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This paper describes a method for efficiently computing parallel transport

of tangent vectors on curved surfaces, or more generally, any vector-valued

data on a curved manifold. More precisely, it extends a vector field defined

over any region to the rest of the domain via parallel transport along shortest

geodesics. This basic operation enables fast, robust algorithms for extrapolat-

ing level set velocities, inverting the exponential map, computing geometric

medians and Karcher/Fréchet means of arbitrary distributions, constructing

centroidal Voronoi diagrams, and finding consistently ordered landmarks.

Rather than evaluate parallel transport by explicitly tracing geodesics, we

show that it can be computed via a short-time heat flow involving the con-
nection Laplacian. As a result, transport can be achieved by solving three

prefactored linear systems, each akin to a standard Poisson problem. More-

over, to implement the method we need only a discrete connection Laplacian,

which we describe for a variety of geometric data structures (point clouds,

polygon meshes, etc.). We also study the numerical behavior of our method,

showing empirically that it converges under refinement, and augment the

construction of intrinsic Delaunay triangulations (iDT) so that they can be

used in the context of tangent vector field processing.

CCS: •Mathematics of computing→ Discretization; Partial differen-
tial equations; • Computing methodologies → Shape analysis;

Additional Key Words and Phrases: discrete differential geometry, parallel

transport, velocity extrapolation, logarithmic map, exponential map, Karcher

mean, geometric median

ACM Reference Format:
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2018. The Vector Heat

Method. ACM Trans. Graph. XX, XX, Article 39 (May 2018), 18 pages. https:

//doi.org/0000001.0000001_2

1 INTRODUCTION
Given a vector at a point of a curved domain, how do we find the

most parallel vector at all other points? This quantity—not typically

considered in numerical algorithms—provides a surprisingly valu-

able starting point for a wide variety of tasks across geometric and

scientific computing, from extrapolating level set velocity to com-

puting centers of distributions. To compute this quantity, one idea

is to transport the vector along explicit paths between the source x
and all other points y, but even just constructing these paths can

already be quite expensive (Sec. 2). We instead leverage a little-used

relationship between parallel transport and the vector heat equation,
which describes the diffusion of a given vector field over a time t .
As t goes to zero, the diffused field is related to the original one via

parallel transport along shortest geodesics, i.e., shortest paths along
the curved domain (Sec. 3.4).

The same principle applies not only to point sources, but also

to vector fields over curves or other subsets of the domain. Since

diffusion equations are expressed in terms of standard Laplace-like
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Fig. 1. Given a vector at a point, the vector heat method computes the most
parallel vector at every other point. The method easily generalizes to other
data (such as a velocity field along a curve), providing a novel and efficient
way to implement fundamental algorithms across geometry and simulation.

operators, we effectively reduce parallel transport tasks to sparse lin-

ear systems that are extremely well-studied in scientific computing—

and can hence immediately benefit from mature, high-performance

solvers. Moreover, since discrete Laplacians are available for a wide

variety of shape representations (polygon meshes, point clouds, etc.),
and generalize to many kinds of vector data (symmetric direction

fields, differential forms, etc.), we can apply this same strategy to

numerous applications. In particular, this paper introduces

• a fast method for computing parallel transport from a given

source set (Sec. 4)

• an augmented intrinsic Delaunay algorithm for vector field

processing (Sec. 5.4)

• the first method for computing a logarithmic map over the

entire surface, rather than in a local patch (Sec. 8.2), and

• the first method for computing true Karcher/Fréchet means

and geometric medians on general surfaces (Sec. 8.3).

We also describe how to discretize the connection Laplacian on

several different geometric data structures and types of vector data

(Sec. 6), and consider a variety of other applications including

distance-preserving velocity extrapolation for level set methods,

computing geodesic centroidal Voronoi tessellations (GCVT), and

finding consistently ordered intrinsic landmarks (Sec. 8).
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2 RELATED WORK
Discrete Parallel Transport. Parallel transport has a long history

in the discrete setting. One of the earliest ideas, perhaps, is Schild’s
ladder which approximates parallel transport via short geodesic

segments; this technique has proven useful for parallel transport

in high-dimensional spaces representing image data [Lorenzi and

Pennec 2014], but is not directly related to parallel transport of

vectors on discrete surfaces. A more natural predecessor to the type

of parallel transport encountered in geometry processing is the

simplicial calculus of Regge [1961], largely used for problems in

general relativity [Gentle 2002]. On surfaces, this approach essen-

tially amounts to the notion of discrete connections studied by Crane
et al. [2010]. To discretize our method on triangle meshes, we will

instead consider vectors at vertices, building on ideas from Polthier

and Schmies [1998] and Knöppel et al. [2013]. Finally, Azencot et al.

[2015] explore a spectral approach to parallel transport, though here

the goal is different from ours: transporting one vector field along

another, rather than transporting vectors along shortest geodesics.

Fig. 2. Even just tracing all the
geodesics to a given source point (with-
out accounting for the cost of distance
computation) is already an order of
magnitude more expensive than ap-
plying the vector heat method—here,
15x slower.

Discrete Geodesics. A seem-

ingly natural solution to our

problem is to explicitly trans-

port vectors along geodesic

paths—in the case of trian-

gle meshes, one could unfold

the triangles along the path

and apply a simple transla-

tion in the plane (à la Polth-

ier and Schmies [1998]). How-

ever, finding these paths is

not straightforward: one can

either compute exact poly-

hedral geodesics via expen-

sive window-based methods

[Mitchell et al. 1987; Chen and

Han 1990] that demand sophis-

ticated acceleration schemes

[Surazhsky et al. 2005; Ying

et al. 2013; Qin et al. 2016]; or trace integral curves of a piece-

wise linear geodesic distance function [Kimmel and Sethian 1998;

Crane et al. 2013b], which may have very different behavior from

true geodesics [Tricoche et al. 2000]. Our approach is far simpler:

just build Laplace matrices and solve linear systems. It is also more

efficient: even if there were no cost associated with computing

geodesics, each shortest path on a discrete surface with O (n) ele-
ments has length O (

√
n), yielding an overall cost in O (n1.5). In our

method, the cost is dominated by solving sparse diffusion equations,

which has complexity approachingO (n) for both iterative and direct
methods [Spielman and Teng 2004; Gillman and Martinsson 2014];

prefactorization can be used to further reduce amortized cost across

many different source points or sets (Sec. 7.2). In practice we observe

that merely extracting paths from a given piecewise constant vector

field is more than an order of magnitude slower than executing our

entire algorithm (Fig. 2). Moreover, the diffusion-based approach

also provides an accurate and reliable solution (Sec. 7.3).

Relationship to Scalar HeatMethod. The original, scalar heatmethod

[Crane et al. 2013b] computes a related, but fundamentally different

quantity from the vector heat method: the former computes geo-

desic distance; the latter computes parallel transport along shortest

geodesics. Computationally, these methods share some basic fea-

tures: rather than directly solve a difficult nonlinear hyperbolic

problem (wavefront propagation from a source), they reformulate

computation in terms of much easier linear elliptic PDEs (local

averaging); all nonlinearity is captured by simple pointwise oper-

ations. However, the structure of the vector version is different:

unlike the scalar heat method, there is no dependence among linear

equations (Step I–Step III of Algorithm 1), making error behavior

easier to analyze, and providing additional opportunities for accel-

eration. Moreover, the vector heat method does not require discrete

divergence or gradient operators, making it easier to apply to data

structures like point clouds, or even (in principle) data on general

graphs [El Karoui and Wu 2013].

Connection Laplacians. On flat domains like the plane, vector

diffusion amounts to diffusion of individual scalar components. On

curved domains things are not so simple: there is typically no global

coordinate system, and one must therefore apply a diffusion process

that accounts for parallel transport, achieved via the connection
Laplacian (Sec. 3). Singer and Wu [2012] use a similar process to

obtain a vector diffusion distance, motivated by tasks in data analysis

and machine learning. Lin et al. [2014] likewise consider vector

diffusion in the learning context; we leverage a similar technique in

Algorithm 2, Step II, deriving initial conditions that substantially

improve accuracy. On triangle meshes, Knöppel et al. [2013, 2015]

consider two connection Laplacians: one based on finite elements,

and another in the spirit of discrete exterior calculus [Desbrun et al.

2006]; we build primarily on the latter. Algorithmically, fast solvers

for connection Laplacians are an active area of research [Kyng

et al. 2016]; applications built on top of the vector heat method

can immediately benefit from new developments in this area.

Applications. Though we postpone background on applications to
Sec. 8, it is worth mentioning that the parallel transport approach is,

to our knowledge, the first practical way to compute an accurate log-

arithmic map (sometimes referred to by its inverse, the exponential
map) over the entire domain rather than just a small patch. It also

appears to be the first method for computing true Karcher means

and geometric medians on arbitrary surfaces. Fig. 3 shows one

example, representative of methods that use local extrinsic approxi-

mations [Schmidt et al. 2006; Brun 2007; Melvær and Reimers 2012].

Such methods execute a Dijkstra-like traversal, quickly accumulat-

ing error over longer distances; we instead produce a solution that

is well-behaved globally. Computationally, traversal-based methods

necessitating dynamic branches and different memory accesses for

each source point. In contrast, heat methods execute a fixed and

hence highly predictable traversal of a minimal data structure (a

matrix factorization). As a result, the constants involved tend to be

smaller—in practice, for instance, our log map computation is faster

than even the basic method of Schmidt et al. [2006]. More broadly,

tasks that depend on global integration of information (such as

computing means or landmarks) will benefit from the robust global

nature of our algorithm.
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Fig. 3. Left: the log map assigns polar coordinates (r, φ ) to each point on a
surface, relative to an “origin” x . Our method is the first to resolve this map
globally rather than just near the origin—notice that in this example, most
points should have a very similar angle φ . Right: global accuracy enables
robust computation of other quantities, such as the Karcher mean of the
two red points. Here our algorithm rapidly converges (in just 5 iterations),
whereas a method that is only locally accurate will not converge at all.

