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Smooth curves and surfaces can be characterized as minimizers of squared
curvature bending energies subject to constraints. In the univariate case
with an isometry (length) constraint this leads to classic non-linear splines.
For surfaces, isometry is too rigid a constraint and instead one asks for
minimizers of the Willmore (squared mean curvature) energy subject to a
conformality constraint. We present an e�cient algorithm for (conformally)
constrained Willmore surfaces using triangle meshes of arbitrary topology
with or without boundary. Our conformal class constraint is based on the
discrete notion of conformal equivalence of triangle meshes. The resulting
non-linear constrained optimization problem can be solved e�ciently using
the competitive gradient descent method together with appropriate Sobolev
metrics. The surfaces can be represented either through point positions or
di�erential coordinates. The latter enable the realization of abstract metric
surfaces without an initial immersion. A versatile toolkit for extrinsic con-
formal geometry processing, suitable for the construction and manipulation
of smooth surfaces, results through the inclusion of additional point, area,
and volume constraints.
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1 INTRODUCTION
A draft person’s physical spline, i.e., a thin elastic rod, has long been
a model for smooth curves. Subject to point constraints, the spline
minimizes bending, i.e., the squared curvature integrated along the
curve, while maintaining its length. This captures both physical
(least bending) and æsthetic (“as-round-as-possible”) aspects.

In the case of surfaces 5 : " ! R3 the bending energy is given
by the Willmore energy

W(5 ) =
π
"
�23�,

which measures the squared !2-norm of the mean curvature � of
the surface. As a bending energy it is of great interest in physical
modeling ranging from bio-physics [Canham 1970; Helfrich 1973]
to computer animation [Bridson et al. 2003; Grinspun et al. 2003].
Based on its “as-round-as-possible” aspect, the Willmore energy
also �nds application in surface modeling and form �nding [Joshi
and Séquin 2007; Vaxman et al. 2015, 2018; Gruber and Aulisa 2020].
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Fig. 1. Top: Tori which minimize the Willmore energy subject to a con-
formality constraint. The inset parallelipiped visualizes the fundamental
domain of each torus. Its “tilt” controls the twist of the torus. Without
constraining the conformal class the minimum in all four cases would be
achieved at the standard Cli�ord torus. Bo�om: A more complex shape with
point constraints showing the minimizer of the Willmore energy without
(le�) and with (right) the conformal class constraint.

Unfortunately without any additional constraints the surface
“material” underlying the Willmore energy is too �exible. For ex-
ample, all surfaces of genus 1 have their Willmore minimum at the
Cli�ord torus [Marques and Neves 2014]. Or consider the case of
surfaces which are topological spheres, constraining any 4 points
always yields the round sphere through those 4 points as minimizer.
What is missing is the analog of the isometry constraint from the
univariate setting. Requiring the deformation of a surface to be
isometric though leaves it too rigid. Instead the natural choice is a
conformality constraint [Garsia 1961; Rüedy 1971], making the study
of minimizers of the conformally constrained Willmore functional
an active research area [Bohle et al. 2008; Rivière 2008; Schätzle
2013; Kuwert and Schätzle 2013; Heller and Ndiaye 2019]. Instead of
an arbitrarily �exible material the resulting surfaces are now made
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of an isotropic auxetic (negative Poisson ratio) material [Konaković
et al. 2016]. Limiting the �exibility of the surface in this manner
enforces intrinsic (conformal class) constraints on the extrinsic
appearance. In the case of the torus this �xes the aspect ratio and
skewness of the fundamental domain and the minimizer re�ects this
(Figure 1, top as well as Figure 2). Similarly, for the spherical shape
with 4 point constraints the surface deforms in a more intuitive way
following the control points (Figure 19). Figure 1 (bottom) shows a
more complex example comparing the minimizer without and with
conformal constraint.
More control over the shape is not the only practical bene�t of

the conformal class constraint. Conformality also ensures that the
deformation is locally a similarity. In the case of triangle meshes this
preserves mesh quality. Degeneration of meshes during optimization
is otherwise a common problem [Bobenko and Schröder 2005] (see
also Figure 13) and has motivated methods based on conformal
deformations [Crane et al. 2011, 2013] or the addition of conformal
penalty forces [Barrett et al. 2016; Gruber and Aulisa 2020]. Neither of
these approaches though are entirely satisfactory since they exhibit
numerical drift (Figure 12) in the conformal class resp. modify the
energy being minimized.
In this paper we take a di�erent approach: we employ an exact

discrete conformality constraint for extrinsic variational confor-
mal geometry processing of oriented discrete surfaces (simplicial
2-manifolds of arbitrary genus with or without boundary). This
constraint can maintain the conformal class of a surface exactly,
or be used to achieve a desired target conformal class. It is based
on the discrete notion of conformal equivalence of triangle meshes
(CETM) [Springborn et al. 2008; Pinkall and Springborn 2021; Gille-
spie et al. 2021; Campen et al. 2021] and is independent of the precise
form of the energy.

Fig. 2. The conformal class (visualized by inset rectangles denoting the
fundamental domain) controls the aspect ratio and twist of the surface.
Here we see how the same twists are realized by cylinders with boundary
constraints (positions and tangents) and tori (see also Figure 1, top). The
conformality of the deformation is visualized here with a checkerboard
texture.

For e�cient numerical minimization we use gradient �ow with
an appropriate Sobolev metric [Renka and Neuberger 1995; Eckstein
et al. 2007; Schumacher 2017]. Constraints are incorporated via
Lagrange multipliers and the associated min/max problem is solved
with the recently proposed competitive gradient descent (CGD)
method [Schäfer and Anandkumar 2019]. Of interest beyond the
conformality constraint are constraints on point positions, surface
area, and enclosed volume (see for example Gruber and Aulisa [2020])
and we demonstrate examples of these in various combinations (see
Figures 1, 3 and 19).

Fig. 3. A sphere minimizing the Willmore energy subject to constraints
on surface area, enclosed volume, and conformal class. Physically such
shapes model vesicles, for example red blood cells, which are enclosed by
a thin-shell of high membrane and low bending sti�ness [Canham 1970;
Helfrich 1973; Gruber and Aulisa 2020]. Here, the conformality constraint
only serves to preserve mesh quality.

While triangle mesh optimization can be parameterized by vertex
positions, in particular when starting with a given immersion, we
also give a formulation in terms of di�erential coordinates [Sorkine
2006; Xu and Zhou 2009]. Aside from making our approach compati-
ble with the many existing geometry processing algorithms which
use di�erential coordinates, it also enables us to �nd conformal
immersions for abstract metric surfaces, valuable in mathematical
visualization. For triangle meshes such di�erential coordinates are
piecewise maps, constant per triangle, and we allow them to vary in-
dependently [Custers and Vaxman 2020]. Surprisingly, optimization
over such triangle �elds is well de�ned even if triangles do not “glue”
together and provides a richer search space for the optimization,
often allowing more rapid progress towards convergence. Recovery
of an actual surface is then ensured through the inclusion of a (linear)
integrability constraint. Di�erentials as variables furthermore allow
us to interpret the Lagrange multipliers associated with the con-
formal class constraint as quadratic di�erentials [Weber et al. 2012]
and, in a mechanical analogy, as stress tensors with corresponding
forces acting along edges to counteract anisotropic distortion.

2 DISCRETE FORMULATION
In this section, we �x our notation and de�ne the basic geometric
objects needed to formulate variational problems for surfaces.
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2.1 Discrete Surface
Topology. Throughout we describe the underlying surface by an

abstract triangulationM = (V, E, F). The vertices, edges, and faces
are denoted by indices 8 2 V, pairs 89 2 E, and triples 8 9: 2 F,
respectively. The dual mesh is denoted by M⇤ = (V⇤, E⇤, F⇤) and
we refer to dual cells by their corresponding primal cell, that is, we
identify V⇤ � F, E⇤ � E, and F⇤ � V with no further comment. We
assume that M is a closed oriented surface of arbitrary topology.
Treating surfaces with boundary is relegated to Appendix D.

Di�erential forms. We use discrete di�erential forms from Discrete
Exterior Calculus [Desbrun et al. 2008]. 0-, 1-, and 2-forms are
assigned to vertices, edges, and facets respectively and represent
integral quantities over their respective subdomain. Recall that
forms on M⇤ can be paired with forms on M and integrated: for
U 2 ⌦2�: (M⇤;R<) and V 2 ⌦: (M;R<) the primal-dual pairing is
de�ned as

�U |V� : ’
f

hUf , Vf i,

where the sum is taken over all oriented :-cells f inM and the angle
brackets indicate that the product used in the de�nition is the inner
product on R< . This pairing identi�es the dual space of ⌦: (M;R<)
with ⌦2�: (M⇤;R<) and the pairing �U |V� is interpreted as the
integral

Ø
hU ^ Vi over M.

