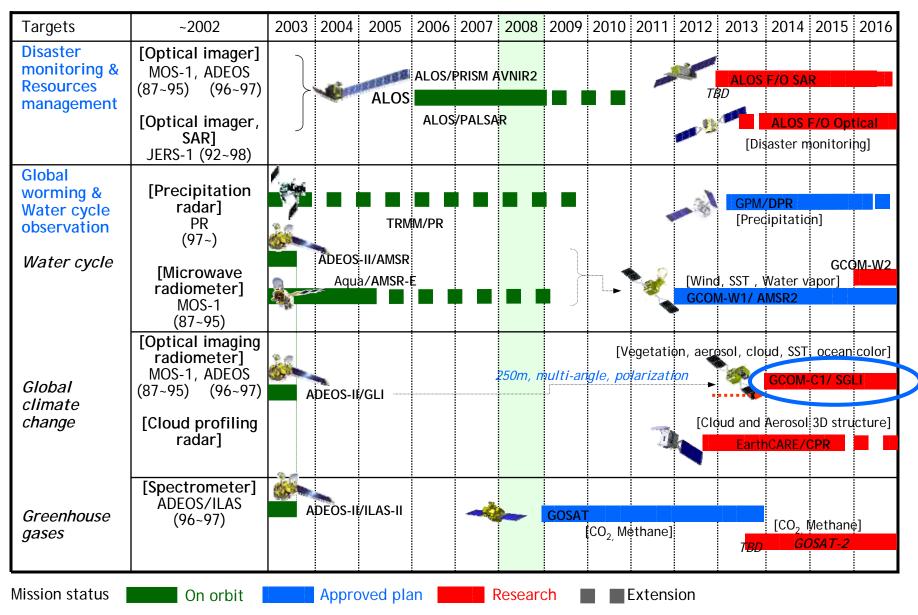
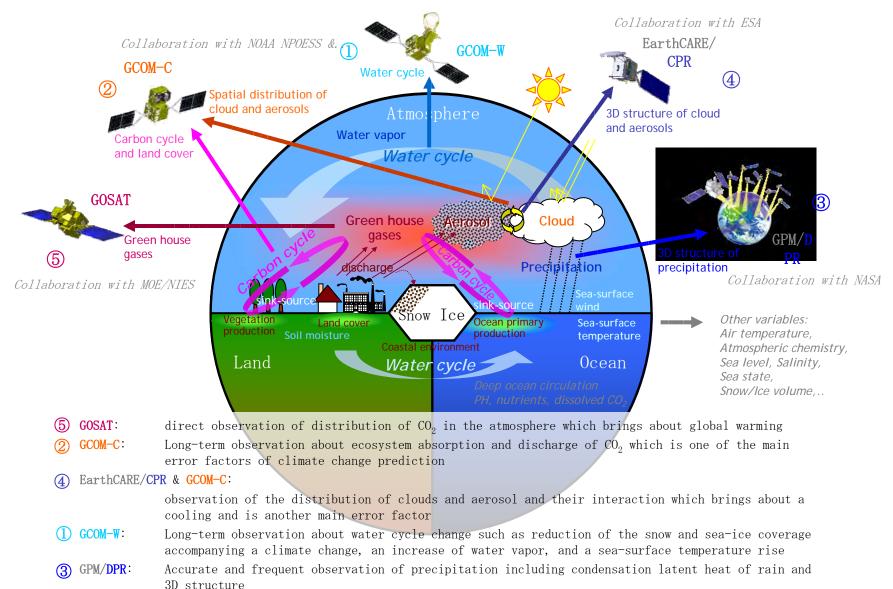
Status of SGLI project on GCOM-C

Japan Aerospace Exploration Agency (JAXA)

GLI 2003 Jun. ~Aug.