3 PRELIMINARIES
The basic idea of our method is to approximate parallel transport via

short-time diffusion of vector-valued data. In the Euclidean setting,

one can simply diffuse individual scalar components via the ordinary

heat equation, but on curved domains this approach fails, since for

vectors in different tangent spaces equality of coordinates has no

geometric significance. We instead consider a particular vector heat

equation which, for a short time t , keeps vectors parallel. We first

provide some basic notation and definitions.

3.1 Notation
Throughout we consider a Riemannian manifold M with metric д.
We use d (x ,y) to denote the corresponding geodesic distance, i.e.,
the length of the shortest path between any two points x ,y ∈ M .

The cut locus of any subset Ω ⊆ M is the set of all points p ∈ M for

which there is not a unique closest point q ∈ Ω (Fig. 20, bottom). For

a vector field X onM , we use X |p to denote the vector at a point p.

We will use ı ∈ C to denote the imaginary unit, i.e., ı2 = −1. Finally,
we use δx to denote the Dirac delta centered at x ∈ M .

3.2 Heat Diffusion
The most basic diffusion equation is the scalar heat equation, which
describes how an initial heat distribution ϕ0 : M → R looks after

being diffused for a time t > 0:

d
dt ϕt = ∆ϕt . (1)

The operator ∆ is the (negative semidefinite) Laplace-Beltrami op-

erator onM ; in Euclidean Rn , ∆ is just the usual Laplacian.

Heat Kernel. When the initial heat distribution ϕ0 is just a spike
δx at a single point x , the solution to Eqn. 1 is referred to as the heat
kernel kt . The heat kernel is the fundamental solution, in the sense

that convolution of the initial data ϕ0 with kt yields the solution
to the heat equation at time t . When the domain is Euclidean (i.e.,
M = Rn ), this fundamental solution is just a Gaussian of constant

total mass, centered at a point x ∈ R2:

Gt (x ,y) :=
1

(4πt )n/2
e−d (x,y )

2/4t . (2)

Here n denotes the dimension of the domain (e.g., n = 2 for the

plane). More generally, the heat kernel can be expressed as

kt (x ,y) :=
e−d (x,y )

2/4t

(4πt )n/2
j (x ,y)−1/2 *

,
1 +

∞∑
i=1

t iΦi (x ,y)+
-
. (3)

For our purposes the definition of the functions j and Φi will not
be important, especially since we consider the limit as t → 0 (see

[Berline et al. 1992, Theorem 2.30] for further discussion). In practice,

we obtain a numerical approximation of kt by solving Eqn. 1 directly,
i.e., by placing a Dirac delta at a source point x and “smearing” it

out via heat diffusion.

3.3 Parallel Transport and Connections
Given a tangent vector X at a point p
of a curved surface M , which vector at

another point q should be considered

“parallel?” If we have a smooth curve

γ (s ) going from p to q, one reasonable
idea is that the angle between X and the

tangent T := d
ds γ should remain con-

stant; the vector we obtain at the end

of the path is called the parallel trans-
port of X along γ , which we will denote

by Pγ (X ). An important fact about par-

allel transport is that it is path depen-
dent, i.e., for two different curves γ1,γ2
from p to q, it is not necessarily true

that Pγ1 (X ) = Pγ2 (X ). A good example

is transporting a vector from the north

to the south pole of the Earth along two

different lines of longitude: at the south

pole, the angle between the resulting vectors will be related to the

difference in longitudes (see inset, top). However, as q gets closer

and closer top, only the outgoing direction of the path matters, since

very short segments of paths with the same tangent become indis-

tinguishable. We can therefore use parallel transport to define the

derivative of one vector field Y along another vector field Z . In par-

ticular, at any point p ∈ M the covariant derivative ∇ZY , describes
the change in Y as we travel an infinitesimally short distance along

any curve γ with tangent Z at p. More formally, letting p = γ (0)
and q = γ (s ), ∇ZY |p := lims→0 (Pq→p (Y |q ) − Y |p )/s , where Pq→p
denotes parallel transport from q back to p (see inset, bottom). The

operator ∇ is referred to as the Levi-Civita connection.
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3.4 Connection Laplacian
The connection Laplacian ∆∇ is a second derivative on vector fields

with many of the same basic properties as the ordinary Laplacian ∆:
it is negative semidefinite, self-adjoint, and elliptic. Just as the ordi-

nary Laplacian can be expressed as the trace of the Hessian, or as

the divergence of the gradient (∆f = tr(H ( f )) = div ◦ gradf ), the
connection Laplacian associated with a connection ∇ is given by the

trace of the second covariant derivative, or by the composition of

the covariant derivative with its adjoint (∆∇X = tr(∇2X ) = −∇∗∇X ).

Some intuition can be obtained by relating the connection Laplacian

to the vector heat equation
d
dt Xt = ∆∇Xt . (4)

Intuitively, the evolution of the vector field Xt over time will look

like a “smearing out” of an initial vector field X0 (Fig. 4). We can

make this statement more precise by considering the associated

heat kernel k∇t (x ,y), which describes how a vector at a single point

x will diffuse to all other points y over time t . For points y that are

not on the cut locus of x , we can express this kernel via the series

k∇t (x ,y) =
e−d (x,y )

2/4t

(4πt )n/2
j (x ,y)−1/2 *

,

∞∑
i=0

t iΨi (x ,y)+
-
, (5)

where the functions Φi from the scalar heat kernel have been re-

placed by maps Ψi taking vectors at x to vectors at y. Most impor-

tantly, the first function in this series is given by

Ψ0 (x ,y) = Pγx→y , (6)

where γx→y is the shortest curve from x to y, i.e., the shortest geo-
desic [Berline et al. 1992, Theorem 2.30]. In other words, as t → 0,

the vector heat kernel behaves like parallel transport along shortest

paths, along with a decay in magnitude that is identical to the decay

of the scalar heat kernel. Note that not all vector diffusion equations

yield the same behavior: for instance, a vector diffusion equation

formulated in terms of the Hodge Laplace operator (discussed in

Sec. 6.1.1) will exhibit different behavior with respect to parallel

transport. The discrete picture also provides some useful intuition

for the connection Laplacian—see Sec. 5.3.

Fig. 4. Similar to the scalar heat kernel kt (top), the vector heat kernel
k∇t (bottom) “smears out” vectors over time. In the flat Euclidean case one
can simply diffuse each scalar component independently, but on a curved
domain the connection Laplacian is needed to diffuse vectors from one
tangent space to another. (Figures not to scale.)

Fig. 5. Numerically, just taking the quotient of short-time solutions to the
vector and scalar heat equations yields a poor approximation of magni-
tude (left), which in this case should be piecewise constant. By separately
computing magnitudes (right), we obtain a more accurate solution.

4 SMOOTH FORMULATION
The relationship between the vector heat kernel and the parallel

transport map (Eqn. 6) is critical to our method, since it allows us

to compute parallel transport by solving diffusion problems—which

in turn amount to easy linear systems. For instance, to transport

a single unit vector to the rest of the surface, one could simply

compute the vector heat kernel for small time t , then normalize the

resulting vectors. In the general case, this strategy will not work:

consider three vectors of different magnitudes, or a vector field of

varying magnitude along a curve (Fig. 8). One way to account for

this varying magnitude is to observe that the scalar heat kernel kt
(Eqn. 3) and the vector heat kernel k∇t (Eqn. 5) have identical leading

coefficients. Therefore, as t → 0 the higher-order terms vanish and

we can recover the parallel transport map as a simple quotient:

lim

t→0

k∇t (x ,y)

kt (x ,y)
= Pγx→y .

More generally, suppose we diffuse a given vector fieldX0 supported

(i.e., nonzero) on a set Ω, and diffuse the corresponding scalar indica-
tor function ϕ0 = 1Ω (formally, a Hausdorff measure of appropriate

dimension). Since diffusion is equivalent to convolution with the

heat kernel, these quantities approach the same magnitude at each

point, i.e.,
lim

t→0

|Xt | − ϕt = 0.

Hence, the quotient Xt /ϕt should exactly factor out any decay in

magnitude, leaving only the result of parallel transport along short-

est geodesics. Numerically, however, the situation is not so simple:

even for fairly small values of t , diffused vectors pointing in different
directions will yield small cancellation errors, further reducing the

magnitude of the numerator Xt (Fig. 5, left). To get reliable numer-

ical results we will need to consider an alternative approach: use

scalar diffusion to obtain the magnitude of the transported vectors

(Sec. 4.1); use vector diffusion to obtain their direction (Sec. 4.2).

Together these operations define our basic algorithm (Algorithm 1),

though nothing restricts the method to two dimensional surfaces,

nor to the tangent bundle: everything we state in the smooth set-

ting immediately applies to any vector bundle over a Riemannian

manifold of any dimension, as we will discuss in Sec. 6.
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Fig. 6. A simple example of interpolation by diffusion: a Gaussian weighted
combination of values at two points p1, p2, yields a closest point inter-
polation ut as the Gaussian width t goes to zero. Here ut is the linear
combination prior to normalization.