Geometry. The intrinsic geometry of the surface is speci�ed by
positive edge lengths ✓ : E! R>0 satisfying the triangle inequality
in each face. We call such an ✓ a discrete metric on M; this data
endows each face with the geometry of a Euclidean triangle. Vertex
positions 5 : V ! R3, interpolated linearly in the faces, provide
a geometric realization ofM in R3. We say that 5 is an immersion
if every vertex star is embedded. An immersion induces a discrete
metric given by the edge lengths of the realization ✓89 = |59 � 58 |.

2.2 Geometric Energies
Consider a discrete surface energy E(5 ). A variation of vertex
positions 5̊ : V! R3 induces an in�nitesimal change of energy

E̊ = 3
3C

���
C=0

E(5 + C 5̊ ) .

We assume that the energy is di�erentiable in the sense that all these
partial derivatives exist. In this case, we de�ne the gradient 2-form
of E, denoted as grad E(5 ) 2 ⌦2 (M⇤;R3), by the requirement

E̊ = �grad E(5 ) | 5̊ � = ’
82V
hgrad E(5 )8 , 5̊8 i

for all surface variations 5̊ . The components of the gradient 2-form
are the partial derivatives with respect to the variables. These must
be derived for an implementation. Critical points of E satisfy the
Euler-Lagrange equations

grad E(5 ) = 0. (1)

From now on, we write grad E for the gradient 2-form if the surface
5 is clear from context.

Area. The area of a discrete surface is de�ned by

A(5 ) :
’
8 9:2F

�8 9: = 1
2�L5 |5 �,

where�8 9: is the area of the triangle 8 9: and L : �3⇤3 : ⌦0 (M;R3) !
⌦2 (M⇤;R3) is the positive-de�nite cotan Laplacian. The gradient
2-form is gradA = L5 . The quantity 1

2L5 is the integrated discrete
mean curvature vector, which we informally denote by HN3�.

Willmore energy. Measuring the !2-norm of the mean curvature
gives rise to the Willmore energy, which can be discretized most
simply as

W(5 ) : �HN3� | ⇤ HN3�� = 1
4�L5 | ⇤ L5 �,

where ⇤ is the Hodge-star on dual 2-forms, de�ned as the inverse of
the diagonal matrix of vertex dual areas (Appendix D).

3 CONFORMAL CONSTRAINTS
In this section, we derive the Euler-Lagrange equation for variational
problems with a conformal constraint. We begin with preliminaries,
recalling the notion of discrete conformal equivalence and the role
of length cross ratios and their logarithms in parameterizing the
set of discretely conformally equivalent metrics, before examining
the overall structure of conformally constrained critical points
of a geometric energy. Finally we give concrete expressions for
the discrete Euler-Lagrange equations and see that the associated
Lagrange multipliers are quadratic di�erentials which can be related
to earlier work and interpreted as conformal stress tensors.

Fig. 4. Di�erent representatives of the same conformal class (identical length
cross ratios), each minimizing the Willmore energy, but di�ering in shape
due to di�erent boundary conditions.

Discrete Conformal Equivalence. In the smooth setting two metrics
6 and 6̃ are conformally equivalent if there exists a function D : " !
R such that 6̃ = 42D6. In the discrete setting we follow [Luo 2004;
Springborn et al. 2008; Bobenko et al. 2015; Pinkall and Springborn
2021], calling two discrete metrics ✓, ✓̃ conformally equivalent if there
exist vertex scale factors D : V! R such that for all 89 2 E

✓̃89 = 4
D8+D 9

2 ✓89 (2)

This de�nition has been successful in solving a number of conformal
variational problems involving edge lengths [Chow and Luo 2003;
Jin et al. 2007; Glickenstein 2011; Springborn 2017; Ge 2018]. The
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solutions reproduce structures found in the smooth setting, and
exhibit convergence under re�nement [Luo et al. 2020] as shown
by theoretical results, as well as by numerical experiments. Impor-
tantly, every in�nitesimal conformal deformation can be realized by
in�nitesimal extrinsic deformations of vertex positions [Lam and
Pinkall 2017], except in the case of isothermic surfaces.

Cross ratios. To each metric ✓ we can as-
sign length cross ratios c : E! R>0,

c89 =
✓8; ✓9:
✓;9 ✓:8

.

Clearly, conformally equivalent metrics have equal length cross
ratios. Thus c can be considered as a map de�ned on the set C(M) of
conformal equivalence classes of discrete metrics onM. Moreover,
the length cross ratios completely characterize the conformal class:

P���������� 3.1 ([S��������� �� ��. 2008]). Two discrete metrics
are discretely conformally equivalent if and only if their length cross
ratios are the same.

Logarithmic coordinates. To each metric ✓ on M we can assign
its logarithmic edge lengths _ = log ✓ . Taking the logarithm of
Equation 2 reveals a linear relationship for the logarithmic edge
lengths of conformally equivalent metrics: If _ = log ✓ and _̃ = log ✓̃ ,
then [✓] = [✓̃] holds if and only if _̃ = _ + AD for some D : V! R,
where A 2 RE⇥V is the averaging map de�ned as

(AD)89 = 1
2 (D8 + D 9 ) .

Thus the conformal classes [✓] 2 C(M) are identi�ed with elements
[_] 2 RE/imA. Moreover,

log c89 = log
⇣
✓8; ✓9:
✓;9 ✓:8

⌘
= _8; � _;9 + _ 9: � _:8 . (3)

Thus log c = C_ for a linear map C 2 RE⇥E and in terms of A and C
the equivalence in Proposition 3.1 is expressed as

imA = kerC. (4)

Consequently, the map C(M) 3 [✓] 7! log c 2 imC de�nes a global
chart for C(M).

3.1 Constrained Euler-Lagrange Equation
Here we characterize the critical surfaces of conformally constrained
variational problems. We begin with a high level view before giving
detailed discrete expressions.

Fig. 5. Constrained Willmore surfaces of higher genus.

An in�nitesimal conformal deformation is a variation 5̊ such that
(log c)̊ = C _̊ = 0. By de�nition, 5 is then critical for a surface energy
E under all in�nitesimal conformal deformations if and only if

�grad E| 5̊ � = 0 for all 5̊ 2 ker(C⇡_)

where ⇡_( 5̊ ) = _̊ denotes the di�erential of _ in terms of surface
variations 5̊ . This can also be expressed equivalently as

ker(C⇡_) ⇢ grad E? , grad E 2 (kerC⇡_)? .

We derive the Euler-Lagrange equations by describing the orthogonal
complement of ker(C⇡_).

Using the fact that the kernel of a linear operator is the orthogonal
complement of the image of its adjoint, we have

(kerC⇡_)? = im(C⇡_)⇤ = im(⇡_⇤ C⇤) = ⇡_⇤ (imC⇤).

By taking the orthogonal complement of Equation 4 we also have
imC⇤ = kerA⇤. Furthermore, if we identify (RE)⇤ with RE using
the standard inner product then

kerA⇤ �
n
@ : E! R :

’
89

@89 = 0, 88 2 V
o
.

So far, we have shown that 5 is a conformally constrained critical
point if and only if there exists @ 2 kerA⇤ satisfying grad E = ⇡_⇤@.
It remains to compute ⇡_⇤@: for a surface variation 5̊ : V! R3 we
have

�⇡_⇤@ | 5̊ � = �@ |_̊� = ’
89 2E

@89
h3589 , 5̊9 � 5̊8 i

|3589 |2
= �

’
82V

⇣’
89

@89
h3589 , 5̊8 i
|3589 |2

⌘
,

where we used

_̊89 =
✓̊89
✓89

=
h3589 ,35̊89 i
|3589 |2

=
h3589 , 5̊9 � 5̊8 i

|3589 |2
, (5)

Consequently,

(⇡_⇤@)8 = �
’
89

@89
3589
|3589 |2

, (8 2 V)

and so we have the Euler-Lagrange equations below.

T������ 3.2. A discrete immersion of a closed surface 5 : V! R3
is critical for a surface energy E under all in�nitesimal conformal
variations if and only if there exists @ : E! R satisfying’

89

@89 = 0 (6)

(grad E)8 +
’
89

@89
3589
|3589 |2

= 0 (7)

for all vertices 8 2 V.

Equation 7 can be interpreted as the condition that grad E is
orthogonal to the space of discrete conformal immersions, and so
we call @ the Lagrange multiplier of the conformally constrained
critical surface.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.