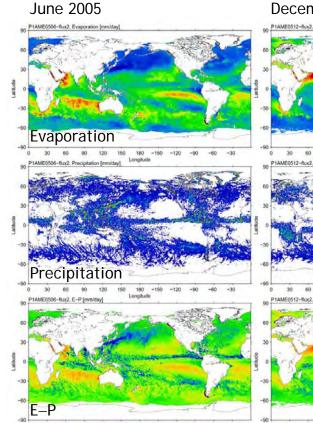


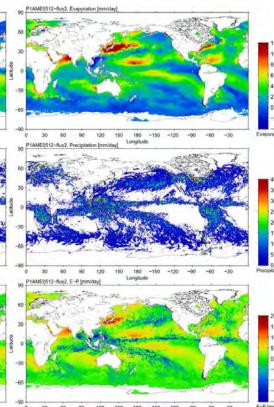
- Global Climate Observation Mission (GCOM) is a JAXA's next Earth environmental observation mission, which consists of GCOM-W1-3 and GCOM-C1-3 satellite series (~13 years observation by three satellites for every C and W).
- GCOM-W (water) satellite will be launched in Jan. 2012, and carry AMSR-2 which is a follow-on sensor of AMSR-E on Aqua;
- GCOM-C (climate) satellite will be launched in early 2014 (JFY2013) (TBD) and carry Second generation Global Imager (SGLI) which is a radiometer of 375-12000nm, 250m-1km resolution and 1150-1400km swath, as a follow-on mission of ADEOS-II/GLI.
- Targets of GCOM are followings.
 - Long-term observation system (more than 10 years)
 - Integrative use with other earth observation systems
 - Contribution to numerical climate models
 - <u>Contribution to operational use</u> (weather forecast, disaster monitoring, fishery..)
 - Enhancement of new satellite data usability

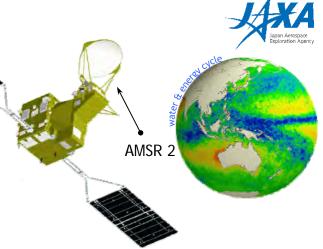

1.2 JAXA's earth observation scenario

1.3 JAXA's earth environmental observation scenario

Contribution to study and prediction of global warming and water cycle change by three satellites + two sensors


4


GCOM: Global Change Observation Mission AMSR2: Advanced Microwave Scanning Radiometer-2; Multi frequency and dual polarized passive microwave radiometer


Targets of GCOM-W are water-energy cycle, and will carry AMSR-follow on, AMSR-2. (SeaWinds follow-on are TBD for GCOM-W2-3)

AMSR-2 will continue AMSR-E observations (water vapor, cloud liquid water, precipitation, SST, wind speed, sea ice concentration etc.).

December 2005

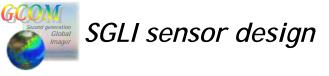
	GCOM-W AMS	R-F/O characteristics							
	Orbit (TBD)	Sun-synchronous (ascending local time: 13:30) Altitude: 699.6km, Inclination: 98.19deg							
	Launch Date	Jan. 2012							
	Mission Life	5 years (3 satellites; total 13 years)							
	Scan	Conical scan microwave radiometer							
m/day]	Swath width	1450km							
	Antenna	2.0m offset parabola antenna							
	Digitalization	12bit							
	Incident angle	Apporox. 55 degree							
	Polarization	Vertical and Horizontal							
	Dynamic range	2.7-340K							

√day	Band (GHz)	Band width (MHz)	Polariz ation	Beam width [deg] (Ground resolution [km])	Sampling interval [km]
	6.925	350		1.8 (35 x 62)	
	10.65	100	N	1.2 (24 x 42)	
	18.7	200	V	0.65 (14 x 22)	10
	23.8	400	and H	0.75 (15 x 26)	
	36.5	1000		0.35 (7 x 12)	
	89.0	3000		0.15 (3 x 5)	5

Sea surface fresh water flux estimated using AMSR-E data

SGLI : Second Generation Global Imager

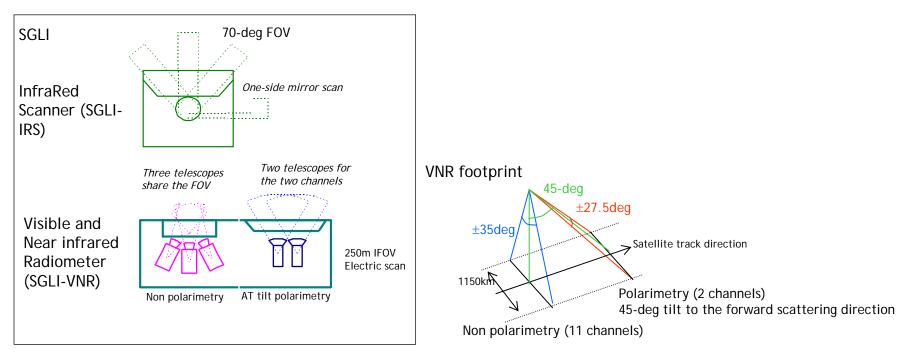
- Targets of GCOM-C are carbon cycle and radiation budget, and will carry SGLI.
- SGLI will continue almost of the GLI observations (sea surface temperature, ocean colour, aerosols, cloud, vegetation, snow/ ice, and so on).
- The new SGLI features (250m (VN) and 500m (T) channels and two polarization/ multi-direction channels (P)) will enable improvement of land and coastal monitoring and retrieval of land aerosols.

