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Chapter 1. Foundational Material

Exercise 1. Give five more examples of differentiable manifolds besides those discussed in the text.

1. The real projective space RP™. RP" is defined to be the set of 1-dimensional linear subspaces of R**!. Formally,
we say that v,w € R\ {0} are related, v ~ w, if and only if v = tw for some t € R\ {0}. Clearly ~ is an
equivalence relation, and each equivalence class represents a line in R*"!. Now we define

RP" := (R™"\ {0})/~.

We endow RP" with the quotient topology. Let 7 : R™!\ {0} — RP" denote the projection map. Now write
[x0:xt oot x™] = [(x0,x? x™)]. for an element in RP". Now we define the coordinate charts. Let
Vi —{xER”“\{O}:x;éO}andilj V; — R be given by

0 1 i—1 i+1 n
X~ X X X X
w((xo,...,x"))=(—. T, T, - ,...,—.).

xi7 xi xi 7 xi xt
Note that for v ~ w we have that 1;(v) =;(w). Now let U; := n(V;) ¢; : U; = R" as

pi(v)=1;o0 7'5_1(1’),

where by an abuse of notation we write 77~ (v) to indicate an arbitrary element in the preimage. ¢; is well
defined since ¢ does not depend on the choice of representative in the equivalence class. We claim that
U, is open in RP". Then 7 "'(U;) = n'(n(V;)) = V;, which is clearly open in R*"!. Hence U; is open in the
quotient topology in RP".

Now we show that ¢, is surjective. Fix (x!,...,x") € R", and note that
Lo o=l ool ) — (4] n
Ei(lxt ceee o™ o loxtce XM = (0, ., X,

Hence ¢;(U;) =R".
We claim that ¢; is a homeomorphism. Fix an open set V C R". Since v; is continuously differentiable
we deduce that ¢~ (V) is open in R™' \ {0}. Now 7" 0 ¢;*(V) = ¢;(V), and so ¢;'(V) is open in U.
This establishes that ¢; is continuous. To see that ¢, is injective consider v, w € R"™! satisfying ¢;([v]) =
@;([w]). Then we see that forall j=1,...,i—1,i+1,...,n that

viooow

yi  owi’
Hence w = ‘f%:v, and so w ~ v. So y; is injective, and we now deduce that ¢; is in fact bijective. In
particular, we have that ;" : R" — U, is well defined. In light of this we have

o Ot x) =t e x T T e X,

Now define f; : R" — R""! by A A
filx)=(x1, .., x 1, XL X,

Note that f; is ¢'(R",R"™") and since ¢;" = 7 o f; we see that ¢;' : R® — RP" is continuous. We have
shown that (U, ;) is a chart of RP".

We claim that {(U;, ¢;) : i=1,...,n+ 1} is an atlas for RP". First we notice that

n+1 n+1
R™\ {0} = JV;, and so RP" = [ J U;.
i=1 i=1



Fix 1 <i<j<n+1and consider ¢;o ;" : 9;(U;NU;) = ¢;(U; N U;). We see that

@i (xh L xM) =[xt e e xT X k")

(xl Lyt Kl 1 yitl Xn)

> T g e ) Ar

xi’ xi xJ > xd P xd? xd T X

Note that all of the components of @; o ¢;" are rational functions with 0 ¢ ¢,(U; N U;), and so ¢; o ;"
is smooth. By an identical argument we see that ¢; o ¢, is smooth when j > i. So we conclude that
{(U;, ;) : i=1,...,n+ 1} is an atlas for RP".

Finally, it remains to show that RP" is Hausdorff and second countable. To see that RP" is second countable
consider the maps a, : R*"!\ {0} — R"™! \ {0} given by a,(x) = tx. Now we see that a = ay/, and a,
are homeomorphisms. Now consider any open set U € R*™ \ {0} and note that a,(U) is open in R***\ {0}.
Then 7' ([U]) = | J,eg @.(U) is open in R™1\ {0}. So [U] is open in RP". Now we see that 7t is an open
map. Since R"*!\ {0} is second countable and 7 is an open map we deduce that (R*™! \ {0}) = RP" is
second countable.