4.1 Scalar Interpolation
Suppose we have a pair of source points p1,p2 ∈ R

2
, with associated

values u1,u2 ∈ R. How can we find a function u over the rest of

the plane whose value at each point is equal to the value at the

closest source pi ? For this particular example the answer is obvious

(just find the line separating p1 and p2), but we can obtain it in an

interesting way that will naturally generalize. Suppose we use the

Gaussian kernel (Eqn. 2) to define a weighted average

ut =
u1Gt,p1 + u2Gt,p2
Gt,p1 +Gt,p2

.

As t goes to zero, this weighted average provides a closest point

interpolation (Fig. 6, bottom), since for points closer to p1 than p2,
the numerator ut := u1Gp1,t + u2Gp2,t is dominated by the first

term, and vice versa (Fig. 6, top).
This basic idea is easily generalized to curved domains: interpo-

lation is again achieved by dividing a weighted sum by the sum of

weights, except that we replace the Gaussian kernel Gt with the

scalar heat kernel kt (Eqn. 3). In particular, given a collection of

sources p1, . . . ,pn ∈ M and associated values u1, . . . ,un ∈ R, we
solve two independent heat equations for functions u and ϕ, using
initial conditions

u0 =
∑n
i=1 uiδpi ,

ϕ0 =
∑n
i=1 δpi .

The interpolant is then simply the limit as t goes to zero of the

normalized function

u (t ) :=
u (t )

ϕ (t )
.

The intuition is the same as in the planar case: for points closest

to pi , the weighted sum will be dominated by the ui term. Points

exactly on the cut locus will approach an average of values; though a

precise analysis of this behavior becomes more difficult [Grigor’yan

2009], in practice these values are well-behaved.

More generally, the source set can be any subset Ω ⊂ M—on a

surface, for instance, Ω can be a collection of points, curves, and

regions (see for instance Fig. 7). In this case, the initial conditions

are essentially a Dirac-type measure concentrated on Ω (or more

formally, a sum of Hausdorff measures of appropriate dimension);

in the discrete setting we can integrate basis functions with respect

to this measure to obtain initial conditions (App. A).

ALGORITHM 1: Vector Heat Method

Input: A vector field X supported on a subset Ω ⊂ M of the domain M .

Output: A vector field X on all of M .

I. Integrate the vector heat flow
d
dt Yt = ∆∇Yt for time t , with Y0 = X .

II. Integrate the scalar heat flow
d
dt ut = ∆ut for time t , with u0 = |X |.

III. Integrate the scalar heat flow
d
dt ϕt = ∆ϕt for time t , with ϕ0 = 1Ω .

IV. Evaluate the vector field X t = utYt /ϕt |Yt |.

4.2 Vector Heat Method
We can now define our main algorithm, the vector heat method.
The basic idea is to first diffuse a given vector field via the vector

heat equation (Eqn. 4). For small time t , the resulting vectors will
have essentially the right direction, but the wrong magnitude. To

obtain the right magnitude, we interpolate the magnitudes of the

source vectors (exactly as described in Sec. 4.1), and multiply these

magnitudes by the normalized vectors—this whole process is sum-

marized in Algorithm 1. The result is a vector field where the vector

at each point q closely approximates the parallel vector at the closest

point p. More precisely, for any given vector field X supported on a

subset Ω ⊂ M of the domain M , we obtain a vector field X t such

that at each point q ∈ M not in the cut locus of Ω,

lim

t→0

X t |q = Pγp→qX |p ,

where p is the point of Ω closest to q, and γp→q is the shortest

geodesic from p to q. For points on the cut locus, X t will essentially

approach an average of all closest vectors (see for instance Ludewig

[2016]). In practice we cannot evaluate the limit field but must pick

some fixed time t . Smaller values of t should in principle yield

greater accuracy, though numerically the smallest useful value is

related to spatial resolution—see Sec. 7.3 for further discussion.

In more detail, let X be a source vector field onM , supported on

a set Ω ⊂ M . We first solve the vector diffusion equation

d
dt Yt = ∆∇Yt with Y0 = X ,

to obtain a diffused vector fieldYt . For a small time t > 0, each vector

Yt |q will closely match the direction of the closest source vectorX0 |p ,

but will have the wrong magnitude, i.e., |Yt |q , |X0 |p . To get the

right magnitude, we solve the two scalar diffusion equations

d
dt ut = ∆ut with u0 = |X |, and

d
dt ϕt = ∆ϕt with ϕ0 = 1Ω .

The quotient ut := ut /ϕt then gives the magnitude of the vector at

the closest point, and the final vector field is hence just

X t = utYt /|Yt |.

At a high level this story parallels the scalar heat method, where

one cannot simply apply Varadhan’s formula, but must instead

normalize the gradient to obtain the correct magnitude. Likewise,

in the vector heat method we cannot simply divide by the scalar

solution, but must carefully interpolate magnitudes. Both strategies

improve numerical robustness: even if there are small errors in

direction, the magnitudes are essentially perfect (Fig. 5, right). We

next consider how to discretize this procedure; further questions

about numerical behavior are examined in Sec. 7.
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Fig. 7. Interpolation of scalar values at points (left) and curves (right). Fig. 8. Parallel transport of vectors from points (left) and curves (right).

5 DISCRETE FORMULATION
Fundamentally, the vector heat method is an algorithm formulated

in the smooth setting—so far we have not assumed that we work

with any particular discretization (such as point clouds or polygon

meshes). In this section we discretize the method on triangle meshes;

other possibilities are explored in Sec. 6.2.

5.1 Discrete Surface
Topology. Throughout we consider a manifold triangle mesh

K = (V ,E, F ), with or without boundary. In principle our method

applies to nonorientable domains, but to simplify exposition (and

implementation) it will be easier to assume that K is oriented. We

use tuples of vertex indices to specify simplices—for instance, ijk is

a triangle with vertices i, j,k ∈ V . Indices appearing on both sides of

an equation are held fixed in sums, for instance, ai j =
∑
i jk ∈F bi jk

denotes a sum over only those triangles ijk ∈ F containing edge ij.

Geometry. The only geometric information we need to formulate

our algorithm are positive edge lengths ℓ : E → R>0 satisfying

the triangle inequality in each face; from this data one can easily

determine the area Ai jk of each triangle, and the interior angle θ
jk
i

at each corner i of each triangle ijk (via Heron’s formula and the law

of cosines, resp.). For problems involving tangent vector fields, this

purely intrinsic point of view has some attractive consequences—in

particular, it enables us to talk about tangent vector fields on an

intrinsic Delaunay triangulation (Sec. 5.4), which in practice can

significantly improve accuracy and reliability (Fig. 10).

5.2 Intrinsic Tangent Spaces
At each vertex i ∈ V , we encode
tangent vectors Xi in local polar

coordinates (ri ,φi ), à la Knöppel

et al. [2013]. Conceptually, one can

imagine isometrically mapping a

small neighborhood of the vertex

onto a circular cone whose base

has a radius r = 1 (see inset); the

direction of any tangent vector can then be expressed as an angleφ ∈
[0, 2π ), equal to the arc length along the cone boundary. Concretely,

we pick a canonical reference edge ij0 to represent the direction

φ = 0; all other directions are expressed as a counter-clockwise

rotation relative to this edge. In particular, letting

Θi :=
∑

i jk ∈F

θ
jk
i

be the total interior angle at vertex i , we define normalized angles

˜θ
jk
i := 2πθ

jk
i /Θi , (7)

which sum to 2π . The direction of the outgoing edges ij0, ij1, . . . (in
counter-clockwise order) are then given by the cumulative sums

φi ja :=

a−1∑
p=0

˜θ
jp, jp+1
i . (8)

A tangent vector Xi at any vertex i is specified by an angle φi and
magnitude ri in this coordinate system. In practice, we will encode

this data as a complex number rie
ıφi ∈ C.

Discrete Parallel Transport. For any edge

ij ∈ E, the angles φi j and π + φ ji encode
the edge direction relative to the coordinate

systems at vertices i and j, resp. To keep a

vector parallel as we go from i to j , we must

therefore rotate by the angle

ρi j := (φ ji + π ) − φi j .

We encode the corresponding rotations as

unit complex numbers

ri j := eıρi j , (9)

which will help to construct our discrete connection Laplacian.

5.3 Discrete Laplace Operators
For triangle meshes, the Laplace-Beltrami operator ∆ can be dis-

cretized as a weighted graph Laplacian L ∈ R |V |× |V | , given by

(Lϕ)i = 1

2

∑
i j ∈E

(cotθ
i j
k + cotθ

ji
l )︸                ︷︷                ︸

=:wi j

(ϕ j − ϕi )

at each vertex i ∈ V , where k, l denote the vertices
opposite edge ij; the cotan weights wi j simply ac-

count for the shape of the triangles (see Crane et al.

[2013a, Chapter 6]). For brevity, let a := cotθ
jk
i ,

b := cotθkij and c := cotθ
i j
k be the cotangents of

the angles at the corners of a given triangle ijk ∈ F .
One way to build L is to accumulate, for each triangle ijk ∈ F , the
local 3 × 3 Laplace matrix



b + c −c −b
−c c + a −a
−b −a a + b


into the corresponding entries of L.
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The connection Laplacian ∆∇ is given by a nearly identical complex
matrix L∇ ∈ C |V |× |V | ; the only change is that the off-diagonal entries
are multiplied by the edge rotations ri j :



b + c −cri j −brik
−cr ji c + a −ar jk
−brki −ark j a + b


.