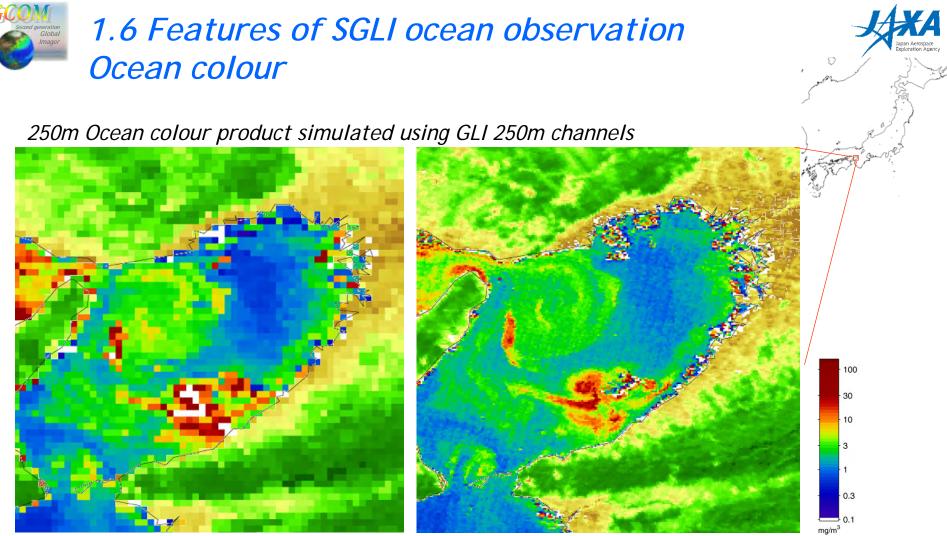

Narrow $\Delta\lambda$ and relatively high SNR for ocean products -

New features of SGLI from ADEOS-2/GLI

GCOM-C SGLI cl	agractoristics
	Sun-synchronous (descending local time: 10:30)
Orbit (TBD)	Altitude: 798km, Inclination: 98.6deg
Launch Date	early 2014 (JFY2013)
Mission Life	5 years (3 satellites; total 13 years)
Scan	Push-broom electric scan (VN & P)
50011	Wisk-broom mechanical scan (SW & T)
Scan width	1150km cross track (VN & P)
	1400km cross track (SW & T)
Digitalization	12bit
Polarization	3 polarization angles for P
Along track	+45 deg and -45 deg for P
direction	Nadir for VN, SW and T

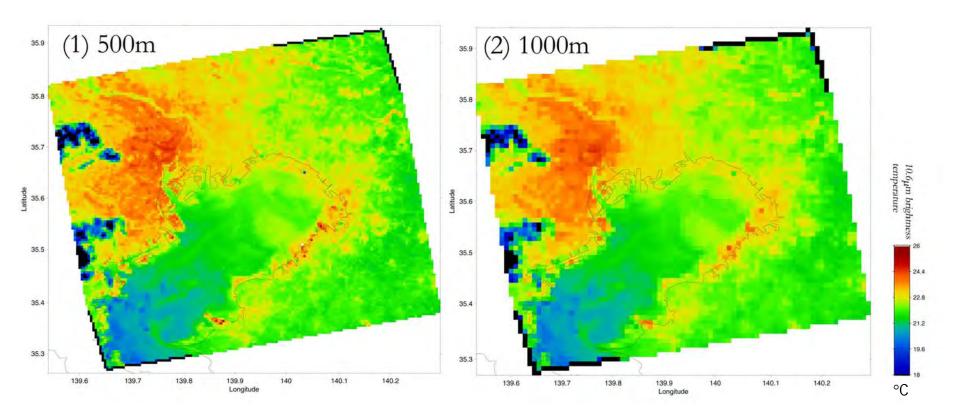
shortwave & thermal InfraRed Scanner (IRS) **Polarization** muti-angle radiometer 4 (VNI-P) push-broom Visible & Near infrared Imager (VNI)