To see that RP" is Hausdorff it suffices to show that {(v,w) : v ~ w} is closed in R*"! \ {0} x R**! \ {0}.
Consider the map f : R*™\ {0} x R™!\ {0} — R given by

FOO, vl wh) = Z(viwj —wivi)2,
i#]
Since f is a polynomial, it is continuous. Suppose that v = tw for some t € R\ {0}. Then a direct
computation shows that f(v,w) = 0. Furthermore, if f (v, w) = 0 then we see that
viw —wivi =0
for all i # j. Since v # 0 there exists some i, such that v # 0 and so w/ = “”,’—;Jvf and so v ~ w. So we see
that

{v,w) : v~w}=f"({0}

is closed since {0} is closed in R. So we deduce that RP" is Hausdorff. Concluding, we see that RP" is a
smooth manifold of dimension n.

. The graph of a smooth function: Consider a smooth function f : R — R™. Consider the graph graph(f) :=
{(x,¥) €eR"xR™ : y = f(x)}. Now define a map F : R"™"™ — R™ given by F(x,y) = y — f(x). Now we
see that graph(f) = F'({0}). A direct computation of the Jacobian of F shows that

DF:[ _Df | 1m><m ],

To use the implicit function theorem we need to show that 0 is a regular value of F. Note that rank DF is
always maximal since rank 1,,,,, = m. Now by the implicit function theorem we deduce that graph(f) is a
smooth parameterizable n-dimensional manifold in a neighborhood of each of it’s points.

. The general linear group: Let GL(n,R) := {A € R™" : det(A) # 0}. Consider the map det : GL(n,R) — R.
Recall that the determinant is a polynomial in the entries of the matrices. So we deduce that GL(n,R) =
det'({0}) is an open subset of R™" = R™. Hence GL(n,R) inherits the smooth structure of R™, and is
therefore a smooth submanifold of R™.

. The connected sum of two manifolds: Let M and N be smooth manifolds of the same dimension n. Now fix
p € M and g € N and find open neighborhoods, U and V, of p and g, respectively. By shrinking U and V
if necessary we can assume that we have charts ¢ : U — B(0,2) and v : V — B(0, 2), where B(0,2) € R".
Now let U C U and V C V be given by

U:=¢'({1/2<Ix|<2}) V=4 ({1/2<|x|<2}).



For simplicity let A:= {1/2 < |x| < 2} € B(0,2). Now consider the map a : A — A be given by

x
a(x) = W

Note that a simply switches the two boundary components of the annulus A, and reverses the orientation
of the radial directions. Now we glue U to V using map given by ¢ oao ¢ : U — V. In this way, we have
a new topological space with a natural smooth structure induced from M and N. Up to a diffeomorphism,
this new manifold is independent of the choices of local coordinates and is called the connected sum of M
and N. We denote this new manifold by M#N.

. The stable manifold theorem: 1 state the theorem without proof, and compute an explicit example. This
example is not to provided to show the technicalities of complicated manifolds, but rather to show an
example of manifold theory being used outside of Riemannian geometry.

Theorem 1. Let Q C R" be an open set containing the origin. Let f € €'(Q;R"), and ®, be the flow of the
nonlinear system

x = f(x).
Suppose that f(0) = 0 and Df (0) has k eigenvalues with negative real part and n—k eigenvalues with positive
real part. Then there exists a k-dimensional manifold S tangent to the stable subspace E* of the linear system

x =Df(0)x,
such that forall t > 0, ®,(S) €S and for all x, € S
tl_l)n;o ®(x0) =0
there exists an n — k-dimension smooth manifold U tangent to the unstable subspace E* of x = Df (0)x such
that for all t <0, ®,(U) C U and for all x, € U
tl“_noo ®.(x0) = 0.

Consider the system:
. 2
Xo =—Xp+X]

S 2
X3 = X3+ X7.

We can rewrite this as

-1 0 O 0
x=[0 -1 0]x+]|x?
0 0 1 x?
The flow map is easily seen to be
aet
®,(a)=| we+ai(e +e )|,
2

ase' + %l(et —e20)

where a = (a;,ay,a;) = x(0). Clearly lim,_,., ®,(a) = 0 only if a; = —af/B. So we deduce that the stable

manifold is
a2
Sz{aeR3 : a3=——1}.
3

Similarly, we have that the unstable manifold is

U={aeR®:a =a,=0}.



Exercise 2. Determine the tangent space of S". (Give a concrete description of the tangent bundle of S" as a
submanifold of S x R™*1.)

If c : I — S™ is a curve then we have that ||c||> = 1 and consequently we have that
¢c=0.