This matrix is Hermitian since ri j and r ji are unit complex numbers

encoding equal and opposite rotations; hence, r ji = r
−1
i j = r i j . This

matrix naturally arises as the Hessian of the vector Dirichlet en-

ergy

∑
i j ∈E wi j |X j − ri jXi |

2
, which quantifies the “straightness” of

a given vector field X (see Knöppel et al. [2015, Section 3.2]). Both

L and L∇ effectively encode zero Neumann boundary conditions;

zero Dirichlet conditions will yield similar results (see discussion in

Crane et al. [2013b, Section 3.4]). We also have a diagonal |V | × |V |
lumped mass matrix with entries

Mii =
1

3

∑
i jk

Ai jk .

This matrix is either real or complex depending on whether we are

building the scalar or vector heat equation (resp.). In particular, we

apply a one-step backward Euler approximation to our short-time

heat equations (Steps I–III of Algorithm 1) to obtain

(M + tL∇)Y = Y0,
(M + tL)u = u0,
(M + tL)ϕ = ϕ0.

Here the vectors Y0 ∈ C |V | , u0,ϕ0 ∈ R |V | describe the source data.
For instance, if the source is a collection of points i1, . . . , ik ∈ V
with associated vectors Xi1 , . . . ,Xik , then

Y0 =
∑k
i=1 Xkδk ,

u0 =
∑k
i=1 |Xk |δk ,

ϕ0 =
∑k
i=1 δk ,

where δk is the Kronecker delta at vertex k . The final result is

obtained by evaluating uiYi/ϕi |Y|i at each vertex i ∈ V (Step IV).

Fig. 9. Left: the intrinsic Delaunay algorithm performs edge flips to obtain
a mesh where edge angle sums are no greater than π . Right: we augment
this algorithm to update the local tangent spaces on each flip.

5.4 Tangent Intrinsic Delaunay
Although this discretization already works quite

well, we can improve robustness and accuracy by

building the matrices L, L∇, andM with respect to

the intrinsic Delaunay triangulation of the given

mesh [Bobenko and Springborn 2007]. The basic

idea is to construct a different triangulation of the

same piecewise Euclidean surface (i.e., without changing the geom-

etry) which leads to better numerical behavior for operators like

the Laplacian. Conceptually, edges may cross multiple faces of the

original mesh (see inset), but in practice we need only keep track

of the usual connectivity information: which edges are connected

to which vertices? Since the vertex set is preserved, any solution

computed on the Delaunay mesh can be directly copied back to the

vertices of the original mesh. However, we will need to augment

this construction to keep track of tangent-valued data.

Let k, l denote the vertices opposite a given edge ij. The basic
intrinsic Delaunay algorithm iteratively flips any edge ij where the
angle sum θ

i j
k + θ

ji
l is greater than π , or equivalently, where the

cotan weightwi j is negative. After a flip, edge kl is assigned a new

length ℓkl , equal to the distance between k and l along the previous
triangles ijk and jil . This length can be computed via the law of

cosines—see Bobenko and Springborn [2007] for further details. We

make a small but important modification to this algorithm: after each

flip, we also compute the angles φ encoding the outgoing direction

of the flipped edge kl relative to its endpoints. In particular, we set

φlk ← φl j + θ
jk
l /Θi ,

φkl ← φki + θ
il
k /Θi .

In other words we add the (normalized) angle between the preced-

ing edge and the new edge to the angle of the preceding edge; here

the angles θ
jk
l ,θ

il
k can be computed from the updated lengths. This

way, we preserve the local polar coordinate systems throughout the

flipping process, and therefore know how to map tangent data com-

puted on the intrinsic Delaunay triangulation back to the original

mesh: simply copy the polar coordinates (ri ,φi ).
This procedure is useful not only for our algorithm, but any

algorithm that seeks to improve the quality and reliability of tangent

vector field processing without altering the geometry of the input

mesh. For instance, the discrete connection Laplacian L∇ may be

indefinite since (unlike the cotan Laplacian L) it cannot simply be

interpreted as the restriction of the smooth connection Laplacian ∆∇

to the subspace of piecewise linear functions. The intrinsic Delaunay

condition ensures that L∇ is semidefinite, since the intrinsic cotan

weightswi j are guaranteed to be nonnegative. It also ensures that

no vector Xi can be “flipped,” in the sense that it will always be a

positive linear combination of the neighbors r jiX j (and hence in

their convex cone). In practice the intrinsic Delaunay condition is

not strictly necessary to obtain high-quality results, but helps to

guarantee that problems will not occur, even on pathological inputs

(Fig. 10). Formally understanding further properties of the intrinsic

connection Laplacian and associated objects (e.g., special intrinsic
vector fields) is an enticing question for future work.
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Fig. 10. We often obtain high-quality results even on non-Delaunay meshes
(top). Occasionally, however, transported fields can have improperly oriented
vectors (inset), here causing errors in the log map (bottom center). By keeping
track of tangent spaces during intrinsic Delaunay flips, we obtain a high-
quality solution (bottom right) without having to change the input geometry.

6 GENERALIZATIONS
In the smooth setting, the vector heat method easily generalizes to

other domains and other kinds of vector-valued data (Sec. 6.1); in

the discrete setting, the method can easily be implemented on many

data structures beyond triangle meshes (Sec. 6.2).

6.1 Other Vector Bundles
As stated, the algorithm described in Sec. 4 already applies to any

vector bundle. Loosely speaking, a vector bundle is a manifold M
with a copy of the same vector space V at each point. A choice

of vector at each point of M is called a section of the bundle—for

instance, a tangent vector field X is a section of the tangent bundle

TM . As hinted at in Sec. 3.3, the connection ∇ defines what it means

for nearby vectors to be parallel. In general we may want to change

the domain (i.e., the choice of manifoldM), the type of vector data

(i.e., the choice of vector space V ), or the notion of what it means

for vectors to be parallel (i.e., the choice of connection ∇). These
choices ultimately determine the operators ∆ and ∆∇, which is all

we need to formulate Algorithm 1. An elementary example is the

trivial real line bundle, where the vector space is just V = R, i.e.,
sections are just real-valued functions, and parallel transport simply

copies values from one point to another. In this case the vector

heat method reduces to the scalar interpolation scheme described

in Sec. 4.1—some more interesting examples are given below.

6.1.1 Differential 1-Forms. One vector bundle common in ap-

plications is the cotangent bundle T ∗M , whose sections are called

differential 1-forms. In this context, it is often easiest to discretize

the Hodge Laplacian ∆1
:= dδ + δd . To obtain a corresponding

connection Laplacian ∆∇1, we will employ the Weitzenböck identity,
which for a smooth surfaceM with Gaussian curvature K says that

∆∇1α = ∆1α +
1

2
Kα

for any 1-form α . We can therefore obtain a discrete connection

Laplacian by adding a matrix representing the curvature term to an

existing discretization of the Hodge Laplacian. In particular, let

Ωi jk := π − ( ˜θ
jk
i +

˜θkij +
˜θ
i j
k )

be the total Gaussian curvature of triangle ijk (see Sharp and Crane

[2018, Section 5.2]). Similarly, let

Ωi j :=
1

3
(Ωi jk + Ωjil )

be the total curvature in the barycentric diamond around an edge ij
with opposite vertices k, l ∈ V , which has area

Ai j :=
1

3
(Ai jk +Ajil ).

One discrete Hodge Laplacian

is provided by discrete exterior cal-
culus [Desbrun et al. 2006], de-

fined in terms of simplicial bound-

ary/coboundary operators, in con-

junction with diagonal mass ma-

trices ⋆k for differential k-forms.

One can likewise add a diago-

nal matrix with entries Ωi j/Ai j
to approximate the connection

Laplacian—unfortunately, this sim-

ple approach does not yield the cor-

rect result (inset, top); seemingly,

the highly local region of support is not sufficient to capture trans-

port. We instead take a cue from Mohamed et al. [2016], and replace

⋆1 with an approximate Galerkin mass matrix ⋆B
1
obtained via one

point barycentric quadrature. For any two edges ij and jk contained

in a common face ijk ∈ F , this matrix has a nonzero entry

(⋆B
1
)i j, jk :=

|e∗i j |

|ejk |

cos (ξ )

cos (ζ )
,

where ξ is the angle between the barycentric dual edges e∗i j and e
∗
jk

(i.e., the vectors from the edge midpoints to the face barycenter),

and ζ is the angle between the normal n of edge jk and the dual

edge e∗jk (see inset figure). To discretize the term
1

2
K we then build

a matrix K ∈ R |E |× |E | with diagonal entries

Ki j,i j =
Ωi j
2Ai j (⋆

B
1
)i j,i j

for each edge ij ∈ E, and off-diagonal entries

Ki j, jk =
Ωi jk
2Ai jk

(⋆B
1
)i j, jk

for all pairs of edges ij, jk ∈ E that share a triangle. When used in

Algorithm 1, this discretization appears to yield the correct solution—

for instance, the solution on the sphere above closely matches the

analytical solution (compare with Fig. 17, bottom).
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6.1.2 Symmetric Direction Fields.
Another important example of

vector-valued data in computer

graphics and geometry processing

are symmetric direction fields such
as line fields, cross fields, etc. [Vax-
man et al. 2016], which play a key

role in applications like surface

shading [Knöppel et al. 2015] and

quadrilateral remeshing [Bommes et al. 2013]. Formally, such fields

are sections of the kth tensor power TM⊗k of the tangent bundle,

where k determines the degree of symmetry. In this setting, one can

build the connection Laplacian exactly as described in Knöppel et al.

[2013]—in particular, all one has to do is raise the coefficients ri j
from Eqn. 9 to the kth power, and apply Algorithm 1 as usual. The

final vectors are given by the kth complex roots at each vertex, as

described in Knöppel et al. [2013, Sec. 2]. An example is shown in

the inset figure.