				annels		
	λ		L_{std}	L _{max}	SNR at Lstd	IFOV
СН	VN, P, S T: µ		W/m ²	l, Ρ: /sr/μm (elvin	VN, P, SW: - T: NE∆T	m
VN1	380	10	60	210	250	250
VN2	412	10	75	250	400	250
VN3	443	10	64	400	300	250
VN4	490	10	53	120	400	250
VN5	530	20	41	350	250	250
VN6	565	20	33	90	400	250
VN7	670	10	23	62	400	250
VN8	670	20	25	210	250	250
VN9	763	8	40	350	400	1000
VN10	865	20	8	30	400	250
VN11	865	20	30	300	200	250
P1	670	20	25	250	250	1000
P2	865	20	30	300	250	1000
SW1	1050	20	57	248	500	1000
SW2	1380	20	8	103	150	1000
SW3	1640	200	3	50	57	250
SW4	2210	50	1.9	20	211	1000
T1	10.8	0.7	300	340	0.2	500
T2	12.0	0.7	300	340	0.2	500



- Two components: SGLI-VNR and SGLI-IRS
 - -Optimize optics for each wavelength range
 - -Polarimetric and multi-angle observation
 - -Diversification of risks
- Push-broom system for the SGLI-VNR
 - -70-deg FOV for non-polarimetry, and 55-deg (almost same footprint-width with along-track 45deg tilt) for polarimatry
- One-side (45-deg) mirror scanning system for SGLI-IRS

-80-deg FOV



(a) GLI 1km Osaka Bay (1 Oct. 2003, CHL by LCI)

(b) GLI 250m Osaka Bay (1 Oct. 2003, CHL by LCI)

SGLI 250m resolution will enable to detect more fine structure in the coastal area such as river outflow, regional blooms, and small current.

- 500m and 1000m spatial resolution thermal infrared images are simulated using ASTER data (original resolution is 90m) (Tokyo Bay in the night on August 4, 2003).
- The land surface and the coastal water temperature influenced by the city or the river flow will be captured by the GCOM-C 500m thermal infrared channels.

2. SGLI products 2.1 SGLI products and channels

СН	λ	Δλ	L	td Lmov	SNR	IFOV*3	3	Land					Atmosphere								Ocean											Cryosphere																		
-		, P: nm ∵μm		VN, Ρ: I/m²/sr/μm T: Kelvin	at L _{std} VN, P: - T: NE∆T	m	Precise Geometrically Corrected Image	Atmospherically Corrected Land surface Reflectance	Vegetation Roughness Index Including BSLP and BSLV Venetation Index including NDVI and FVI	Shadow Index	Land Surface Temperature	Fraction of Absorbed Pho	Leaf Area Index	Land Net Primary Production	Plant Water Stress trend Index	Fire Detection Index	Land Cover Type	Land surface ALBedo	CLoud FlaG including Cloud Classification and Phase	Classified CLoud Fraction	Water Cloud Optical Thickness and F			Ae	Land AeRos	LongWave Radiation Flux	ShortWave Radiation Flux	Normalized Water Leaving Radiance	Atmospheric Correction Parameters	Ocean Photosynthetically Available Radiation	CHLorophyli-A concentration Euphotic Zone Depth	Suspended Solid concentration	absorption coe	_	Sea Surface Temperature	Ocean Net Primary Productivity	Duktonlankton Eurotional Typo	multi sensor Merged Ocean Color parameters	multi sensor Merged Sea Surface Temperature	Snow and Ice Covered Area	OKhotsk sea-Ice Distribution	Snow and Ice Classification	Snow Covered Area in Forest and Mountain	(0)		SNC	SNow Grain Size of Top laver	Show and Ice Al Redo	Ice Sheet surface RouGHness	Ice Sheet Boundary Monitoring
VN1	380	0 10	60	210	250	250	U	U										1							U	1	1	Т	E		1	1	U	U		IF	R	U							U	Τ	ι	JN		\square
VN2	41		_		400	250	U	Т	U	U	U	1	1	ΙU			U	U						U	E	1	1	Т		U			E	U		IF	R R	U										R R		\square
VN3	44		_		300	250	U	Т	U	U	U	Ι	1	I U			U	U						U		1	1	Т		U	UE		E	U		Ιl	JU	U		U	U	U	U	S	U	U	sι			U
VN4	49(0 10) 53	3 120	400	250																						Т			UN	ΙU		U		Ιl	JU	U												
VN5	53(0 20) 41	1 350	250	250	U	Т		U	U	Ι		ΙU			U	U	U	C	CC	C	С	С	C (С		Т		U	UE			U	С	IF	R	U	С	U	U	U	U	S	S	S	SI	ΕS	S	U
VN6	56	5 20		3 90	400	250																						Т			UN	1 E	U	U		Π	JŪ	U												
VN7	670				400	250	\square																	U		1	1	Т	М		1 1	E	1	U		IF	R R	_								$ \downarrow$				\square
VN8	670				250	250	Ε	ΤI	MM	1 U	U	Ι		E			Ε	1	U	C	<u> </u>	C		С	C (C			R	U					С	<u> </u>		R	С	U	U	U	U	S	S	S	sι	JS	R	U
VN9	76		_	_	400	1000									\bot				_				М																	R			_			$ \rightarrow $		\perp	1	\square
VN10	86				400	250		_				Ļ			+							-		U			11		Μ			1		_	-	<u> </u>	+	U	_										+-	+
VN11	86		_		200	250	U		UU	U	U		1		-		U	U	U	CIC		C	С	С	<u> </u>	C	+		R	U	-		\square	_	С		_	R	C	U	U	U	U	S	М	S	SI	JU	R	U
P1	670	0 20	_	_	250*1	1000	U	U	U	I R		Ι		R			R	R							_	E				R												R							R	
P2	86	5 20	30	*1 300*1	250 ^{*1}	1000	U	U	U	R		Ι		I R			R	R								E			R													R							R	
SW1	105	50 20	57	7 248	500	1000								T					М	C	СМ	I C	U			1	1		R	С						1				U	U	U	U	S	S	R	SΙ	JS	S	U
SW2	138	30 20	8 1	103	150	1000												1	U								T												Γ	М	U	С	С	С	С	С	C	СС	С	\square
SW3	1640	0*4 20	03	50	57	250	U	Т			U			U	R	U	Е	U	U	C	2	С							R											М	U	U	U	С	С	С	RΙ	ЛС	С	U
SW4	221	0 50	1.1	9 20	211	1000	U	Т			U			T		U	U		Τ		M	1	U			1	1		R							Т				U			U			Т				
T1	10.8	3 ^{*2} 0.7	*2 30	0 180~34	0 0.2	500	U				U				U	U			U	cι	J	U	U			1	1								М	1	R		М	U	U	U	U	М	S	S	S S	SS	S	\square
T2	12.0	_	-	_	_	500	U				М				U	U			-	сι	J	U				R	R					T	Π		Е	+	╈	┢	E	U		R		М		╉	+			H
L															1	· ·		_										-									_		<u> </u>								_	_	-	

