Three kinds of GOCI small image data for LRIT distribution (CHL, SS,DOM)	10MB	0
	GOCI L1B/L2 Browsing image	GDPS/Browsing Image Generation Module	Very small insight image data for searching/browsing L1B/L2 in GDDS (200x200, 1000x1000)	40KB 1MB	0

**KOSC Data Management System Data Size

Korea Ocean Satellite Center, KORDI

one-time :11.4GB / one-day : 114GB / one-month: 3.4TB / one-year: 41.64T

Fundamental concept of GOCI distribution

 Making access and acquirement to GOCI data rapidly and easily for increasing data usability and activating its practical applications

Swiftness/Ease of Access and Acquirement

Increase Use Efficiency

Greatest applications

Distribu tion

- GOCI is the earth-observing satellite data for public usage.
- Public purpose usage have priority to commercial usage.

Use of public purpose (high priority)

Public /Commercial Use (Overseas)

 KOSC(KORDI) have only Intellectual property of GOCI data and distribution right (except special contract with KOSC).

Major Subject

Minor Subject

KOSC and **SOC**

COMS **Meteorological Satellite Satellite Operation Communication Test** Korea Ocean Satellite Center(MSC: KMA) Center(SOC: KARI) Earth Station(CTES: ETRI) Center(KOSC: KORDI) Р - Satellite Communication Image Data Acquisition & Image Data Acquisition & **Satellite Ground Control** - Ka-band Communication Control System(IDACS) System(SGCS) Control System(IDACS) Payload Monitoring and Control MI - Tracking, Telemetry, GOCI & Commanding - Raw Data Reception - Data Pre-processing - S/C operation - Raw Data Reception - Mission Planning - LRIT/HRIT Generation - Data Pre-processing & Transmission - Orbit Determination - Satellite Simulation В **Satellite Ground Control** GOCI Data Processing В System(SGCS) System (GDPS) Image Data Acquisition & Control System(IDACS) GOCI Data Distribution COMS Meteorological GOCI Level 2 Processing **Data Processing System** MI & GOCI Korea Ocear Radiometric CALVAL (CMDPS)

GOCI Data Distribution Policy

Public purpose distribution

Domestic users

- Free distribution: public interest & research (except commercial purpose)
- Distribution data type : GOCI L1B ~ Level 2
- Data access: Online distribution(possible offline request)

Near real time distribution: at least within 2 hours

Redistribution is not authorized except national institutes(NFRDI)

GOCI Data Distribution Policy

Public purpose distribution

Foreign users

- Free distribution : Research (PI registration) & public interest
- Commercial distribution: industry, case of regular data service & processing
- Distribution data type : GOCI L1B ~ Level 2
- Data access: Online distribution (possible offline request)

Delayed mode distribution: within 1-3 days (to avoid line traffic)

- Redistribution is not authorized (except special contract with KOSC/KORDI)
- Direct receiving station: Possible with mutual agreement between 2 countries