6.1.3 Different Connection. Another
possibility is to change the connection

∇ itself. In this case, Algorithm 1 will

compute parallel transport along ordi-

nary geodesics, but the notion of what

it means to parallel will change. For in-

stance, setting ri j = 1+0ı for all edges
ij simply yields closest point interpo-

lation of complex functions. A more

interesting connection is considered

by Knöppel et al. [2015], who compute

a global parameterization aligned to

a given vector field Z . Here the Levi-
Civita connection ∇ is replaced by the

connection
˜∇ = d − ıZ ♭

; in practice

this just means that the rotations ri j
are larger for edges that align with Z
(see Knöppel et al. [2015, Section 3.2]).

Using the corresponding connection

Laplacian ∆∇̃ in Algorithm 1 will yield a local field aligned param-

eterization centered around a given point x , since for any curve γ
starting at x the augmented parallel transport map is given by

P̃γ = e
ı
∫
γ ⟨Z ,γ

′⟩ ds
,

i.e., a rotation determined by how much the tangent of γ lines up

withZ . Hence, the angle of the transported fieldη(y) := arg(P̃γx→y 1)
will be a scalar function increasing along Z (see inset). The gradient

of η therefore be closely aligned with Z near the source point x ; any
non-integrability is effectively dealt with by pushing it out toward

the cut locus (dashed line), rather than inserting new singularities

(as in Knöppel et al. [2015]) or globally projecting onto a more

integrable field (as in Ray et al. [2006]).

6.2 Other Discretizations
There is no fundamental reason why we must use triangle meshes

to discretize the vector heat method: any geometric representation

that admits a discretization of the scalar Laplace-Beltrami opera-

tor ∆ and the connection Laplacian ∆∇ will suffice. Discrete Lapla-

cians have been developed for a wide variety of domains, including

point clouds [Liu et al. 2012], polygon meshes [Alexa and Wardet-

zky 2011], subdivision surfaces [de Goes et al. 2016], tetrahedral

meshes [Belyaev and Fayolle 2015], spline surfaces [Nguyen et al.

2016], and digital surfaces, i.e., voxelizations [Caissard et al. 2017],

all of which have been used to implement the scalar heat method

(see either the preceding references, or Crane et al. [2013b]).

Given a scalar Laplacian, a connection Laplacian can be obtained

by following the same strategy used for triangle meshes (Sec. 5.3):

for any pair of nearby nodes i and j (representing vertices, points,
etc.), determine the transformation between tangent spaces. For a

surface embedded in Rn , this transformation is just the smallest

rotation between tangent planes, and can be encoded by a unit

complex number ri j . Then simply multiply the off-diagonal entries

Li j by the values ri j to obtain the connection Laplacian L∇. If L
was symmetric, Li j will be Hermitian (assuming r ji = r

−1
i j (and will

hence exhibit the properties discussed in Sec. 7.1). We consider three

specific cases in detail.

6.2.1 Polygon Meshes. For surface meshes comprised of general,

possibly non-planar polygons, we augment the discrete Laplacian

of Alexa and Wardetzky [2011] (and use the same mass matrix M).

In this setting we need a transport coefficient for all pairs of vertices

i , j contained in a each polygon—not just those connected by an

edge. We therefore define extrinsic tangent planes, by picking any

reasonable normal direction Ni at each vertex i ∈ V , and any direc-

tion Ei orthogonal to Ni that serves as the zero direction. Letting

Ri j ∈ SO(n) denotes the smallest rotation taking plane i to plane

j, the rotations ri j are then determined by the angle from Ri jEi
to Ej in plane j. These values are used to modify the off-diagonal

entries as described above. Fig. 11, center right shows an example on

a quad-dominant mesh containing non-planar quads and pentagons,

of the type commonly used in numerical simulation.

6.2.2 Point Clouds. As in Crane et al. [2013b, Section 3.2.3],

we use the symmetric point cloud Laplacian of Liu et al. [2012]

to implement our algorithm on unstructured point cloud data. In

this setting we must already estimate tangent planes at each point

in order to build the scalar Laplacian; the transport coefficients

can therefore be computed exactly as in the polygonal case: pick

a direction Ei at each tangent plane and compute the rotations ri j
from Ri jEi to Ej . As in the scalar case, the mass matrixM is given

by the Voronoi areas associated with points. An example is shown

in Fig. 11, center left.

6.2.3 Voxelizations. Finally, for a voxelized or digital surface a
discrete Laplacian was recently developed by Caissard et al. [2017].

Here, values are associated with faces (i.e., quads) on the voxelization
boundary; the basic principle is the same as in the point cloud

case, but normals and areas are carefully estimated based on the

voxelization geometry. (If the voxelization arises from an Eulerian

signed distance function, these normals might also be used.) An

example is shown in Fig. 11, far right.
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Fig. 11. To implement our method on a given geometric data structure, we essentially just need a scalar Laplacian and a notion of tangent spaces at each
point or vertex. Here we show the solution for three sources of different magnitudes on a triangle mesh, point cloud, polygon mesh, and voxelization.

7 DISCUSSION AND VALIDATION
Here we study numerical properties of our method, and compare

with other candidate approaches. Importantly, the main task we

consider (parallel transport along shortest geodesics to a given set)

is not one previously considered in geometry processing, and hence

there are no standard algorithms. The closest analogy, perhaps, is

a recent numerical integrator for closed-form Riemannian metrics

rather than discrete meshes [Louis et al. 2017]. For surfaces of revo-

lution we use the exact solution (computed via Clairaut’s relation)

as a basis for comparison; for more complicated models we com-

pute exact polyhedral geodesics (à la Surazhsky et al. [2005]), and

apply parallel transport via unfolding, as described by Polthier and

Schmies [1998]. Note that even the polyhedral approach does not

yield the true (smooth) solution on coarse meshes or near the cut

locus; on fine meshes and away from the cut locus it nonetheless

provides a useful benchmark for comparison. Overall we find that

the vector heat method provides an excellent performance/quality

trade off, making it well-suited for practical geometry processing

tasks; application-specific comparisons are explored in Sec. 8.

7.1 Basic Properties
Which properties of smooth parallel transport are preserved by our

discrete algorithm? For a single point source, one can easily argue

that we exactly preserve elementary properties such as linearity

(Pγ (aX + Y ) = aPγX + PγY ), conservation of magnitude (|PγX | =
|X |), and covariance with respect to rotation, i.e., rotating the initial
vector is equivalent to rotating the final solution by the same angle.

A more interesting property is symmetry: in the smooth setting,

Pγy→x ◦ Pγx→y = id, i.e., transporting from x to y and back again

should yield the original vector. This property turns out to be true

in the discrete case as well: since the matrix L∇ ∈ C |V |× |V | encoding
the connection Laplacian is Hermitian, the solution operator

A := (M + tL∇)−1

is also Hermitian. Letting δi denote a Kronecker delta at the source
vertex i ∈ V , we can write the parallel vector field corresponding to

the vector b := zδi (for z ∈ C) as X = Ab. The transported vector at

any vertex j ∈ V can be written as Xj = (δTj X)δj ; when we transport
this vector back to i , we therefore get

δTi (AXj ) = δTi Aδj (δ
T
j X) = z (δTi Aδj ) (δ

T
j Aδi ) = zAi jAji .

Since A is Hermitian, Ai j = Aji , hence Ai jAji is real, i.e., the initial
vector z experiences a scaling and no rotation. But since the overall

process preserves scale, the final vector is the same as the initial

one. Further properties of parallel transport (such as equivalence

between curvature and monodromy around closed loops) may not

hold exactly; likewise, these properties may not hold exactly in the

case of multiple sources or curves, since for t > 0 vectors pointing

in different directions may result in cancellation of magnitude. In

general, we expect that many properties will at least be preserved

under refinement—see Sec. 7.3 for further discussion.

7.2 Implementation and Performance
We implemented our method in C++ using double precision; all tim-

ings were taken on a single thread of an Intel Core i7 3.5GHz CPU. To

solve linear systems we prefactored matrices via CHOLMOD [Chen

et al. 2008] and applied backsubstitution for each subsequent prob-

lem. For the basic algorithm (Algorithm 1) we need to pre-factor

two |V | × |V | Laplace matrices (one real, one complex); for each new

source set we need only three backsolves, and trivial per-vertex mul-

tiplication/division operations. The (optional) intrinsic Delaunay

mesh can be constructed as a preprocess; in practice we find the cost

is about the same as one matrix factorization. On a mesh of 100k

triangles, preprocessing takes about 1 second overall; computing

parallel transport from any subsequent source to all points on the

surface then takes about 30ms. We did not carefully optimize our

code, though further accelerations are relatively straightforward:

for instance, since both matrices have the same sparsity pattern one

could re-use the symbolic factorization; moreover, since there is

no dependence among the linear systems, backsubstitution could

be applied in parallel. (See also discussion of fast preconditioners

in Sec. 2.) In contrast, computing exact polyhedral geodesics and
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Fig. 12. Results of the vector heat method on a variety of models; source is marked by a large arrow. For visualization, vectors are sampled à la Bridson [2007].