This tells us that the velocity is always perpendicular to the base vector. Hence, the tangent space can be identified
as follows
T,8" :={veR"™ : p-v=0}

Consequently, the tangent bundle of S" is the following:

TS"={(p,v) €S"xR™! : |]p|l=1and p-v=0}.

Exercise 3. Let M be a differentiable manifold, T : M — M an involution without fixed points, i.e. To7 =id,
7(x) # x forall x € M. We call x and y equivalent if y = 7(x). Show that the space M/t of equivalence classes
possesses a unique differentiable structure for which the projection M — M /7 is a local diffeomorphism.
Discuss the example M = 8" C R*"!, 1(x) = —x.

We claim that since 7T has no fixed points, for every point p € M we can find an open set U containing p such that
UNt(U) = 0. Assume, for the sake of contradiction, that this is not the case. In particular, there exists some point
p € M such that for all open sets U containing p we have that UNt(U) # @. Now consider a decreasing sequence
of connected open sets U, such that ﬂneNU_n = {p}. Since M is locally compact without loss of generality we can

assume that all of the U,, are precompact. Now we see that
U,nt(U)#0 = U,n(U,) #0.
Since compactness is characterized by the finite intersection property we see that

(T.N=(@,)#9,

neN

and so in particular,

()@, n%(T,))={p}.

neN

Now we have a contradiction since

r(ﬂ(ﬁn m(Un))) = (@, N%(T,)) =({p}) # {p}.

neN neN

So we have shown that the group action induced by G = ({id, 7}, o) is properly discontinuous.

Now for each p € M choose a parameterization x : V. — M such that x(V) € U, where U € M is an open set
containing p such that U N t(U) = @. Now we see that 7|, : M — M/7 is injective, and so the map y = o x :
V — M/t is injective. Now we see that the family {(V, y)} clearly covers M /. Now to show that such a collection
forms an atlas it suffices to consider two maps y; = wox; : V; > M/t and y, = mox, : V, —» M/t satisfying
y1(V1) Ny, (Vo) # 0. Let m; = 7|, (v, for i = 1,2. Now fix g € y;(V;) N y,(V;) and let § = x,' o 7,'(q). Now let
W C V, be a neighborhood of G such that (74 0 x,)(W) € y;(V;) N ¥5(V,). Then the restriction to W is given by

-1 ol -1
Y1 o Yalw =x; om 0my0x,.



So it suffices to show that 7" o 7, is smooth at p, = m,'(q). Let p; = 7," o 5(p,). Now we have by definition of
the projection that

p1=1(p2).

Now we see that ;" o 75|,y coincides with 7|, ), which shows that 7" o 7, is smooth at p,, as desired. Note
that M — M/t is a local diffeomorphism by definition of the smooth structure we endowed M /7.

Now we show the uniqueness of the smooth structure. Suppose that M /7 has two smooth structures (M /7); and
(M /7), making 7w : M — M /7 alocal diffeomorphism. The identity map is smooth from (M /7); —» (M/7),, and
so is it’s inverse, which shows that the smooth structures are identical.

The example of S" with T(x) = —x gives us the real projective space RP". We clearly have the same interpretation
since the space of 1-dimensional subspaces of R*"! can be identified with any point on the hemisphere. The smooth
structure is identical to that described in Exercise 1. So we see that RP" = §"/~. [

Exercise 4.

(a) Let N be a differentiable manifold, f : M — N a homeomorphism. Introduce a smooth structure of a
differentiable manifold on M such that f becomes a diffeomorphism. Show that such a differentiable
structure is unique.

(b) Can the boundary of a cube, i.e. the set {x € R" : max{|x;| : i = 1,...,n} = 1} be equipped with a
structure of a differentiable manifold.

(a) First we show that such a smooth structure is unique. Suppose that .« and 9 are two smooth structures
on M making f : M — N a diffeomorphism. Then we see that the composition

M, ) — N —L s (1, ®)

is smooth and the identity. Hence id : (M, .o/) — (M, ) is a diffeomorphism, and so ./ = 2.