M: Most essential, E: essential, U: used channel, T: correction targets, R: future research, I: indirect use, C: cloud detection, S: Snow detection

*1: defined as intensity of non-polarized light, *2 :Unit is μm, *3: 1km in the open ocean, *4: the light limit is at 1740nm

Green: Succession of GLI standard products, Red: New standard products, and White: research products.

2.2 SGLI Ocean Products and target accuracy

SGLI radiance product (L1B)

S: Standard products, R: Research products

	· · ·									
Category	Product		File unit	Resolution	Threshold for data release	Standard accuracy ^{*1}	Target accuracy ^{*1}			
radiance Radiometric corrected radiance with geometric information		S	Scene, global (day)	250m (land and coast) 1km (offshore)	TBD	VN/SWIR 5% ^{*2} , 1% (relative) TIR: 0.5K(@300K)	VN/SWIR 3% ^{°2} , 0.5% (relative)			
SGLI Ocean p	roducts									
Category	Product	Туре	File Unit	Resolution	Threshold for data release	Standard accuracy ^{*1}	Target accuracy ^{*1}			
	Normalized Water Leaving Radiance	S	scene, global		60% (443~565nm)	50% (<600nm) 0.5W/m²/sr/um (>600nm)	30% (<600nm) 0.25W/m²/sr/um (>600nm)			
Atmospheric correction	Atmospheric Correction Parameters	S	(day/8 day/month)		80% (τ _a _865)	50% (τ ₂ 865)	30%			
correction	Photosynthetically Available Radiation	S			20% (10km/month)	15% (10km/month)	10% (10km/month)			
In-water	Euphotic Zone Depth	R	scene, global (day/8 day/month)	250m (coast) 1km (offshore)	N/A	N/A	30%(TBD)			
	Chlorophyll-a Concentration	S	scene, global	4~9km (global bin)	-60~+150% (offshore)	-60~+150%	-35~+50% (offshore), -50~+100% (coastal)			
	Suspended Solid concentration	S	(day/8 day/month)		-60~+150% (offshore)	-60~+150%	-50~+100%			
parameters	Colored Dissolved Organic Matter	S			-60~+150% (offshore)	-60~+150%	-50~+100%			
	Inherent Optical Properties	R	scene, global (day/8 day/month)		N/A	N/A	a(440): RMSE<0.25, bbp(550): RMSE<0.25			
Temperature	Sea Surface Temperature	S	scene, global (day/8 day/month)	500m (coast) 1km (offshore) 4~9km (global bin)	0.8K (daytime)	0.8K	0.6K			
	Ocean Primary Productivity	R	scene, global (day/8 day/month)	500m (coast) 1km (offshore) 4~9km (global bin)	N/A	N/A	TBD			
Application	Phytoplankton Functional Type	R	scene, global (day/8 day/month)	250m (coast) 1km (offshore) 4~9km (global bin)	N/A	N/A	correct judgment rate of large/ small phytoplankton dominance>80%; correct judgment rate of the dominant phytoplankton functional group >60%			
	Redtide	R			N/A	N/A	correct judgment rate >80%			
	Multi-sensor Ocean Color	R	scene, global (day/8 day/month)	250m (coast) 1km (offshore)	N/A	N/A	Same as the original			
	Multi-sensor SST	R	scene, global (day/8 day/month)	500m (coast) 1km (offshore)	N/A	N/A	Same as the original 11			