Model Triangles Precompute Solve

Chair 11k 0.06 s 0.002 s

Bust 100k 0.73 s 0.031 s

Children 100k 0.74 s 0.027 s

Seahorse 145k 1.25 s 0.047 s

Snake 293k 2.74 s 0.101 s

Rhino 310k 4.02 s 0.105 s

Fig. 13. Timings for Figure 12, including intrinsic Delaunay preprocessing.

applying parallel transport via unfolding takes about 40x longer

on the same mesh (using Kirsanov’s implementation of [Surazhsky

et al. 2005]). One could significantly improve performance of the

polyhedral strategy via any number of recent acceleration schemes

(such as [Ying et al. 2013]), or, at the cost of accuracy, by extracting

geodesics from a cheaper piecewise linear distance function. How-

ever, even just tracing the geodesics from the source point to each

vertex (whether using the polyhedral scheme or fast marching) al-

ready takes about 10–20x longer than executing our entire method;

in general, it would seem quite difficult to develop a polyhedral

strategy that is competitive with the diffusion-based approach.

Fig. 14. The vector heat method appears to converge linearly. Left: On
progressively finer meshes (red, orange, yellow, green, blue), we transport a
vector from a source x to several other points and measure the error relative
to the true solution on the smooth surface. Right: visualization of vectors
transported via the vector heat method; black is reference solution.

7.3 Convergence and Accuracy
The accuracy of anymethod for computing parallel transport will de-

pend on the resolution and quality of the surface tessellation. For the

vector heat method, we find that using an intrinsic Delaunay triangu-

lation improves quality, and hence apply this technique throughout

our examples. Exact polyhedral schemes also re-tessellate the in-

put by slicing it up into polygonal “windows” relative to the given

source. This point of view helps to explain the relative trade offs

of the two approaches: the vector heat method re-tessellates the

domain at most once (as an optional pre-process), whereas poly-

hedral schemes must re-tessellate for each new source point. The

vector heat method hence has far better amortized performance,

whereas window-based schemes can provide greater accuracy since

the domain is effectively meshed along characteristics of the equa-

tion being solved (i.e., along geodesics). Empirically, we observe a

convergence rate of roughly O (h) and O (h2) for the two methods,

resp., relative to the mean edge length h (Fig. 14). Fields computed

via these twomethods mainly differ near the cut locus, where neither
approach can guarantee accurate results—in fact, it is well-known

that the exact polyhedral cut locus is a poor approximation of the

smooth one [Itoh and Sinclair 2004]. On the whole, accuracy and

rates of convergence are in line with the scalar heat method—for a

more in-depth analysis, see Crane et al. [2013b, Section 4.2].

20°

0°
polyhedral
vector heat method

Fig. 15. Our algorithm yields very similar results to the brute-force approach
of explicitly unfolding triangles along exact polyhedral geodesics. Away from
the cut locus, the difference is typically just a few degrees (left, right).
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Fig. 16. Our method enables fast velocity extension for level set methods. Here we show a sequence of frames a simple curve-shortening flow, plus a constant
tangential term. In each frame, our scalar interpolation scheme provides a closest-point interpolation of normal velocity (top left), resulting in excellent
preservation of the signed distance function over long integration times (bottom left); note that we never apply explicit redistancing. Since Algorithm 1 provides
accurate extrapolation of vector data over the entire domain (top right), we can track particles even very far from the interface (bottom right).

Choice of t . The accuracy of the vector heat method will be af-

fected by the choice of the parameter t . Here we observe the exact
same behavior as for the scalar heat method: if h is the average

spacing between nodes (e.g., the mean edge length in a triangle

mesh) then setting

t = h2

tends to yield the best accuracy—we use this value throughout all of

our examples. This observation is not surprising given that the two

methods compute heat kernels via an identical numerical strategy;

see [Crane et al. 2013b, Section 3.2.4 and Appendix A] for a more

in-depth discussion.

8 APPLICATIONS
Fast parallel transport along shortest paths provides a basic foun-

dation on top of which many algorithms can easily be built—here

we consider several important examples from geometry processing

and simulation. Implementation of these algorithms via the vec-

tor heat method is often much simpler than existing alternatives:

mainly just setting up and solving linear systems. In each case one

enjoys a common set of benefits, such as low amortized cost (due

to prefactorization) and the ability to generalize to many different

geometric data structures (point clouds, polygon meshes, etc.). To
keep discussion concrete, we will describe algorithms primarily in

terms of triangulated surfaces.

8.1 Velocity Extrapolation
Perhaps the most straightforward application of our method is

extrapolation of scalar or vector velocity in the context of free

boundary problems; beyond physical simulation, such methods are

increasingly used for tasks ranging from shape optimization to se-

mantic shape analysis. If a signed distance function needs to be

updated, one can simply extrapolate the scalar velocity in the nor-

mal direction, using the approach described in Sec. 4.1. To advect

auxiliary quantities (color, temperature, particles, etc.), one also

needs to extrapolate the tangential velocity, which can be done

using Algorithm 1. Fig. 16 illustrates several features of our extrap-

olation strategy: for instance, since we solve a global problem we

get a well-behaved velocity field far from the interface; in fact, the

closest point property ensures that a signed distance function will

be nearly preserved even over long integration times. Note that due

to the use of a finite value t , data directly on the interface may not

be exactly preserved, but will generally be very close. In the scalar

case, the performance comparison with fast marching is identical to

the comparison found in [Crane et al. 2013b, Section 4.1]: the cost

of our method is dominated by two backsolves, whereas fast march-

ing executes a Dijkstra-like traversal. Note that one does not need
to refactor matrices for a changing boundary. In the vector case,

there is not a clear comparison: vector extrapolation is well-studied

for Euclidean domains (e.g., [Adalsteinsson and Sethian 1999]), but

these methods do not immediately generalize to curved surfaces

due to the added complexity of parallel transport (especially on data

structures like point clouds).

8.2 Logarithmic Map
At any point x of a closed surfaceM , the exponential map expx (rv )
yields the point y ∈ M obtained by walking in the unit tangent

direction v and continuing along a geodesic for a distance r . The
logarithmic map logx is the inverse operation: given any point y
(away from the cut locus), it finds the smallest distance r and cor-
responding unit vector v such that expx (rv ) = y, in analogy with

the ordinary logarithm and exponential. If we encode v as an an-

gle φ, then we essentially have polar coordinates (r ,φ) relative to
an origin x . As observed by Schmidt et al. [2006], the logarithmic

map (referred to there as the exponential map) is useful for a large

number of tasks in geometry processing, such as interactive shape

Fig. 17. Left: the logarithmic map provides a coordinate system on the sur-
face, relative to a chosen origin x . Right: on the sphere we easily compute
the correct log map; notice that far from the source even the analytical log
map can be highly skewed.
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editing [Schmidt and Singh 2010] and texture decaling (Fig. 18). A

global logarithmic map also helps translate algorithms from Eu-

clidean space to curved domains—for instance, in Sec. 8.3 the log

map enables us to easily compute generalized centers of mass, by

identifying points on the surface with vectors in the tangent plane.

How can we compute the log map on a sur-

face? For polar coordinates (r ,φ) in the Eu-

clidean plane, φ can be expressed as the angle

between a horizontal direction H and a radial

vector field R emanating from the origin. Like-

wise, on a curved surface the radial vector field

R is given by the gradient of the geodesic dis-

tance to a source point x , and the “horizontal”

vector field H is obtained by transporting any

unit vector at x to every other point. The angu-

lar coordinate of the log map is then the angle

from H to R; the radial component is just the

geodesic distance. We compute the horizontal

field by applying Algorithm 1 as usual, where

the choice of initial vector determines the zero

direction (φ = 0). Obtaining the radial field R is

more challenging: if we simply take derivatives

of a per-vertex distance function, we get numer-

ical noise (Fig. 19, right). Expicitly smoothing

this field is not an attractive option, since it will distort features like

the cut locus, and generally degrade the accuracy of subsequent

computations (e.g., when computing Karcher means).

Instead, we can apply our parallel transport algorithm (Algo-

rithm 1) to a small circle of outward pointing normals around the

source vertex i . Here, care must be taken in formulating the initial

conditions R0 for the vector diffusion step: simply setting R0j to the

outward pointing direction −eji/|eji | at each neighbor j can lead to

anisotropy in the resulting map (Fig. 19, middle). We instead derive

initial conditions by carefully projecting unit normals on a circle

of radius ε around the source vertex onto piecewise linear basis

functions (as detailed in App. A). This approach yields a log map

which is both accurate and smooth (Fig. 19, right). Note that since
both H and R are unit vector fields we do not need to interpolate

magnitudes. The radial coordinate r (corresponding to the geodesic

distance) can be computed using any method; we simply integrate

R by solving the Poisson equation ∆r = ∇ · R, requiring only one

additional prefactorization and backsubstitution. In particular, to

evaluate the right hand side of this equation, we first map vectors

Ri at vertices to integrated values Ri j ∈ R per edge, by averaging

the inner product with the edge vector:

Ri j :=
1

2
(⟨ei j ,Xi ⟩ + ⟨−eji ,X j ⟩)

(see Knöppel et al. [2015, Section 3.2] for further discussion). Keeping

in mind that Ri j = −Rji , the total divergence ∇ · R for vertex i can
then be expressed as

(∇ · R)i =
∑
i j ∈E

wi jRi j ,

where wi j are the cotan weights from Sec. 5.3. The final log map

is encoded via Cartesian coordinates (u,v ) := ri (cosφi , sinφi ) at
each vertex i ∈ V .

Fig. 18. A noise-free log map allows us to place delicious decals (left) or
tantalizing tattoos (right) on a surfacewithout having toworry about difficult
issues like where to place cuts.