Now we show the existence of such a smooth structure. Let .o/ := {(Uj;, ¢;)};c; be the smooth structure on
N, where U; €N and y; : U; — R" for some n € N. Now consider the family

o ={(f (U, ¢;°flies-

We claim that ./ is a smooth structure on M making f : M — N a diffeomorphism. Since f is a homeo-
morphism we have that f *(U;) is open in M for all i € I and that ¢; o f is a homeomorphism for all i €I.
Note that for any i, j € I we have

(piof)o(pjof) =gio(fof Doy, =piop,

which is smooth. This shows that &/ is a smooth atlas on M. Now it remains to show that f is a dif-
feomorphism between (M, .&¢) and (N, .¢). This clearly holds by definition since for any i,j € I we have
that

-1

piofolpiof) =g °P;
is smooth (whenever the map is defined).

(b) The boundary of a cube can be equipped with a smooth structure. Note that the n-cube is homeomorphic to
S"! and so the boundary of the n-cube is homeomorphic to S" . Now by Exercise 4(a), we can pullback
the smooth structure of the sphere back onto the boundary of the cube, as desired.



Exercise 5. We equip R""! with the inner product

n,n

(6, y) i==xy+xlyt +---+x"y

Lonx™), y=0%yh .., ¥y"). We put

for x = (x°, x
H":={x €R™ : (x,x)=—1, x,> 0}.

Show that (-,-) induces a Riemannian metric on the tangent spaces T,H" C TPR"+1 for p € H". H" is called
hyperbolic space.

We remark that the inner product is called the Lorentzian inner product on R™!, and (R"*?, (-,-)) is often denoted
R, This is the hyperboloid model of hyperbolic space. It is easy to see geometrically that H" C R™"! is the upper
sheet of a hyperboloid.

First we show that H" is a smooth oriented submanifold of R*™'. Consider the map h : R*! — R be given
by h(x) = (x, x). Then it is clear that h is everywhere differentiable and that —1 is a regular value of f. Note that
since f(x +y)=f(x)+ f(y)+2(x,y) we have

dfe(y)=2(x,y),

where we identify T,H" with R™"!, Note that rankdf, = 1 if and only if x # 0. Now we see that
T,H" Zkerdf, ={q €R"" : (p,q) =0}.
Now we define g, : T,H" x T,H" — R via
g v, w) = (v, w).

We claim that g : H" — TOZH " is a Riemannian metric, i.e. a (0, 2)-type symmetric positive definite tensor field.
Fix p € H". The symmetry of g, is immediate:

g, w) = (v,w) =—=vW0 + v wl v W = (w,v) = g, (w, V).

The bilinearity follows immediately from the bilinearity of (-,-) (which is elementary to show). Similarly, we see
that g,(v,v) = 0 if and only if v = 0. Finally, we show that g, is positive-definite. Write p = (p,,p) € H" and
consider v = (v, V) € T,H" such that v # 0. That is to say (p,v) = 0. Note that if vy = 0 then g,(v,v) = (v,v) =
v-v = 0. Now consider the case when x, # 0. Then since
0=(p,v)=p-V—pevo and  —1=(p,p)=F5 p—(po)*
we have that
(o)’ (B-P+1)=(povo)* = (B -V)* < (V-9)B - P)
by the Cauchy-Schwartz inequality. So we see that
(v,v)(P-P)= V¢,
which implies that (v,v) > 0. So pointwise we have that g, : T,H" x T,H" — R is an inner product.

It remains to show that g € I‘(TOZH ™). Clearly, o g = id, and so we just need to show that g is smooth. This
follows since (-,-) is smooth in each coordinate and that T,H" varies acording to the zero set of (-,-). Since this
all holds, we see that (-, -) induces a Riemannian metric, g, on H". ]



Exercise 6. In the notation of Exercise 5, let

s=(-1,0,...,0) e R*"!
2(x—s)
(x—s,x—s)

fx)=s—

Show that f : H" — {£ € R" : |£| < 1} is a diffeomorphism (here, R" = {(0, x},...,x")} ¢ R*!). Show that in

this chart, the metric assumes the form
4 . .
——d&'®dE.
(1—1&[2)?

First note that for p € H" that f(p) is simply the unique point in the ball B := B(0,1) N R" which intersects the
line connecting p and s. Write p = (p°,p), and recall that (p, p) = —1 and p° > 0. So we see that

2(p— 2(p— 2(p— 0 0,p
Fp)=s— (p—s) _ (b—s)  _ (p=s) __p _(_P ),_OD)
(p—s,p—s) —(p°+1)*+p-p 2(p°+1) p°+1 \p°+1 po+1
Now we see that f(p) is clearly smooth as a map H" — R". We claim that the inverse map is

I (1l 2x? 2x"
/ (x)_h(x)_(l—uxHZ’1—||x||2"“’1—||x||2)'
We check for x € B that

(0,2x1,...,2x™)
@ —1xl2) (1 + 2RE)
Another direct computation shows that (ho f)(p) = p for p € H". It is clear that h : B —» H" is smooth, and so
f is a diffeomorphism. To compute the metric in these local coordinates, we need to pullback the metric of H"
back onto the unit disk via h.

