

OCEAN COLOUR MONITOR ON-BOARD OCEANSAT-2

Rangnath R Navalgund

Space Applications Centre Indian Space Research Organisation Ahmedabad-380015, INDIA

OCEANSAT-2 MISSION

OCEANSAT-2 is a global mission and is configured to cover global oceans and provide continuity of ocean colour data, global wind vector and characterization of lower atmosphere and ionosphere.

INSTRUMENTS

Modified Ocean Colour Monitor (OCM-2)

Ku-band Pencil beam Scatterometer

Radio Occultation Sounder for Atmosphere (ROSA)

LAUNCH: Third quarter of 2008

ORBITAL PARAMETERS

The Orbit of Oceansat-2 will be identical to Oceansat-1

Туре

Near polar sun-synchronous

Altitude

- Inclination
- Eccentricity
- Period
- Avg Ground Track Vel -
- Local time of pass
- Repetevity cycle

720 kms

98.28 Deg.

0.00113

- 99.31 mts.
 - 6.7818 km/sec
 - 12 noon <u>+</u> 10 mts.
 - 2 days

SCATTEROMETER & ROSA INSTRUMENTS

OCEANSAT-2 OCM Instrument

Swath
IGFOV
Repetivity
No. of Bands
Quantization
Data rate

: 1420 km : 360x236 m : 2 days : 8 (VNIR) : 12 : 21.226 Mbps

> Changed 765 nm channel into 740 nm to avoid O_2 absorption

Replacement of 670 nm channel into 620 nm channel for better quantification of suspended sediments

MODES OF OPERATIONS

Local Area Coverage (LAC) with 360m, real time transmission

Global area coverage (GAC) with 4 km, on-board Recording & playback

GAC data coverage between +/- 75⁰ Latitude on a continuous basis, for full cycle of 29 paths

OCEANSAT-2 OCM Data products

LEVEL-1 Product: Basic Data Products

-L1A RAW Products (Internal Use Only & DQE)

-L1B Radiance Product

-L1C Radiometrically and Geometrically corrected

LEVEL-2 Product: Geo-Physical Parameters

-Chlorophyll-a concentration
-Total Suspended Matter (TSM)
-Diffused Attenuation Coefficients (*K_d*-490 nm)
-Aerosol Optical Depth (AOD) at 865 nm

LEVEL-3 Product: Binned Products (4 km)

-Weekly -Monthly

-Yearly

Products supported in HDF 4 format

OCEANSAT-2 AO

• OCEANSAT-2 AO for international users was announced in January 2008

• Broad research areas are

- Retrieval algorithms and Calibration & Validation
- Application of ocean colour and Scatterometer data for ocean & atmospheric research
- Synergistic studies using multi-sensor data to understand processes
- Assimilation of geo-physical parameters in models

 Details can be obtained on ISRO web site (www.isro.gov.in)

Data Product Dissemination: NRSA Data Center (NDC) will carry out data dissemination to users. GAC product of 4 km resolution will be made available on the Internet.

Announcement of Opportunity Indian Remote Sensing Satellite - Oceansat-2 Mission

Indian Space Research Organisation Department of Space Bangalore, INDIA

OCEANSAT-2 OCM chlorophyll algorithm

Bio-optical archive data collected in the Arabian Sea and from NOMAD has been used to develop OC-4 type of algorithm

The equation has following form

$$C = 10^{(a+bR+cR^2+dR^3)} + e^{-2a^2}$$

where, C= chlorophyll;

 $R = \log_{10}[max(Rrs443>490>510/Rrs555)]$

a = 0.48; b = -3.03; c = 2.24; d = -1.25; and e = -0.03

Rrs443/555

Max Ratio= Maximum (R_{rs} 443> R_{rs} 490> R_{rs} 510/ R_{rs} 555nm)

100.00

Rrs490/55

10.00

100.00

Cal & Val Experiments

A Permanent Cal-Val site is being set up near Kavaratti in Lakashdweep Sea

Optical buoy is deployed to collect hyperspectral observations of light, chlorophyll-*a*, temperature and aerosol optical depth

This *in-situ* data sets will be used for vicarious calibration of ocean colour sensors

Extensive Ship campaigns will also be organized for validation of geophysical data products.

Inter-sensor calibration with contemporary missions like MODIS, MERIS etc

Lunar calibration of OCM-2

OCM-1 Cal / Val Experiments

- Inter sensor calibration of OCM & SeaWiFS
- Vicarious calibration of OCM was done
- Validation of derived products using *in-situ* measurements
- Chlorophyll-a estimation errors within 30%

SeaWiFS-OCM inter-calibration

Applications of OCM data

- Potential yield of marine resources using primary production modeling
- Synergistic use of surface winds, oceancolour and SST for enhanced PFZ
- Species specific fish forecast
- Fluvial fluxes in coastal environment

- Algal blooms
- Dust Aerosol Transport

Future Ocean Colour sensors

High Resolution GEO Imager (HR-GEO)

A multi-spectral multi-resolution imaging instrument capable to image full or part of the earth disk from the geo-stationary platform

•12 band Ocean Colour Monitor on OCEANSAT-3 including fluorescence bands

HR-Geo Modules	No. of Bands	Spectral range	Band- width (nm)	Spatial Resolution (m)
High Resolution multi- spectral VNIR Imager (HRMX-VNIR)	4	0.45 μm -0.52 μm	70	50
		0.52 μm-0.59 μm	70	
		0.62 µm-0.68 µm	60	
		0.77 µm-0.86 µm	90	
Hyper spectral (Hys-VNIR) Imager	60	0.40 to 0.87 μm	~10	500
Hyper spectral (Hys-SWIR) Imager	150	1.0 to 2.5 μm	?	500
High Resolution multi- spectral TIR Imager	3	8.2 µm-9.2µm	1000	1500
		10.3 µm-11.3µm	1000	
		11.5 μm-12.5μm	1000	