Constrained Willmore Surfaces • 1:5

3.2 Discrete�adratic Di�erentials
We call the conformal Lagrange multipliers discrete quadratic dif-
ferentials, and we write Q(M) : kerA⇤. This notion has appeared
in the literature [Lam and Pinkall 2016, 2017] in the context of
discrete minimal surfaces, circle packings, and discrete harmonic
functions. In the smooth theory, holomorphic quadratic di�erentials
also appear as Lagrange multipliers for conformally constrained
variational problems. This discrete notion plays an important role in
our numerical optimization—below, we interpret @ as a surface stress
and then discretize a metric on the space of quadratic di�erentials.
A Lagrange multiplier @ can be interpreted as tension along

the edges balancing the energy force at the vertices. De�ne g 2
⌦1 (M⇤;R3) by

g89 : @89
3589
|3589 |2

. (8)

Notice that g is a dual 1-form, so 3g is the dual 2-form obtained by
totaling the contributions g89 around a vertex 8 . Pairing the Euler-
Lagrange equations with an arbitrary surface variation 5̊ gives

E̊ = �
’
89 2E
hg89 ,35̊89 i =

’
82V
h(3g)8 , 5̊8 i = �3g | 5̊ �.

Each summand hg89 ,35̊89 i measures the (virtual) work done in re-
sponse to the edge strain 35̊89 , and so we can interpret g89 as an
edge-stress. We also see that Euler-Lagrange equations can be ex-
pressed as the force balancing 3g = grad E. This shows that @89
generates the force g89 at the vertex 8 , and so if @89 > 0 then there is
a compressive stress on the edge; conversely, if @89 < 0 then there
is a tensile stress. In this context we think of @ as a force per unit
length squared, which di�ers from the traditional notion of stress as
a force per cross-sectional area. Figure 6 visualizes the forces that
the Lagrange multiplier induces on the vertices at a conformally
constrained Willmore resp. area minimizing surface.

Fig. 6. We visualize the conformal tension force at a constrained Willmore
surface (Le�) and at a constrained minimal surface (Right). Notice that the
cylinder is constrained minimal since the induced force counteracts the
mean curvature normal, which tries to squeeze the cylinder.

Measuring In�nitesimal Conformal Distortion. The interpretation
of the Lagrange multipliers as a conformal tension force provides a
natural metric on Q(M), which is needed for our numerical opti-
mization. Since @ induces the conformal tension force g (Equation 8)
we can de�ne the !2-norm of @ by the !2-norm of g :

k@k2!2Q : kg k2!2⌦1 =
’
89 2E

F⇤89
✓289

@289 =
’
89 2E

@289
✓89 ✓⇤89

, (9)

whereF⇤89 = ✓89/✓⇤89 are dual edge weights, ✓89 are primal edge lengths,
and ✓⇤89 are dual edge lengths. This gives us a diagonal mass matrix
that we call IQ 2 RE⇥E. One can de�ne other !2-metrics on Q(M) by
choosing a metric di�erent from the one induced by the immersion.
Two natural choices are given by the uniformized metric of constant
curvature, which discretizes the Weil-Petersson metric, or using the
Bergman metric [Crane et al. 2011].

4 OPTIMIZATION
In this section we develop �ows to minimize a geometric energy
E(5 ), the principal example of which is gradient descent. To describe
a variety of di�erent descent methods in a common framework we
derive the gradient descent update step as the minimization of a
quadratically regularized, local linear approximation of the given E:

min
5̊

E(5 ) + �grad E | 5̊ �|                    {z                    }
linearization

+ 1
2C � 5̊ , 5̊ �|    {z    }
regularizer

. (10)

Here the �rst two terms are from the Taylor series expansion of
E at 5 in the direction 5̊ and the minimization is over 5̊ . The step
size C >0 is encoded in the quadratic regularization, and describes
our trust in the local linear approximation. If the inner product
is described by the mass matrix I, i.e., if � 5̊ , 5̊ � = 5̊ >I 5̊ , then the
minimizer of the local approximation is the solution to the linear
system

I 5̊ = �C grad E . (GD)

So we see that the approximation in Equation 10 results in the usual
de�nition of gradient descent. Of course, this gradient descent will
not preserve any of the desired constraints, in particular, this �ow
will change the discrete conformal class.

Sobolev gradients. Choosing a di�erent metric (inner product) in
the regularizer above de�nes a di�erent notion of gradient. We can
then design e�cient gradient �ows by carefully choosing the metric
so that Equation 10 closely approximates E(5 + 5̊ ). For example,
replacing the metric by the Hessian of E results in Newton’s method;
the Hessian, however will generally not be positive-de�nite and so
does not actually de�ne an inner product. For many geometric ener-
gies an appropriate metric is given by the Sobolev metric matching
the energy space of E [Schumacher 2017; Yu et al. 2020].

Since the bi-Laplacian energy is the linearization of the Willmore
energy, the appropriate inner product is the Sobolev �2-metric:

� 5̊ , 5̊ �� 2 : �L 5̊ , L 5̊ �!2 + � 5̊ , 5̊ �!2 . (11)

The existence and analysis of this Willmore gradient �ow in the
smooth setting is found in [Schumacher 2017], and the numerical
results show that using Sobolev gradients makes Willmore mini-
mization remarkably easy (see the comparison in Figure 7).

4.1 Projected gradient flow
To preserve the conformal class we consider the projected gradient
descent de�ned by restricting our local approximation to the set
of in�nitesimally conformal variations. Recall that 5̊ : V! R3 is
in�nitesimally conformal if C⇡_( 5̊ ) = 0. Minimizing Equation 10
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Fig. 7. Starting with the initial surface on the top le� di�erent optimization
methodsmake varying amounts of progress for the same number of iterations
with the Sobolev CGD method performing best. Here we can clearly see
the importance of using Sobolev rather than !2 gradients. The highlighted
box illustrates how CGD can improve over PGD by relaxing constraint
satisfaction throughout the flow. For comparison we also included an
augmented Lagrangian method (ALM).

.

subject to this linear constraint results in the saddle point system✓ 1
C I ⇡_⇤ C⇤

�C⇡_ 0

◆ ✓
5̊
˚̀

◆
= �

✓
grad E

0

◆
. (PGD)

Note that we use ˚̀ as a variable to parameterize @̊ = C⇤ ˚̀ to avoid
the constraint on @̊ (Equation 6).
This is projected gradient descent, and the variables ˚̀ are the lin-

earized Lagrange multipliers which ensure that 5̊ is an in�nitesimal
conformal deformation. Since the conformal constraint is nonlinear,
taking an explicit step in the direction 5̊ will not exactly preserve
the conformal class and so one still needs to project the surface back
to the space of conformal immersions [Schumacher 2017].

4.2 Competitive gradient flow
As we just saw, evolving the surface by a projected gradient step and
a constraint projection is ine�cient, due to the nonlinear dependence
of the discrete conformal class on the vertex positions. Put another
way, restricting the evolution to the space of conformal immersions
means that the projected gradient descent takes very small steps
along the nonlinear subspace in R3V of conformal immersions.
Rather than choosing the Lagrange multipliers ˚̀ to make 5̊ a

conformal variation, as in (PGD), we will update both the surface
and the Lagrange multipliers according to the competitive gradient
descent (CGD) of [Schäfer and Anandkumar 2019]. This approach
aims to �nd saddle points of the minimax problem on the Lagrangian

min
5

max
`

L(5 , `) : E(5 ) + �C⇤` | _(5 )�,
which correspond to constrained critical points of E. We extend
this evolution to the Riemannian setting and we will see how it
naturally generalizes the projected gradient �ow even when not on
the prescribed constraint manifold.

Analogous to the derivation of gradient descent through a linear
approximation of E, we consider a local bilinear approximation of L

in terms of the surface ( 5̊ ) and the Lagrange multiplier ( ˚̀) variations:

min
5̊

L(5 , `) + �grad E + ⇡_⇤C⇤` | 5̊ � + �⇡_⇤C⇤ ˚̀ | 5̊ � + 1
2C � 5̊ , 5̊ �

max
˚̀

L(5 , `) + � ˚̀ | C_(5 )� + � ˚̀ | C⇡_( 5̊ )� � 1
2C � ˚̀, ˚̀�.