=(0,x},...,x") =x.

(f oh)(x) =

Write p = (t, &) and we see that the metric on H" is simply

i =—dt®dt+2d§i ®dEl.
i=1
Write h(x) = (t(x), &(x)) € H", where
1+ x|? 2x
T d ==
e ™ SWE T

Now we see (by a slight abuse of notation where we use the variables t and & twice) that

t(x) =

g =—dt®de+ > d&/ e dgl.
j=1

A direct computation shows that d(1 — [|x||*) = —2(x, dx), where (x,dx) simply means > x/dx’, and so

2(x,dx)  2(1+ [|x|I*){x,dx)

dt =
=2 T =2
20, dx) — 2P (x, dx) + 2{x, dox) + 2] (x, dx)
A=
4
= Qe o 4x)

2dx/ 4x7 (x,dx)
T—[lxll>  (Q—lx][2)?

dg’ =



We now compute

< < 2dx/ 4x7 (x,dx) ) ( 2dx7 4x) (x,dx) )
E df'®dé = E + ® +
= Sedt (1—||x||2 (1—[lx[[2)? T—{x[[®  (1—[x]|?)?

=

16/|x|1*(x,dx) ® (x,dx) 16{x,dx)® (x,dx) 4 I 4
= + dx’ ® dx’

(1 —lx[]2)* (1 —lx]2)3 (1 —[lx[[?)? ]2_1:

16]|x|1*(x,dx) ® (x,dx) + 16(x,dx) ® (x,dx) — 16]|x|*(x,dx) ® (x,dx) 4 o 4

= + dx’ ® dx’
(1 —[lx[2)* (1—||x||2)2]z_1:
16 4 < . .

=———(x,dx)® {x,dx) + —————— > dx’ ®dx’

(1—||x||2)4( A ) (1—||X||2)2}Z_1:

4 2 . .
=dt®dt+———— > dx’ ®dx’.
(T —lx[[?)? JZ_E
Now it is clear that

*

4 - A A 4 1 A A
hgyn=—"—= ) dx'®@dx' +dt®dt—dt®dt = ————= > dx’ ®@dx’.
" (l—IIXIIZ)szl: (1 —lx[[2)? ;

By relabeling the x-variables to &-variables we have the desired result (in the form stated in the problem). [

Exercise 7. Determine the geodesics of H" in the chart given in Exercise 6. (The geodesics through 0 are the
easiest ones.)

Fix p € H" and v € T,H". Define

inh(¢|lvll,) .
) cosh(t||v]l)p + (o ) v if v #0,
Yp(t) = { p ( il )

ifv=0.

Note that y;(O) = p. Now suppose that v # 0. Since (-, ) is bilinear we have

(ry(0),75(0)) = cosh?(e|IvIl,){p, p) + 2 cosh(t|IvIl,) sinh(t [Vl ){p, v) + sinh*(¢l|v]],)
= —coshz(tllvllp) + sinhz(t||v||p)
=—1.

Hence, y; :R — H". Now we show that y; is a constant speed curve. A direct computation shows that

d .
3¢ 1p(0) = VIl sinh(z[[vil,)p + cosh(z[|v]l, )v.

Since the Riemannian metric at every point ¢ € H" is simply given by (:,-) we have that
Gy (O = {(r}) (), () (0))
= sinh®(t[IvII,)IIVII(p, p) + cosh®(t|IvIl,){v, v)
= —sinh?(¢[[v[I,)IVII2 + cosh®(e|IvII,IvII2
= [Iv1I3 (cosh®(elIvll,) —sinh?(¢|IvIl,))

— 2
= [IvIP>.



So we see that ||(}’; )’(t)llyv(t) = |[v||,- Recall that the length functional is given by
p

b
L(y) :=f

Let z :=(1,0,...,0) € H". Now fix t, > 0 and consider any curve y = (y°,...,y™") connecting z to

dy
— dt.
dt(t) t

1(1) :=(cosh ty,0,...,0,sinh ty).