Previous approaches [Schmidt et al. 2006; Brun 2007] aim to

compute an accurate log map only in a neighborhood around the

source—even the most recent method of Melvær and Reimers [2012]

considers examples only on small patches. The basic reason is that

these methods are based on local extrinsic approximations of parallel

transport, causing significant error to accumulate over longer dis-

tances. As a result, they cannot reliably be used for algorithms that

require global information, such as computation of Karcher means

(Sec. 8.3) or intrinsic landmarks (Sec. 8.5). Our method nicely re-

solves the map over the whole surface, all the way up to the cut locus

(Fig. 20). It is also quite competitive in terms of performance since

it simply needs to execute highly optimized backsubstitution opera-

tions, rather than a Dijkstra-like traversal (see discussion in Sec. 2).

When a parameterization is desired only in a small region (e.g., when
computing centroidal Voronoi diagrams), further speedups might

be achieved by applying the localized Cholesky strategy of Herholz

et al. [2017], which fits perfectly into our framework. Fig. 18 shows

some simple examples where our log map is used to add texture

decals to a surface. Note that in the smooth setting the log map

is only well-defined for closed surfaces—nonetheless, our method

still works nicely on surfaces with boundary, especially within the

image of the exponential map.

Fig. 19. To get a high-quality log map (here, from a source point x ) one must
carefully discretize the distance gradient. Left: simply taking the gradient
of a given distance function yields numerical noise.Middle: naive parallel
transport of vectors emanating from the source yields global anisotropy.
Right: proper discretization of initial conditions yields a smooth and accurate
map, where the only remaining noise is near the cut locus (dashed line).
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ALGORITHM 2: Logarithmic Map

Input: A point x ∈ M and zero direction H0 ∈ TxM .

Output: A function (u, v ) : M → R2.
I. Compute a vector field H by transporting H0 to all other points, via

Algorithm 1.

II. Compute a vector field R using Algorithm 1, with initial conditions

given by Equations 14 and 16.

III. Compute the angle φ from H to R at each point.

IV. Solve the Poisson equation ∆r = ∇ · R .
V. Evaluate (u, v ) := r (cosφ, sinφ ) at each point.
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Fig. 20. Unlike methods that manipulate extrinsic tangent spaces (top), we
compute an accurate log map over the entire domain (bottom)—even on
long skinny models where most points are reached by traveling in nearly
identical directions (far right). On a high-resolution mesh we even nicely
resolve the region around the cut locus (dashed line).

Point cloud log map. As an example

of how the diffusion-based approach

easily extends to other geometric data

structures, we implemented the log

map directly on unstructured point

clouds. Here, computation of the hori-

zontal vector fieldH is straightforward:

just apply Algorithm 1 to a unit vector

at the source point x ; the radial field

R can be computed using the same ini-

tial conditions described by Lin et al.

[2014]: transport the vector from x to

the tangent space at each neighbor y
(via an extrinsic rotation) and project

onto the tangent space. The angular

component is then given by the angle

from H to R; the radial component is

obtained by solving the Poisson equa-

tion ∆r = ∇ · R exactly as described in Crane et al. [2013b, Section

3.2.3]. Two examples on scanned data are shown in the inset.

8.3 Karcher Means and Geometric Medians
Given a set of points y1, . . . ,yn ∈ M , any minimizer of the energy

E (x ) :=
1

2n

n∑
i=1

d (x ,yi )
p

(10)

provides a notion of center. For p = 2, such minimizers are called

Karcher means; in Euclidean space, just the centroid or arithmetic

mean. (If the Karcher mean is unique, it is known as the Fréchet
mean.) For p = 1, minimizers are known as geometric medians, and
tend to be more robust to outliers.

Fig. 22. At any point x ∈ M , the gra-
dient v of the Karcher mean energy
is just the sum of the logarithms of
all the points yi .

Though algorithms have been

developed for finding Karcher

means on special geometries

[Buss and Fillmore 2001] or

computing other notions of

weighted averages on surfaces

[Panozzo et al. 2013], to date

there has been no practical al-

gorithm for accurately comput-

ing Karcher means on general

surfaces. Likewise, the geomet-

ric median has been consid-

ered in the space of images, by

putting a nonstandardmetric on

Rn [Fletcher et al. 2009], but no efficient algorithms are known on

discrete geometric domains (meshes, point clouds, etc.). Our algo-
rithm for computing the log map (Sec. 8.2) enables a straightforward

and efficient strategy for minimizing the energy E. In the case of the

Karcher mean (p = 2), we just iteratively evaluate the update vector

v ←
1

n

n∑
i=1

logmk (yi ), mk+1 ← expmk (τv ), (11)

where τ > 0 is a step size. (For instance, if the domain is RN , this

algorithm immediately converges to the centroid for τ = 1.) For the

geometric median (p = 1) we simply need to replace the expression

for v with a convex combination

∑
i ωi logmk (yi )/

∑
i ωi , where the

coefficients ωi := 1/d (mk ,yi ) can also be computed from the log

map—this strategy is known as the Weiszfeld algorithm [Weiszfeld

1937]. The log map is computed once per iteration, via the algorithm

described in Sec. 8.2. To evaluate the exponential map, we simply

trace a geodesic atmk
along the surface in the directionv for time τ

(à la Polthier and Schmies [1998], in the case of triangle meshes). In

practice this scheme tends to converge in no more than 20 iterations

(and far fewer on simple models); in all our examples, the initial

guessm0 ∈ M is chosen completely at random. The cost of each

ALGORITHM 3: Karcher Mean

Input: A collection of points y1, . . . , yn ∈ M .

Output: A pointm ∈ M .

I. Pick a random initial guessm0 ∈ M .

II. Until the gradient v has sufficiently small norm:

(a) Compute the log map atmk
via Algorithm 2.

(b) Evaluate the update vector v = 1

n
∑
i logmk (yi ).

(c) Computemk+1 = expmk (τv ), i.e., walk forward along v for time τ .
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Fig. 21. Our globally accurate logarithmic map can be used to iteratively compute centers of data on a curved surface. Left: given a collection of points on
the surface, we iteratively compute the Karcher mean; on simple geometries we reproduce the expected solution in just 2-3 iterations, and the algorithm
generalizes to more complex geometries while still needing < 20 iterations. Right: Furthermore, we can efficiently compute the centers of distributions on a
surface; here we show both the Karcher mean (purple) and the geometric median (green). The Karcher mean is significantly affected by outliers, while the
geometric median is not.

iteration is dominated by the backsolves to compute the log map.

Line search can slightly reduce the number of steps, at the cost

of additional solves; for most examples we use τ = 1 and no line

search. Note that this strategyworks only becausewe have a globally

accurate logmap; if we try to use the logmap from previousmethods,

the algorithm fails to converge (Fig. 3, right).
Since we know the log map over the entire surface, the number

of points pi has a negligible effect on the cost of computation (just

taking a weighted sum). In fact, we can apply the same method

directly to arbitrary distributions ρ : M → R>0 (as depicted in

Fig. 21, right); in this case, we can define a center

m(ρ) = argmin

x

∫
M
ρ (y)d (x ,y)p dy. (12)

The only change to the algorithm is that we now take a weighted

average over all vertices, using weightsMiiρi , where ρi ∈ R>0 is
the density at each vertex, and M is the mass matrix.

8.4 Geodesic Centroidal Voronoi Diagrams

Fig. 23. Fast Karcher means allow us to
compute centroidal geodesic Voronoi tes-
sellations with large, possibly multiply-
connected cells.

A Voronoi diagram parti-

tions a domain M into re-

gionsU1, . . . ,Un ⊂ M com-

prised of those points clos-

est to a given collection of

sites s1, . . . , sn ∈ M (resp.).
In a centroidal Voronoi dia-

gram, each site is located at

the centroid of its associated

region. Our fast Karcher

mean algorithm (Sec. 8.3)

provides an effective way

to compute geodesic cen-
troidal Voronoi tessellations
(GVCT) on surfaces and

other curved domains, es-

pecially for diagrams with

large cells where using the Euclidean distance (à la CCVT [Du et al.

2003]) provides a poor approximation of geodesic distance. In par-

ticular, we simply apply Lloyd’s algorithm, updating cell centers via

the Karcher mean.

More specifically, we consider a distribution associated with each

cell, defined via the scalar heat kernel kt as

ρi :=
kt (si , ·)∑
j kt (sj , ·)

(13)

for a small time t . This distribution is an indicator function for each

cellUi ; kt is computed as usual (by solving a discrete heat equation).

We then apply Algorithm 3 to move each site si to the center of the

distribution ρi , and repeat until convergence. In practice, we find

it is more efficient overall to take just a single step of the Karcher

algorithm, even though it results in more Lloyd iterations. We do

not have to worry about topological issues like features separated by

small extrinsic distances, and can handle multiply connected cells

since we need only integrate the log map over each regionUi . Faster
convergence might be achieved by replacing Lloyd’s algorithm with

a more sophisticated optimization strategy—Liu et al. [2016, Section

2] provides a nice discussion in the context of GCVT.

8.5 Ordered Intrinsic Landmarks
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Fig. 24. Our robust geometric median can
be used to compute landmarks that are
not only salient, but also come with a
consistent ordering, helping to avoid dif-
ficult matching problems. (Models recon-
structed from scans in Bogo et al. [2014].)