Notice that the bilinear (third) term is present in both equations and
couples them. This particularly simple form allows us to explicitly
obtain the updates 5̊ and ˚̀ by solving the generalized saddle point
system ✓ 1

C I5 XT

�X 1
C Ì

◆ ✓
5̊
˚̀

◆
= �

✓
grad E + XT`

C_(5 )

◆
, (CGD)

where X : C⇡_ is the linearization of the constraints, and where
I5 and Ì are the mass matrices in the space of surfaces and La-
grange multipliers, respectively. For the Lagrange multipliers, we
use the !2-inner product of the induced conformal tension, de�ned
in Equation 9. Notice that the right hand side is the same as the
one that occurs in (PGD) when 5 lies on the constraint manifold
and ` is orthogonal to the constraint manifold—this shows that the
competitive gradient descent provides a minimal modi�cation of
projected gradient descent, which can however also explore the
space of non-conformal immersions (see Figure 7 for a comparison).
In the same way that the Sobolev gradient descent de�nes a quasi-
Newton method for grad E(5 ) = 0, we see that the Sobolev CGD also
de�nes a quasi-Newton method for the constrained Euler-Lagrange
equation from Theorem 3.2. Since this simple modi�cation to PGD
makes sure the �ow points back to the constraint manifold, it is no
longer necessary to explicitly project the surface back to a conformal
immersion. This generalization has an additional practical bene�t
over projected methods: one can now prescribe the conformal class
to be di�erent than that of the initial surface (see Figure 2).

5 RELAXING INTEGRABILITY
So far we have considered vertex positions as the variables of our
constrained optimization. Since di�erential coordinates are used ex-
tensively in geometry processing [Sorkine 2006; Xu and Zhou 2009],
it is worthwhile to see how our conformality constraint and the
attendant constrained minimization problems can be parameterized
with di�erentials. As we will see in this section, doing so reveals the
underlying connection between the discrete Lagrange multipliers
and their smooth counterparts. It also provides additional computa-
tional bene�ts on challenging examples. To make this concrete we
introduce triangle �elds, which are natural extensions of di�eren-
tial coordinates beyond just parameterizing surface deformations,
and study discrete conformal variational problems at the level of
di�erential coordinates (see Figure 8).

5.1 Triangle Fields and the Lens Complex
The di�erential 35 of a piecewise linear immersion 5 : M! R3 is a
piecewise constant R3-valued 1-form onM, i.e.

35 2 ⌦1
F (M;R3) :=

�
(l8 9: )8 9:2F | l8 9: : )8 9:" ! R3 linear}.

Clearly, the di�erential of an immersion is injective on all triangles
8 9: . If we relax integrability this leads us to consider the open subset

M =
�
l 2 ⌦1

F (M;R3) | l8 9: injective for all 8 9: 2 F
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Fig. 8. Numerically di�icult optimizations such as this “spiky sphere” Will-
more minimization can be much improved with the use of triangle fields.
These do not have to integrate into a surface (“glue together”) during the
optimization. Enforcing integrability only near the end of the optimization
then provides a richer set of paths.

of ⌦1
F (M;R3)—a 6|� |-dimensional vector space. The elements of M

map the abstract triangles in M to triangles in R3 (up to translation)
and we call them triangle �elds. They induce geometric quantities
like angles, lengths, and normals on the abstract triangles.
To this end we need to distinguish between the two halfedges

comprising an edge in E. For any such halfedge 89 2 H let-89 2 )8 9:M
be the corresponding tangent vector, and for l 2 ⌦1

F (M;R3) we
write

l89 : l8 9: (-89 ) =
π
89
l8 9:

for the evaluation of l along the halfedge 89 .
Clearly, for an immersion 5 we have 35 2 ⌦1 (M;R3). But for

a generic triangle �eld l this is no longer true—there are 89 2 �
where

l89 = l8 9: (-89 ) < �l 98; (- 98 ) = �l 98 .

In particular, also the lengths of corresponding halfedges may di�er.
Therefore it is convenient to consider all objects as living on a
modi�ed cell complex, whose discrete di�erential forms naturally
contain the discrete forms ofM as well as the piecewise constant
1-forms ⌦1

F (M;R3). The idea is closely related to the halfedge forms
introduced in [Custers and Vaxman 2020].

Lens Complex. The lens complex eM ofM is obtained by gluing
digons in between opposite halfedges inM (Figure 10). Hence we
have the following immediate correspondences,

eV � V , eE � H , eF � E [ F.

Whenever clear from context we label the cells of eM by the corre-
sponding elements in M—for example, when working over the lens
complex we choose to write V to indicate the vertex set of eM.

Under these identi�cations we immediately get the equalities:

⌦0 (eM;R3) = ⌦0 (M;R3), ⌦2 (eM;R3) = ⌦2
E (eM;R3) � ⌦2 (M;R3),

where ⌦2
E (eM;R3) � R3E. Moreover, note that each edge ineE comes

with a canonical orientation given by the orientation of the corre-
sponding half edge in H. Hence ⌦1 (eM;R3) � R3H—with no further
conditions imposed. Among the elements of ⌦1 (eM;R3) the 1-forms
l onM are distinguished by the condition that l89 = �l 98 for all
89 2 H, i.e. l is closed on digons:

⌦1 (M;R3) �
�
l 2 ⌦1 (eM;R3) | 3l 2 ⌦2 (M;R3)

 
.

A similar condition characterizes the piecewise constant 1-forms
among the 1-forms on eM: Since the edge vectors of a triangle sum up
to zero, every l 2 ⌦1

F (M;R3) de�nes a 1-form on eM which is closed
on triangles F. Conversely, every 1-form l 2 ⌦1 (eM;R3) which is
closed on triangles F de�nes a piecewise constant 1-form on M.
Hence

⌦1
F (M;R3) �

�
l 2 ⌦1 (eM;R3) | 3l 2 ⌦2

E (eM;R3)
 
.

TM

df ω

Fig. 9. R3-valued discrete piecewise constant 1-forms identify intrinsic
tangent spaces (shown as per-triangle copies of the 2D plane, le�) with
subspaces of R3 spanned by the embedded triangles (middle, right). Discrete
1-forms 35 that arise as di�erentials of R3-valued zero forms 5 “stitch
up” to discrete immersions (middle). However, using this tangent space
identification we can define geometric quantities also for more general, not
necessarily integrable candidate di�erentials l (triangle fields, right).

!2 inner product. To express orthogonality between forms as it
appears, for example, in the Hodge decomposition we will use the
!2 inner product on ⌦1

F (M;R3)

�l̊, l̊� = π
"
hl̊ ^ ⇤l̊i.

Here star denotes the Hodge star with respect to the triangle �eld
metric and the integral of the piecewise constant 2-form hl̊ ^ ⇤l̊i is
given as a sum of its integrals over triangles. Since l̊ 2 ⌦1

F (M;R3)
is constant (and hence closed) on each triangle 8 9: , its integral over
8 9: can be computed by the usual cotangent formula:π
8 9:
hl̊8 9: ^⇤l̊8 9: i =

1
2
�
cot\89 |l̊89 |2 + cot\ 9: |l̊ 9: |2 + cot\:8 |l̊:8 |2

�
,
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where \89 , \ 9: , \:8 2 (0, c/2) denote the interior angles in 8 9: op-
posite the halfedges 89, 9:,:8 . In particular, (⇤U)89 := 1

2 cot\89U89
de�nes a map ⌦1 (eM;R3) ! ⌦1 (eM⇤;R3) such that

�l̊, l̊� = �⇤l̊ |l̊�,
where on the right hand side l̊ is regarded as a 1-form 89 7! l̊89 on
the lens complex.

Fig. 10. Starting with a triangle mesh (le�) we obtain the lens complex
(middle) by blowing up every edge into a “lens”. A pair of oppositely oriented
halfedges 89, 98 in M bound a lens facet (2-cell) in eM (right).

Integrability. A triangle �eld l is locally the di�erential of a
surface if it is closed. Since l is already closed on the triangles, the
only obstruction to local integrability is whether l is closed on the
lenses. For a lens 89 2 E ⇢ eF

(3l)89 = �(l89 + l 98 ).

If l is closed on the lenses then l de�nes an R3-valued discrete 1-
form onM. The DECHodge decomposition shows that the remaining
obstruction to global integrability is the harmonic component of l .
We conclude that l is the di�erential of a surface if and only if

3l = 0 2 ⌦2
E (eM;R3) (12)

�l,[8� = 0 2 R3 (13)

where {[8 }268=1 is a basis of harmonic 1-forms onM.

5.2 Conformal Lagrange Multipliers
Here we derive the conformal Lagrange multipliers for triangle �eld
energies. We explain how they can be interpreted as conformal
stress tensors (quadratic di�erentials) and how this discretization is
related to other notions in geometry processing.