- •Normalized Water Leaving Radiance (NWLR) and Atmospheric Correction Parameters (ACP)
 - •Definition: Standardized radiance of the SGLI spectral channels leaving from a sea surface in the case of atmospheric transmittance 1.0, the solar zenith angle zero and the sun-earth distance 1AU. The reflective ingredient of a sea surface is not included (mW/cm²/str/um). This is same as OCTS, GLI, SeaWiFS, and MODIS.

Photosynthetically Available Radiation (PAR)

- •Definition: daily average of the light at wavelengths from 400nm to 700nm which phytoplankton uses for photosynthesis by Ein/m²/day.
- •CHLorophyll-A concentration (CHLA)
 - •Definition: phytoplankton chlorophyll-a concentration by mg/m³
- Suspended Solid concentration (SS)
 - •Definition: Filter dry weight by g/m³ (total suspended matter)
- absorption of Colored Dissolved Organic Matter (CDOM)
 - •Definition: attenuation coefficient (m⁻¹) of the colored dissolved organic matter at 440nm (TBD)
- •Sea Surface Temperature (SST)
 - •Definition: bulk sea surface temperature (observed by drifting buoy at 1-m) by degree C

2.4 SGLI ocean research products definitions

•Euphotic Zone Depth (EZD)

•Definition: Total direction illumination (observation is cosine) defines by PAR as depth which becomes 1% (denominator: E0-).

Inherent Optical Properties (IOP)

•Meaning: It can be used for the primary productivity model, plankton classification presumption, etc.

•multi sensor Merged Ocean Color parameters (MOC)

•Definition: Data sets which combined with the product of other satellites and improved time resolution

• IOCCG can be the principal investigator (?)

•multi sensor Merged Sea Surface Temperature (MSST)

•Definition: Data sets which combined with the product of other satellites and improved time resolution

•Ocean Net Primary Productivity (ONPP)

•Definition: Net primary productivity by phytoplankton (breathing respiration is not taken into consideration)

•PHytoplankton Functional Type (PHFT)

•Definition: The phytoplankton existence rate for every functions, such as nitrogen fixation, silicon fixation, and carbon dioxide discharge. It grasps what kind of function plankton with exists, and it is used for climate change analyses, such as cloud nucleus formation.

•Red TiDe (RTD)

•Definition: The coloring phenomenon which man distinguishes from red tide

- JAXA is planning the GCOM, which consists of GCOM-W/AMSR-2 and GCOM-C/SGLI satellite/sensor series.
- GCOM-C/SGLI is still under evaluation (this year).
- GCOM (both W and C) data policy is the free-of-charge for online-get science users (but user registration is requested).
- JAXA and NOAA have started discussion about GCOM(-W and C) and NPOESS collaboration (data receiving/exchange, and science activities..) from the last winter.
 - We hope to collaborate with Sentinel-3 and Korean geostationally ocean-colour mission
- JAXA and CNES are making a collaboration plan about future (maybe after 10years) geostationally missions (candidates are disaster, atmospheric chemistry, and ocean colour; TBD)