An ongoing challenge in ge-

ometry processing is find-

ing landmark points that

provide correspondence be-

tween (near-)isometric sur-

faces. A significant diffi-

culty is not only finding ge-

ometrically salient points,

but also finding a consistent

ordering for those points,

i.e., which landmark on the

first surface corresponds to

which landmark on the sec-

ond surface? Trying to de-

termine this ordering a pos-
teriori leads to hard combi-

natorial matching problems;
algorithms for efficiently

computing such matchings

are only just starting to be

understood [Kezurer et al.
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2015]. The ability to reliably compute geometric centers provides

new opportunities for generating landmarks that are consistently or-

dered a priori. We explore a simple strategy where we first compute

the geometric medians of the surface itself ; in other words, we apply

the algorithm described in Sec. 8.3, setting p = 1 and using a uni-

form density ρ = 1 over the whole surface. We then progressively

add points via furthest point sampling, i.e., picking the point with
greatest geodesic distance from our current set. Since in general

there may be more than one geometric median (e.g., on surfaces

with symmetries) we sample a large set of initial guesses, and com-

pute the furthest points relative to this set (discarding the medians

themselves, since we cannot easily distinguish their order). Using

the geometric median rather than the Karcher mean significantly

reduces variability caused by values near the cut locus, which are ef-

fectively treated as outliers. As is common in shape correspondence

problems, we can add a weak extrinsic factor (e.g., the x-coordinate)
to the density ρ in order to break symmetry. Though we have so far

considered only the most basic implementation, results are already

promising (Fig. 24); further refinement of such techniques would

make for interesting future work.

9 LIMITATIONS
Potential challenges in applying our method stem mainly from two

sources, namely (i) scalability of linear solvers, and (ii) numerical

accuracy. Since we solve standard Poisson-like systems, the scalabil-

ity issue is no different than for many other problems in scientific

computing—for instance, if meshes become too big to factor, one

can switch to more scalable solvers (of the kind discussed in Sec. 2).

In practice, however, we find that modern direct solvers [Chen et al.

2008] provide an excellent solution up to millions of elements. In

terms of accuracy, poor mesh quality can lead to problems such as

indefinite matrices and spurious flipped vectors (Fig. 10); we have

largely addressed this problem via intrinsic Delaunay. The use of

low-order elements limits us to linear convergence; as with the

scalar heat method, spline and subdivision bases might yield higher

order accuracy [de Goes et al. 2016; Nguyen et al. 2016]. As discussed

in Sec. 7.1 some basic properties of smooth parallel transport are

not exactly preserved. Finally, the applications explored in Sec. 8

leave many open questions, such as preserving data along level

sets, generalizing the definition of the log map for domains with

boundary, and improving the robustness of landmark identification.

10 CONCLUSION
Vector fields arising from parallel transport along shortest geodesics

appear to be a highly useful object on top of which many fun-

damental algorithms can be implemented, yet surprisingly have

not received much attention in geometry processing. We have pre-

sented a first method for efficiently and reliably computing such

fields, though many questions remain. For instance: how to prop-

erly formulate boundary conditions, how to improve accuracy (e.g.,
using more sophisticated finite element discretizations [Arnold and

Li 2015]), how to improve practical efficiency (e.g., via parallelism
and local computation), and what additional properties might be

guaranteed (expanding on Sec. 7.1). Another interesting question is

whether the method can be augmented to compute transport along

non-geodesic curves, or along a given vector field (à la [Azencot

et al. 2015]). Overall, given that the starting point (i.e., vector diffu-
sion via the connection Laplacian) is quite unlike many traditional

methods from computational geometry, we expect our method will

inspire new ways of looking at old problems and lead to very dif-

ferent computational trade offs. We are hopeful that the ease of

implementation (just building and solving Laplace-like systems)

will facilitate rapid adoption in real applications.
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A DISTANCE GRADIENT DISCRETIZATION
For the log map (Sec. 8.2), we need a discretization of the radial vec-

tor field R, which in the smooth setting is the gradient of the distance

function at x , i.e., R |y := ∇d (x ,y). Away from the cut locus, R is a

unit vector field tangent to the shortest geodesics emanating from

x . To get an accurate discretization, we can therefore transport unit

vectors in a small neighborhood around x to every other point—but

must be careful about initial conditions. Simply sampling initial con-
ditions onto vertices will not yield well-behaved solutions (Fig. 19,

center); the dangers of intermingling sampling and finite-elements

are well-known [Holst and Stern 2012]. We instead take a finite

element approach, leading to reliable and accurate initial conditions

(Fig. 19, right). We work in a flat Euclidean domain where we can

use a single coordinate system for all tangent spaces; the resulting

expressions also yield accurate results on curved domains due to

the normalization by angle sums Θi (Sec. 5.2), which effectively

“flattens out” each vertex tangent space.

Consider a small circle Cε of radius ε > 0 centered around a

source vertex i ∈ V , and let n denote its outward unit normal field.

For a point in the plane—or at the tip of a cone, as depicted in

Sec. 5.1—the normals n are exactly the gradient of geodesic distance

along Cε . Just as one might treat a point source as a measure of

unit mass supported on a point (i.e., a Dirac delta), we consider a
measure of unit mass supported on Cε , namely

µε :=
1

ε2
H 1

Cε ,

whereH 1

Cε
is the Hausdorff measure on the circle. Our initial con-

ditions are then given by the vector-valued measure

Xε := nµε .

Now let F := span{ψv : v ∈ V } denote the finite element space

of piecewise linear hat functions ψv at vertices v . To discretize a

solution to the PDE

(id + ∆∇)Y = Xε
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in the finite-dimensional vector space F , we solve

(M + A)y = x,

where Mi j is the mass matrix and A is the stiffness matrix discretiz-

ing the connection Laplacian—in our case we use the matrices de-

fined in Sec. 5.3. We therefore just need to discretize the right-hand

side, which is achieved by integrating each of the basis functionsψi
with respect to the measure Xε , i.e., by evaluating the integrals

xv :=

∫
ψv dXε

over the whole domain. Since Xε is sup-

ported only on triangles containing the

source vertex i , and since each basis func-

tionψv is supported only on the triangles

containing v , we need only evalute this

expression for immediate neighbors of i .
For each neighbor j, we will work in

a polar coordinate system (r ,θ ) with i at
the origin and edge ij along the horizon-
tal axis (see inset). We will treat points

and vectors as complex numbers, using e

to denote Euler’s number and ı to denote

the imaginary unit (which appiles a 90-

degree rotation in the counter-clockwise

direction); we use ⟨·, ·⟩ to denote the usual

(real) inner product of vectors. For brevity

we will also let α := θ
jk
i and β := θ

l j
i . In this coordinate system, we

can express the unit normal as

n(θ ) := (cosθ , sinθ ) = e
ıθ .

At any point x in triangle ijk , the piecewise linear hat functionψj
can be expressed as

ψj (x ) =
1

hkij
⟨x ,−ıeik/ℓik ⟩ =

1

2Ai jk
⟨x ,−ıeik ⟩

where eik is the edge vector from i to k , ℓik := |eik | is its length,

hkij is the height of the triangle with apex j and base ki , and Ai jk
is its area. In other words, to get a linear function with value 1 at j
and value 0 at i and k , we take the dot product with the unit vector

orthogonal to eik , and divide by height. Integrating this function

over the triangle ijk with respect to the measure Xε then yields∫
i jk

ψjdXε =
1

ε2

∫ α

0

ψj (εe
ıθ )n(θ ) εdθ

=
ℓik
Ai jk

∫ α

0

⟨eıθ , eı (α−π /2)⟩eıθ dθ ,

where we have used the relationship eik = ℓik e
ıα
. Integrating this

expression and repeating a nearly identical calculation for triangle

jil we find that the overall integral ofψj is given by

x̃j = ℓki (α sinα , sinα − α cosα ) /Ai jk+
ℓil (β sin β , β cos β − sin β ) /Ajil .

(14)

To get the final entry for the right-hand side at vertex j, we simply

need to rotate this value back into the original (global) coordinate

system:

xj = e
ıφi j x̃j . (15)

Since Equations 14 and 15 involve only lengths, angles, and areas,

they can easily be evaluated on any (curved) triangle mesh. Note

that the angles φi j are exactly the same as those given in Eqn. 8.

Importantly, the initial value xi at the source vertex i should not
in general be zero (except perhaps for highly symmetric configu-

rations): this value does not represent the pointwise value of the

initial data, but is rather just one of several nodes that determines

the best piecewise linear approximation. The calculation of this

value is similar to the neighboring values except that we now take a

sum over all triangles ijk containing vertex i . For each such triangle

we will again construct a coordinate system with i at the origin and

ij along the horizontal axis. In this coordinate frame, the unit vector

orthogonal to edge kj can be expressed as

v := ı (ℓi je
ı0 − ℓik e

ıα )/ℓjk ,

where α := θ
jk
i . Within triangle ijk , the basis functionψi can then

be expressed as

ψi (x ) = 1 − ⟨x ,v⟩/h
jk
i ,

and the integral over the triangle is∫
i jk

ψi dXε =
1

ε2

∫ α

0

ψi
(
εeıθ
)
n(θ ) εdθ

=

∫ α

0

e
ıθ dθ −

1

2Ai jk

∫ α

0

⟨eıθ , ı (ℓi j − ℓik e
ıα )⟩eıθ dθ .

We can ignore the first term since over the whole circle it integrates

to zero; the remaining term integrates to

x̃i, j :=
1

4Ai jk

[
− sinα (ℓikα + ℓi j sinα )

ℓi j (cosα sinα − α ) + ℓik (α cosα − sinα )

]
.

(16)

The initial value at the source is then given by the sum of these

values, rotated back to the original coordinate system:

xi :=
∑

i jk ∈F

e
ıφ x̃i, j .

Again, these initial conditions can be easily computed on any tri-

angle mesh. Notice that the initial conditions do not depend on

the choice of radius ε . To obtain the radial field R we now run Al-

gorithm 1 with initial conditions x, but can simply normalize the

resulting vectors rather than solving for magnitudes. At the source

vertex i we set Ri to zero.
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