Length Multi-Ratios. A triangle �eld l does not de�ne a metric on
M but induces edge lengths ✓ on the lens complex eM which satisfy
the triangle inequality in each face of M with no compatibility
condition over the lenses—we call such a collection of halfedge
lengths a triangle �eld metric onM.
The notion of conformal equivalence extends to triangle �eld

metrics in the obvious way—two triangle �eld metrics ✓ and ✓̃
are called equivalent if there is a function D : V ! R such that
✓̃89 = 4 (D8+D 9 )/2✓89 for all 89 2 H. Following [Bobenko et al. 2016],
where discrete conformal equivalence of polyhedral surfaces is

studied, we characterize discrete conformal equivalence over the
lens-complex by logarithmic length multi-ratios logm : eE! R
logm(✓)89 = log

✓
✓8; ✓9: ✓98

✓; 9 ✓:8 ✓89

◆
= (_8; � _; 9 + _ 9: � _:8 ) + (_ 98 � _8 9 )

where : , ; are the vertices across the edge 8 9 as before.
Now, if we de�ne—analogously to Section 3—the averaging and

multi-ratio matrices, eA 2 ReE⇥V and eC 2 ReE⇥eE, by
(eAD)89 = 1

2
(D8 + D 9 ), eC_ = logm(✓) . (14)

then the relationship imeA = kereC (Lemma A.1) directly implies:

P���������� 5.1. Two triangle �eld metrics are discretely con-
formally equivalent if and only if their length multi-ratios are the
same.

Euler-Lagrange Equations. Given that imeA = kereC, the derivation
of the Euler-Lagrange equations in the triangle �eld setting follows
verbatim the arguments of Section 3. Carrying this out one ends up
with the following characterization: A triangle �eld l is a critical
point of a triangle �eld energy eE under in�nitesimal conformal
deformations if and only if grad eE = ⇡_⇤@ for

@ 2 kereA⇤ � �
@ : eE! R :

’
89

@89 + @ 98 = 0, 88 2 V
 
.

A variation l̊ 2 ⌦1
F (M;R3) ofl yields a variation _̊ of its logarithmic

lengths

_̊89 =
hl89 , l̊89 i
|l89 |2

(cf., Equation 5). In particular, expressing this with respect to the
!2-metric, we obtain that the !2-gradient of _89 is given by

grad _89 = c89 :

( 1
�89:

l8 9: � %89 on 8 9:

0 elsewhere

where %89 : h·,-89 i
|-89 |2 -89 is the projector onto the halfedge 89 in

the tangent space )8 9:M. Thus we obtain the following – note the
di�erence between Equation 6 and Equation 15:

T������ 5.2. A triangle �eld l 2 M is critical for an energyeE : M! R under all in�nitesimal conformal variations if and only if
there exists @ : eE! R satisfying’

89

@89 + @ 98 = 0 88 2 V, (15)

grad eE +
’
89 2eE

@89c89 = 0, (16)

where grad eE is the !2-gradient of the energy.

To relate this to the surface case we now consider in�nitesimal
conformal triangle �eld variations that preserve integrability. By
the DEC Hodge decomposition on the lens complex we know that a
variation l̊ 2 ⌦1

F (M;R3) is exact if and only if it is orthogonal to all
co-closed 1-forms. In this case the left hand side of Equation 16 is
not necessarily zero, but co-closed:
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C�������� 5.3. A triangle �eld l 2 M is critical for an energyeE : M! R under all in�nitesimal exact conformal variations if and
only if there exists @ : E! R satisfying’

89

@89 = 0 88 2 V, (17)

3 ⇤
⇣
grad eE +

’
89 2eE

@89c89
⌘
= 0, (18)

where grad eE is the !2-gradient of the energy.

Discrete Conformal Stress. These Euler-Lagrange equations show
that conformal Lagrange multipliers @ 2 kereA⇤ result in a force

eg8 9: : @89c89 + @ 9:c 9: + @:8c:8 . (19)

that acts on deformations of the extrinsic triangle �eld. Noticing
that this is a tangential R3-valued 1-form, we can actually writeeg8 9: = 1

�89:
l8 9: � (8 9: where (8 9: : )8 9:M! )8 9:M is the conformal

stress tensor
(8 9: : @89%89 + @ 9:% 9: + @:8%:8 . (20)

An in�nitesimal deformation of the intrinsic geometry of the faces
is described by a self-adjoint linear map ⇡8 9: : )8 9:M! )8 9:M per
face 8 9: 2 F, and as usual in mechanics the stress tensor gives rise
to the energy change h(8 9: ,⇡8 9: i when the strain ⇡8 9: is attempted.

Fig. 11. A conformal stress tensor can be visualized through its principal
stress directions. In each face 8 9: we compute the eigenspace of (89: with
the largest eigenvalue which defines a line field (aka the horizontal foliation
of the quadratic di�erential @) and we visualize its integral curves.

Since tr %89 = 1, the condition that @ is a conformal Lagrange
multiplier (Equations 15 and 17) states that the conformal stress
tensor is trace-free when averaged around a vertex. To better under-
stand what this means one can compare this to the case when (8 9: is
trace-free inside every face: in this case, (8 9: does not resist scaling
deformations and only resists deformations that change the corner
angles. The trace-free condition averaged to the vertices means that
conformal stress tensor does not measure resistance to isotropic
scaling, and only resistance to anisotropic distortion. In this context,
the notion of anisotropic distortion is described precisely through
discrete conformal equivalence.

Holomorphic Quadratic Di�erentials. A similar description of qua-
dratic di�erentials has appeared in related work on extremal quasi-
conformal mappings [Weber et al. 2012, Eq. 8]. There a holomorphic
quadratic di�erential is discretized in a piecewise linear way per
face as

(8 9: =
1

6�8 9:
(⌘89%89 + ⌘ 9:% 9: + ⌘:8%:8 )

where ⌘ 2 ⌦1 (M;R) is harmonic. Other quasi-conformal parameter-
ization settings also give rise to holomorphic quadratic di�erentials
(see, e.g., [Lui et al. 2014; Lei et al. 2017]).

6 RESULTS
We begin this section with a discussion of our implementation and
its numerical properties before turning to examples of our method
in action.
Our algorithm was implemented in C++ and we performed nu-

merical experiments on a MacBookPro class computer (2.8GHz Intel
Core i7-7700HQ, 8GB of RAM). To solve the saddle point systems
from Section 4 we precomputed symbolic factorizations via PAR-
DISO [Alappat et al. 2020; Bollhöfer et al. 2020, 2019] and then
updated the numerical factorizations and applied backsubstitution
for each subsequent problem. We also precomputed the numerical
factorization of the cotan Laplacian.

The iterations of our optimization are dominated by the solution
of a sparse linear system of size 3|V| + |E|. For an overall sense of
the runtime we note that for a mesh of 125k triangles, preprocessing
takes about 6 seconds; the following iterations take approximately
3 seconds—computing geometric quantities and derivatives takes
about 600ms, and constructing and solving the saddle point problem
takes an additional 3 seconds.

initial surface

[Crane et al. 2013]CETM Constrained Minimizer (ours)

quasi-conformal error

Fig. 12. Starting with a twisted torus (upper le�) our method finds a con-
formally equivalent Willmore minimizer with very low quasi-conformal
distortion (lower le�). Using the method of [Crane et al. 2013], based on con-
formal deformations, numerical dri� leads to accumulating quasi-conformal
error (lower right). Note in particular the “neck” region where parametric
squares are distorted into high aspect ratio rectangles.

A distinction of our approach relative to earlier works is the use
of discrete conformal equivalence as the basis for the conformality
constraint. This ensures that the conformal class is preserved up to
double precision accuracy. Practically this implies that our approach
preserves mesh quality at convergence (and in practice throughout
the �ow). In Figure 13 we visualize the quasiconformal error Q
of Willmore minimizers comparing presence resp. absence of the
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conformality constraint. There is no quasiconformal error when
Q = 1. Without any conformality constraint the element quality
can be severely degraded since the reparameterization degree of
freedom is wholly uncontrolled. This deterioration of the mesh is a
well known issue [Bobenko and Schröder 2005; Barrett et al. 2016;
Gruber and Aulisa 2020]. Simply discretizing a smooth notion of
conformal deformations [Crane et al. 2011, 2013] is still insu�cient
due to numerical discretization errors accumulating along the �ow
leading to signi�cant drift away from the initial conformal class
(Figure 12). Such discretization errors depend heavily on the aspect
ratios of triangles which our method is quite insensitive to. Figure 14
illustrates this by showing that two quite di�erent triangulations of
a given shape yield conformally constrained minimizers of the same
shape.

Fig. 13. Although Willmore minimization with no conformal class constraint
(bo�om row) yields smooth surfaces, there can be severe distortion in
the mesh quality. Fixing the discrete conformal class (top row) yields low
quasiconformal error as expected. Recall that a conformal deformation is
locally a similarity hence tends to preserve element quality.