Now using the mapping in Exercise 6, we have that

rt r"
LHn(Y):LB(fOY):LB(I_i_Yo""’1+,},0)'

Furthermore, using the result of Exercise 6 we obtain

1 n 1
Lyl ——, ..., L~ |>1,[L—,...,0].
140 140 140

r!(6)
1+7y0(e)

Now define the curve

a(t) :=
A computation shows us that

" alla/(0) ' 2d(0)
LB(“’O""’O)ZL mdtZL 1—a(t)

a(1)
= ZJ ds = 2tanh'(a(1)).
o 1—s2

Recall that

. 142
h(2tanh (t)) = ——
cosh(2tanh "(t)) 2

and
M-y’ =1
So cosh(2tanh'(a(1))) = y°(1) = cosh(t,), and we deduce that

Ly (y) = Ly(a,0,...,0) > t,.
On the other hand, note that the curve ,},Eto,O """ % connects y(0) to y(1) and that
LHH(YSO’O """ 0) = t,.

So we see that cho,o,...,o) is globally length minimizing, and hence a critical point of both the length functional and

the energy
b
E(y):= f

Since geodesics are critical points of the energy E, we deduce that ygfﬂ’o """ 9 is a geodesic.

2

dy
— dt.
dt(t) t

Note that rotations around the x°-coordinate are isometries of H". To formalize this, let

SOy :={A€SO(n+1,R) : AT1, , A=1,,},

10



where

nxn

Note that 1, , is the matrix which corresponds to the quadratic form (-, ). Now fix A € SOy. and let y be a curve
in H". Now let

ra(t) :==7(DA".
Note that y/(t) =y'(t)AT and that

(AT, wAT), =vAT1,w" =v1,w' = (v,w),,

for any v,w € T,H" and x = zA". So we see that y, is a geodesic if and only if y is a geodesic. Furthermore, we
see that

vza T AT
(r))A =715,
Since SO(n) acts transitively on S" we see that

{(0,t,0,...,0)AT, t > 0,A € Stab(SOy;.)} = T,H",

in particular, we see that
{r) :peH", veT,H"} = {y©to-04 : A€ SOy}

Since Ygo,ro,o,...,o) is a geodesic we deduce that y; is a geodesic for any p € H" and v € T,H".

Now we verify that these are geodesics by using the Euler-Lagrange equations for the energy. We begin by com-
puting the Christoffel symbols in the x-coordinates introduced in Exercise 6:

o1 (A—1xIPY 16 ksi o sk _ s
=5 (5ol (i ) 1 st +15)

n

__ 2 kstsi | jstsk__  lslsi

= 1_”x”2€2:(x 55) +x/5!6K —x'5!57)
=1

_ 2 ki isk __(y ky sk

_1_”x”2(x O +x6 —(x) +x )5j),

where 5{ is the Kronecker delta symbol. Now consider y(t) = ¢(0,1,0,...,0) € B for 0 < t < 1. We reparameter-
ize ¥ to by arc length to obtain

r(s) =7 (a(s)) = (p(s),0,...,0)
for some function a : [0,S] — [0, 1] such that ||y’(s)|| = 1 for all s € [0, 1). We compute

/ / (X/ S
IOl = @GN0, 1,0,...,0),0,1,0,....,0)) = —< L
1—la(s)l

Hence, if ||y'(s)|| = 1 we have that

rry _ 1=la(s)?

@)= —
with a(0) = 0. Clearly, we have that the solution is given by
et —1
als) = es+1°
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Furthermore, by differentiating the above differential equation once more we find that a” = —aa’. Now we are
in a position to compute

V7 =v,(ad,,)
= ()3, +(a)* > Tf, 8,
k=1

a
l—a2 ™

=dd,, +2(a)
= (—ad +2(a)?a(l— az)fl) Oy,
=aa(—1+2a(1—a®) )3,
=0.

Note that since the parameter s goes from 0 to oo we see that L(y) with respect to g is infinite. Nevertheless, y
is a geodesic. Note that

f(Ygo,Lo,.,.,o)(t)) =7y(t) €B,

and so we have indeed verified that these are geodesics of H" in these coordinates.
This solution still needs to be cleaned up a little bit! [

Lemma 2. Let (M, g) be a Riemannian manifold, p € M, and f : M — M an isometry such that df,(v) = v for
some v € T,M. Then for the geodesic y : [a,b] — M with y(0) = x and y(0) = v, we have that f oy =7.