Our choice of competitive gradient descent as a method for con-
strained optimization was motivated by comparing it with standard
constrained optimization methods (Figure 7). In particular, we consid-
ered the projected gradient descent (Section 4.1) and an augmented
Lagrangian method [Bertsekas 1996; Nocedal and Wright 2006]—the
projected and competitive gradients were de�ned with respect to
both the !2 and �2 inner products, and updates were computed via
explicit forward steps. Overall, our strategy was both more e�cient
and more robust to the quality of the initial surface (or triangle �eld).
As our approach can be seen as a relaxation of the projected gradient
descent, we found that the projected gradient descent performed
quite well in general. However, it was comparatively slow since
it enforced constraint satisfaction every iteration. Not only did it
increase the per-iteration computation time, but the evolution would
get “stuck” in regions where the projected Willmore gradient is
nearly zero—Figure 7 shows an example
where our method used non-conformal de-
formations (highlighted box in �gure) to re-
solve these challenging situations. The Aug-
mented Lagrangian method was the least

consistent and it would often get stuck along
the way or in undesirable local minima (inset); this method had slow
convergence and its performance was very sensitive to the choice of
penalty parameters.

Since we also consider a non-convex optimization problem, there
are situations where our approach has di�culty converging. In
particular, initializing the optimization from a nearly degenerate
and non-conformal triangle �eld results in seemingly random evo-
lution. In practice, we only ran into these problems when trying
to dramatically change the prescribed discrete conformal class of a
non-integrable triangle �eld.

Fig. 14. Length cross ratios are a discrete notion of conformal equivalence
and remain invariant under conformal change. Consequently our method is
insensitive to the quality of the underlying triangulation. We demonstrate
this here by starting with two di�erent triangulations of a given input shape,
resulting in conformally constrainedWillmore minimizers of the same shape.

6.1 Constrained Willmore Surfaces
Finding optimal shapes has an extensive history in mathematics,
with motivation that goes beyond æsthetics. This search often
reveals an understanding of deep mathematical concepts and the
physical phenomena governed by these ideas. Willmore surfaces
arose from the desire to combine minimal surface theory with
(Möbius) conformal geometry of the ambient space [Blaschke 1929].
Constrained Willmore surfaces then arise naturally by additionally
constraining the intrinsic conformal geometry of the surface—they
are the subject of an active mathematical research �eld [Babich and
Bobenko 1993; Bohle 2010; Kuwert and Schätzle 2013; Heller 2015;
Heller and Ndiaye 2019].
Besides general results about existence and uniqueness of con-

strained minimizers, the existing theory and examples almost exclu-
sively concern tori. Neither explicit constructions nor numerical
visualizations of constrained Willmore surfaces have been avail-
able in the general case. By minimizing the Willmore energy in a
�xed conformal class, we provide a new numerical framework to
experimentally study constrained Willmore surfaces of any genus.

6.1.1 Genus 0 Surfaces (Spheres). According to the uniformization
theorem, all genus zero surfaces are conformally equivalent to the
sphere. We then expect our Willmore minimizing algorithm to
produce round spheres for any genus zero input. In Figure 15 we
start with a Morin surface, a fourfold rotationally symmetric surface
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input (5) (10) (20)

(30) (40) (43) (65)

Fig. 15. Conformal Willmore-minimizing flow starting from a slightly per-
turbed Morin surface, the fourfold rotationally symmetric surface that
appears as the half-way model of the sphere eversion [Francis 1987]. Here
we visualize the evolving triangle fields at di�erent iterations.

that appears as the half-way model of a sphere eversion [Francis
1987]. The surface was slightly perturbed to break the symmetry, and
given as input to our algorithm, which converges to a round sphere.
Figure 3 gives an example of a sphere minimizing the Willmore
energy under conformal class, area, and volume constraints.

6.1.2 Genus 1 Surfaces (Tori). Several classes of explicit examples
of constrained Willmore tori have been constructed [Pinkall 1985;
Heller 2013], but there is still little known about minimizers in
conformal classes far away from the square torus (Cli�ord torus).
Using triangle �elds, we �nd constrained Willmore tori that are
local minimizers for a given conformal class—this also yields a
visualization of every abstract conformal type as a surface in space.

Fig. 16. To construct a constrained Willmore torus with a given conformal
class we triangulate the la�ice representing the flat torus in the same
conformal class and start with a random triangle field on this mesh. Here
we visualize iterations 1, 10, 20, 30, and 47 of the optimization. (See also the
top of Figure 1.)

To �nd these constrained minimizers via surface �ows it is neces-
sary to begin with an initial immersion of the abstract conformal
class, which is just part of the original problem we’re trying to solve.
On the other hand, triangle �elds of every conformal class are easily
constructed by simply taking a triangulation of the fundamental
domain. Competitive gradient descent of the triangle �eld gives a

simple algorithm to compute constrained Willmore tori directly
from a description of the conformal class. We build on the spinorial
framework of [Chern et al. 2018] to ensure that our minimizers do
not have pinch points. Technical and implementation details are
given in Appendices C and D. Convergence to a critical point is
measured by the residual norm of the Euler-Lagrange equations—we
stop our optimization once this error is below 10�6.
When starting from an initial immersion that exhibits certain

symmetries (Figure 17), our algorithm may �rst �ow towards a
critical point that exhibits those same symmetries. We can use this
feature to produce symmetric critical points of the Willmore energy
that are not minimizers.

Fig. 17. Constrained Willmore tori with =-fold rotational symmetry.

6.1.3 Higher Genus Surfaces. Since we consider general conformal
variational problems we are able to produce numerical realizations
of general constrained Willmore minimizers of higher genus for the
very �rst time. A gallery of such results, produced by giving various
high genus surfaces as input, is shown in Figure 5.

6.2 Conformal Surface Modeling
Conformal variational problems provide an extensible surface mod-
eling framework where many important geometric features can
be easily controlled. For example, since conformal maps preserve
textures our conformal Willmore minimization provides an excellent
replacement for standard fairing methods which can distort textures
even with a very small amount of smoothing. Below, we consider
several illustrative examples of the conformal constraint applied to
problems in geometry processing.

6.2.1 Point Constraints. In the presence of conformality, �xing
positions of some points provides control of surface geometry. In
Figure 1 (bottom), we see that �xing vertex positions while minimiz-
ing the Willmore energy without the conformal constraint results in
a surface that does not resemble the initial geometry at all. On the
other hand requiring the deformation to be conformal is enough for
few point constraints to encode the overall geometry of the initial
surface. Figure 19 helps explain this behavior in the simple case of a
sphere. Changing the cross-ratio of any four point constraints leads
to constrained Willmore surfaces that are not Möbius equivalent.
Instead conformally constrained Willmore surfaces with additional
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oursMoebius subdivision

ours-inputoriginal

Fig. 18. Our Willmore-minimizing flows (right) produce interpolatory sur-
faces that are locally as sphere-like as possible. On the le�, a result of
canonical Möbius subdivision [Vaxman et al. 2018], which specifically tar-
gets sphere-reproducing interpolation, albeit using a subdivision approach.

point constraints provide as-spherical-as-possible interpolants of
the points. This property has been recognized as desirable in archi-
tectural geometry processing. Subdivision schemes based on Möbius
geometry were developed to provide approximations of such sphere
preserving interpolants [Vaxman et al. 2018]. Figure 18 compares our
conformally constrained Willmore surface with Möbius subdivision.

Fig. 19. Four points selected on a round sphere fix the edge length cross-ratio
on the two triangles formed by them. Moving one of the points asymmetri-
cally changes the induced cross-ratio means, so no Möbius transformation
can map between the old and the new point positions. This causes the shape
to deviate from the original sphere.

6.2.2 Gradient Domain Surface Processing. Another way to encode
the input shape into our framework is to modify the energy func-
tional so that the minimizing surfaces balance smoothness and
closeness to the input shape. We used the !2-norm as a measure of
similarity, resulting in the modi�ed energy

EY (5 ) : 1
2 k 5 � 50k2!2 + YW(5 ), (21)

where Y is a smoothness parameter.
These energies are commonplace in gradient domain image/surface

processing [Mumford and Shah 1989] and computer graphics [Chuang
et al. 2016] in the context of image and surface denoising. In con-
trast to using point constraints, minimizing Equation 21 in a �xed
conformal class gives only a “soft” constraint on the vertex positions
(Figure 20).

6.2.3 Constrained Area Minimal Surfaces. The discrete conformal
class constraint can be applied to other than curvature energies. A
classical example is the area energy, whose minimizers are minimal
surfaces modeling the behavior of soap �lms. Applying a conformal
class constraint in this setting yields a material which can shrink
but only isotropically, in e�ect a type of isotropic auxetic soap
�lm. Recall that auxetic materials are characterized by a negative

point constraints

Fig. 20. Willmore-regularized surface fairing which jointly optimizes for
fidelity to the input, and minimal Willmore energy with the parameter Y
controlling the regularizing e�ect of the Willmore energy.

Poisson ratio and in the isotropic case best modeled by conformal
maps [Konaković et al. 2016]. Figure 6 (cylinder) shows an example of
such a conformally constrainedminimal surface. The usual shrinkage
towards the middle of the cylinder (with �xed boundaries) is not
present here since it would require anisotropic deformation. In fact
the conformal forces counterbalance the mean curvature normal
force. Figure 21 shows more complex examples of a cylinder with
twist and a sphere with six caps cut o�.

We leave exploration of such materials in the context of geometric
and physical modeling to future work.

Fig. 21. Minimal surfaces which minimize the area energy o�en collapse
due to their propensity for shrinkage. Once the conformality constraint is
added, as done here, any area scaling must be isotropic. The resulting shapes,
e�ectively made of an isotropic auxetic soap film material, are distinctly
di�erent.

7 CONCLUSION
We presented conformally constrained variational problems as a
new framework for solving problems in mathematical visualization
and geometry processing. The conformal constraint is discretized
using the notion of discrete conformal equivalence, and we show
that this constraint on the intrinsic parameterization has profound
e�ects on the extrinsic shape of a surface. We used this framework
to numerically compute constrained Willmore for surfaces of any
genus and conformal type for the very �rst time. The numerical
optimization is based on a manifold reformulation of competitive
gradient descent, which we found to be more robust than standard
methods. The conformal constraint, in the presence of Willmore opti-
mality, produces interesting surfaces with rich geometric properties
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that may be desirable for form �nding purposes. Our algorithm is
su�ciently general and can be adapted to other geometric energies
or user-de�ned modeling constraints. Investigating the e�ect of the
conformal constraint on other variational problems is an interesting
avenue for future work. On the theory side, we look forward to
deepen our understanding of the relationship between our results
and isothermic triangulated surfaces, discrete holomorphic quadratic
di�erentials, Dirac operators, and Teichmüller spaces, which would
nicely couple smooth and discrete theory.
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A THE LENS COMPLEX
This appendix details the discrete conformal equivalence over the
lens complex eM.

A.1 Discrete Conformal Equivalence
Below, we prove that discrete conformal equivalence over the lens
complex is characterized by logarithmic multi-ratios.

L���� A.1. The averaging and multi-ratio maps de�ned in Equa-
tion 14 satisfy imeA = kereC.
P����. Consider _ 2 imeA. Notice that _89 = _ 98 , and so _ de-

scends to a well-de�ned function over the edges ofM.

(eC_)89 = (C_)89 + (_89 � _ 98 ) = (C_)89 = 0,

where the last equality follows from Proposition 3.1. This shows
that imeA ✓ kereC.
Consider _ 2 kereC and �x a vertex 8 2 V. For every face 8 9: 2 F

de�ne candidate scale factors D8 9:8 = _89 � _ 9: + _:8 . Since

D 98;
8 � D

8 9:
8 = (eC_)89 = 0

we see thatD8 9:8 = D 98;
8 for any neighboring faces. SinceM is manifold

all of the faces containing 8 are connected by a path of neighboring
faces. Thus, the candidate scale factors D8 9:8 only depend on the
vertex 8 and we get a well de�ned function D : V ! R. Direct
substitution yields

(eAD)89 = 1
2 (D8 + D 9 ) = _89 � 1

2 (eC_)89 = _89 ,

and so _ 2 imeA. This shows that kereC ✓ imeA and we conclude
that imeA = kereC, as desired. ⇤

B TRIANGLE FIELD EXTENSIONS
To extend geometric variational problems to the space of triangle
�elds we need to reformulate functions that are de�ned in terms of
vertex positions in terms of the halfedge vectors. More precisely,
we say that the triangle �eld function eF (l) is an extension of a
function F (5 ) that depends on vertex positions 5 if the relationship

eF (35 ) = F (5 )
is satis�ed for all discrete surfaces 5 : V ! R3. Since 35 is trans-
lationally invariant, an extension does not exist unless F (5 ) is

translationally invariant. In this section we obtain triangle �eld
extensions via the Poisson reconstruction;
Recall that the Poisson reconstruction, 5 (l), is the projection

onto the space of integrable (exact) 1-forms, and it solves the Poisson
equation

L5 = 3 ⇤ l .
By applying the function to this projection we get an extension:

eF (l) : F (5 (l)) .
Now we compute the gradient in the space of triangle �elds.
An in�nitesimal deformation l̊ induces a deformation 5̊ of the

Poisson reconstruction, and so the variation can be computed from
the gradient of F :

�grad eF , l̊� = e̊F = �gradF | 5̊ �.
Since Poisson equation is linear, 5̊ is also the Poisson reconstruction
of l̊ . This implies that a co-closed triangle �eld variation causes no
change in the reconstruction 5̊ ⌘ 0.
By considering co-closed l̊ in the equation above we �nd that

grad eF is orthogonal to all co-closed 1-forms. By the Hodge decom-
position, the gradient is exact and we can �nd i : V! R3 satisfying
grad eF = 3i . The gradient relationship, in terms of i , becomes

�grad eF , l̊� = �3i, l̊� = �3 ⇤ l̊ |i�
= �L 5̊ |i� = �Li | 5̊ � = �gradF | 5̊ �,

where we used the self-adjointness of L and the in�nitesimal Poisson
reconstruction L 5̊ = 3 ⇤ l̊ . Since 5̊ is arbitrary, we conclude that
Li = gradF . Summarizing, the gradient of the extension can be
computed by solving a Poisson equation with the gradient 2-form of
F (5 ) on the right-hand side:(

grad eF = 3i, i 2 ⌦0 (M;R3)
Li = gradF .

(22)

Recall that a Poisson equation has a solution if and only if the right
hand side has zero mean. The gradient 2-form gradF integrates to
zero precisely whenF is translationally invariant, and so Equation 22
can always be solved in our setup. We now give some examples of
triangle �eld extensions.

B.1 Point constraints
Since an integrable triangle �eld only describes a surface up to
translation, it does not make sense to talk about the vertex positions
of the triangle �eld 35 2 M. Nevertheless, it is still meaningful to
consider the translationally invariant relative point positions,

P(5 ) : 5D � 5E,

between distinct vertices D, E 2 V. It is straightforward to check that

gradP = XD � XE,
where XE is the unit impulse located at the vertex E 2 V. We use
Equation 22 to �nd that grad eP is the harmonic 1-form with source
and sink at D and E , respectively—that is, grad eP = 3? where ? :
V! R is the harmonic function with source and sink at D and E ,
respectively

L? = XD � XE .
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This shows that grad eP(l) = 3? does not depend on l , and so eP is
linear. Explicitly, we have

eP(l) = �l,3?�.
Notice the similarity between these point constraints and the inte-
grability condition in Equation 13: by considering the inner product
with a harmonic 1-form dual to a homology generator W we can
prescribe the periods

Ø
W l . On the other hand, considering the inner

product with the harmonic 1-form with sources and sinks we can
prescribe the di�erence of point positions, which can also be ex-
pressed as the integral 5D � 5E =

Ø
WDE

l , where WDE is a curve from E

to D. In both cases, inner products with harmonic 1-forms encode
the integrals of the triangle �eld over curves in the mesh.

B.2 Enclosed volume
The enclosed volume of a surface is the other notable constraint
that we extend to triangle �elds in this way:

V(5 ) : 1
6

’
8 9:

58 · (59 ⇥ 5: ) .

Recall that the gradient 2-form is the discrete area vector:

(gradV)8 = 1
3

’
8 9:

�8 9:#8 9: . (23)

The gradient of our extension eV is then 3o 2 ⌦1 (M;R3) where o is
the solution of the Poisson equation

3 ⇤ 3o = gradV .

C STARTING FROM RANDOM TRIANGLE FIELDS
The integrability conditions of a triangle �eld ensure that all faces
can be glued together in a consistent way, but they do not ensure that
the integrated surface comes from an immer-
sion since there may be pinch points where
the vertex star is not embedded (inset). Prac-
tically speaking, pinch points very rarely
develop when we initialize the optimization
with l0 = 35 , where 35 is the di�erential of
a smooth surface. On the other hand, when no initial immersion is
available (e.g.in Figure 16 and Figure 1) energy minimization of an
arbitrary triangle �eld l0 tends to develop many pinch points. In
[Chern et al. 2018] the authors introduce discrete spin structures
and show that by parameterizing rotations with spinors one can
eliminate pinch points through energy minimization. Similarly, by
parameterizing triangle �elds with spinors we are able to �nd im-
mersed minimizers of a much larger class of challenging variational
problems—for example, computing constrained Willmore surfaces
when only the discrete conformal class is given.

C.1 Discrete Spinors
We quickly review the necessary concepts from [Chern et al. 2018],
relegating the technical details to their paper. Given a background
metric ✓ , a discrete spinor �eld is a functionk : F! (3 ⇢ H that we
interpret as de�ning a triangle �eld by lk = k 3Ik inside each face,
where I8 9: are complex local coordinates. A discrete spin connection
is then a choice of square-root of parallel transport g89 2 C across

the edges 89 2 E. The remarkable feature of this framework is that
pinch points are encoded in the smoothness of k : an integrable
triangle �eld lk = 35 has no pinch points if |k 98; � g89k8 9: | <

p
2

for all edges 89 2 E. Consequently, the connection Dirichlet energy
Eg (k ) provides a bound on the number of pinch points.

C.2 Spinorial Triangle Fields
General triangle �elds can be parameterized by a triangle �eld metric
✓ : eE! R and face spinorsk : F! (3:

S : ReE ⇥ HF ! ⌦1
F (M;R3)

(✓,k ) 7! (k 3Ik )8 9:2F
where (I8 9: ) are isometric local coordinates in each face with respect
to the metric ✓ .

Conformal Triangle Fields. By �xing a reference metric ✓0 we can
specialize the parameterization above to the space of conformal
triangle �elds using vertex scale factors D : V! R:

S2 : RV ⇥ HF ! ⌦1
F (M;R3)

(D,k ) 7! S
�
4D✓0,k

�
.

Since this parameterization only produces conformally equivalent
triangle �elds the discrete conformal constraint can safely be dropped
from the optimization when using these coordinates.

C.3 Immersive Regularization
Finally, we get to the main point: when parameterizing triangle
�elds with spinors we can regularize our variational problem by
adding a small multiple of the spin Dirichlet energy

Eg (k ) : 1
2

’
89 2E

F89 |k 98; � g89k8 9: |2 .

This simple regularization almost completely eliminates the emer-
gence of any pinch points, and constrains the search space to im-
mersed surfaces.

D IMPLEMENTATION
In this section we give the details needed to implement the �ow from
Section 4. We give an overview of the algorithm before describing
explicit matrix expressions:
The conformal constraint is computed through the logarithmic

edge lengths, _89 = |59 � 58 |, and the cross-ratio map C 2 RE⇥E
(Equation 3), which can be expressed as a sum of sparse matrices
C8 9: 2 RE⇥E de�ned per face, with non-zero elements as follows:

C8 9: =

89 9: :8 !0 1 �1 89
�1 0 1 9:
1 �1 0 :8

. (24)

Its derivative is computed through the derivative of the logarithmic
edge lengths ⇡_ 2 RE⇥3V, which has nonzero entries

(⇡_)89, 9 = �(⇡_)89,8 = 59 � 58 .
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ALGORITHM 1: Constrained Willmore Evolution
Input: Triangle mesh M = (V, E, F) with vertex positions 5 : V! R3,
prescribed logarithmic length cross ratios c0, and step size C > 0.
1: Build cross-ratio map C 2 RE⇥E ùEqn. 24
2: Initialize Lagrange multipliers ` = 0 2 RE
3: do
4: Compute log edge lengths _ Section 3
5: Build cotan Laplacian L and h ùEqn. 27
6: Build w ùEqn. 29
7: g Lh + w ùWillmore gradient
8: c C_ � c0 ùconstraint violation
9: X C⇡_ ùconstraint derivative
10: Build metrics IH2 and IQ ùEqns. 25 and 26

11: (�5 ,�`)  solve
✓ 1
C IH2 X>

X � 1
C IQ

◆ ✓
�5
�`

◆
=

✓
�g � X>`
�c

◆

12: 5  5 + �5 ùtake forward step
13: `  ` + �`
14: while not satis�ed

The inner product on the space of discrete quadratic di�erentials is
given by the diagonal matrix IQ 2 RE⇥E with nonzero entries

(IQ)89,89 =
1

F89 ✓289
, (25)

for each edge 89 2 E, where F89 are the usual cotan edge weights.
The Sobolev �2-metric is discretized as

IH2 : ⇤0 + L ⇤�10 L, (26)

and where ⇤0 2 RV⇥V is the diagonal matrix of vertex dual areas
and L 2 RV⇥V is the cotan Laplacian.

Willmore energy. To de�ne the Willmore energy, we use the
discrete mean curvature vector h : 1

2 ⇤�10 L5 , which at a vertex
8 2 V can be expressed as the sum over the neighboring edges

h8 =
1
2�8

’
9

F893589 . (27)

The Willmore energy is

W(5 ) = �⇤0h, h� = 1
4
tr(5 >L ⇤�10 L5 ), (28)

and its gradient 2-form is

gradW = Lh + w.

Here w is the vector with R3 blocks

w8 =
’
9

⇣ mF89

m58
hh9 � h8 ,3589 i �

m� 9

m58
|h9 |2

⌘
, (29)

where the gradient of the cotan weights and vertex areas are

mF89

m58
=

1
sin2 \8 9

:

#8 9: ⇥
35:8
|35:8 |

� 1
sin2 \ 98

;

# 98; ⇥
358;
|358; |

,

m� 9

m58
=

1
2
(#8 9: ⇥ 359: + # 98; ⇥ 35; 9 ) .

Constraints. Additional constraints, b (5 ) = 0, can be incorporated
by joining them to conformal constraint vector and di�erential. This
corresponds to making the changes

c 
✓
C_ � c0
b (5 )

◆
, X 

✓
C⇡_
⇡b

◆

in the algorithmic description above.

Boundary conditions. For surfaces with boundary, discrete confor-
mal equivalence is characterized by the logarithmic length-cross
ratios of all the interior edges, and so we use the modi�ed cross-ratio
map C0 2 RE0⇥E which is obtained by removing all of the rows from
C corresponding to boundary edges.

Dirichlet boundary conditions can be incorporated by restricting
the updates to the interior vertices. Practically, that means that we
remove all of the rows and columns of the saddle point system that
correspond to the boundary vertices.
First-order boundary conditions can be treated as additional

constraints in the optimization. For example, one can constrain the
normals of the boundary faces

#�m (5 ) = (#8 9: )8 9:2Fm ,
where Fm ⇢ F is the set of boundary faces. The derivative of this
constraint mapping ⇡#�m 2 R3Fm⇥3V is the sparse matrix with
R
3⇥3-blocks

(⇡#�m )8 9:,8 = �
1

�8 9:
(#8 9: ⇥ 359: )#>8 9: .

We remark that the simpler strategy of �xing all of the vertices along
the boundary strip may not work in the presence of a conformality
constraint—in particular, it may not be possible to achieve a pre-
scribed conformal class when the vertices along the boundary strip
are �xed.

D.1 Triangle Fields
There are few conceptual di�erences when working with triangle
�elds, but the objects and notations di�er in some important ways.
We now describe the implementation at the level of triangle �elds:

The cross-ratio matrix eC 2 RH⇥H is de�ned per-face

eC8 9: =

89 9: :8 !�1 1 �1 89
�1 0 1 9:
1 �1 0 :8

. (30)

The local integrability conditions are described via the matrix d1 2
R
E⇥H with

(d1)89E,89 = ±1, (31)
where 89E denotes the unoriented edge, and the sign is chosen
according to the orientation of the halfedge. The Willmore energy is
extended to triangle �elds as the Dirichlet energy:

fW(l) : 1
4
�3 ⇤ l,3 ⇤ l� = 1

4

’
82V

1
�8

���’
89

F89l89

���2 .
Notice that fW(35 ) = W(5 ). Since we reduce the order of inte-
grability when working with l the Sobolev metric we use is the
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ALGORITHM 2: Constrained Willmore Evolution (Triangle Fields)
Input: Triangle mesh M = (V, E, F) with initial triangle �eld l ,
prescribed logarithmic length cross ratios c0, and step size C > 0.
1: Build cross-ratio map eC 2 RH⇥H ùEqn. 30
2: Build a basis of {W8 }268=1 of harmonic dual 1-forms
3: Build d1 2 RE⇥H ùEqn. 31
4: Initialize Lagrange multipliers ` = 0 2 R|H|+3( |E|+26)

5: do
6: Compute log edge lengths _
7: g grad fW ùWillmore gradient

8: c ©≠
´
eC_ � c0
d1l�W8 |l�

™Æ
¨

ùconstraint violation

9: X ©≠
´
eC⇡_
d1
W8

™Æ
¨

ùconstraint derivative

10: Build metrics IH1 and IQ ùEqns. 25 and 32

11: (�l,�`)  solve
✓ 1
C IH1 X>

X � 1
C IQ

◆ ✓
�l
�`

◆
=

✓
�g � X>`
�c

◆

12: l  l + �l ùtake forward step
13: `  ` + �`
14: while not satis�ed

�1-metric de�ned by

IH1 : ⇤1 + ⇤1d0 ⇤�10 d>0 ⇤1 (32)
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