Proof. Note that since f is an isometry, we see that f oy is also a geodesic. By the conditions on f we see that
(f o7)(0) = f(x) = x and that (f ov)’(0) = v. Hence, by the uniqueness of geodesics we have that f oy =y. O

Exercise 8. Determine the exponential map of the sphere S", for example at the north pole p. Write down
normal coordinates. Compute the supremum of the radii of balls in T,S" on which exp, is injective. Where
does exp,, have maximal rank?

Recall the description of the tangent bundle:
TS":={(p,v)€S"xR"™ : p-v=0}.

Fix (p,v) € TS". Consider the reflection operator R}V) : R™! — R™! which fixes pointwise the plane spanned by
{p, v}, and reverses all vectors perpendicular to p and v. Note that RI‘; is clearly an isometry from R"! to R*1,
In particular, since the standard metric on S™ is that which is induced from R"*! we deduce that R;I gn : ST — 8"
is an isometry. Furthermore, we see R;’)(p) = p and that (dR;)p(v) =v.

Now let y : [a,b] — S™ C R"! be the geodesic satisfying y(0) = p and 7(0) = v. By Lemma 2 we see that
Roy =y. In particular, we see that y([a, b]) € S" Nnspan{p, v}. So we see that the geodesic takes the form

v
vl

for some smooth functions ¢ : [a,b] - Rand s : [a,b] — R. Now we determine ¢ and s. Note that since p-v =0
and since 7 is lies on the sphere we have that

Iy (Ol = le(O)? + [s(O)* = 1.

y(t) =c(t)p +s(t)

12



So there exists some r € R such that for all t € [a, b] that c(t) = cos(rt) and s(t) = sin(rt). Since ||7(¢t)|| = ||v||
we find that r = ||v||. So we see that the geodesic starting from p in direction v is given by

sin(t[[v]))
vl )“

Now we can immediately read off what the exponential map is. We have for all nonzero v € T,,S",

ﬂn=mqmmm+(

. v
exp, (v) = v,(1) = cos(||[v|)p + Sln(IIVII)m,
and exp,(0) = p.

Let
V,:={veT,M: |v|<mn},

and U, :=exp,(V,) = $2\ {—p}. So we can write normal polar coordinates of the sphere as
(r,v) — exp,(rv).
Now we simply compute in these coordinates
g =dr?+sin?(r)ggt

Note that the injectivity radius is . This is clear from the expression of exp,(v) since exp, : V, — U, is
a diffeomorphism, but exp,(d SYT’psn(O,n)) = {—p}. Now we compute the rank of the linear map (d exp,), :
T,(T,S") — Texpp(v)s” for v € T,S". Suppose that v # 0 since we already know that (d exp,), = id. Identify

w € T,(T,S") = T,S" with the curve a(t) =v + tw; then,

+t
(cos(llv + tw|)p +sin(||v + twlI)u)

d d
(dexp,),(w) exp, (v + tw) i v+ owll

dt,_o
_ vow+ t]|wl? vow+ t]|wl?
T v+ twl[2
sin(||[v + tw]]) vow+ tlw|)?
v+ewll v+ tw]3
vew vew sin ||v|| V-
[

t=0

sin(||v + tw|])p + cos(||v + tw|)(v + tw)

sin(||[v + tw|)(v + tw)

t=0

= sin||v|lp + cos||v||v + w Wsinllvllv
il lIvIl> (vl IviI®

Now it is clear that rank(d exp, ), = n for all v € T, $" with ||v|| # k for k € Z. Also, we have that rank(d exp, ), =
1 for v € T, 8" with ||v|| = k= for k € Z since the map above simply reduces to multiplication by a scalar. L]

Definition 3. Let wy,...,w, € R" be linearly independent. Consider the equivalence relation, ~, on R" where
we say that z; ~ g, if there are m, m,,...,m, € Z with

n
21— 29 = E m;w;.
i=1

Now define the flat torus generated by {w;,...,w,} to be T" := R"/~. We make T" a smooth n-manifold as
follows: Suppose U, € R" is open and does not contain any pair of equivalent points. We then put V, := n(U,)
and @;a = (n|y ). Then (V,, ¢,) form a smooth atlas on T". o

Exercise 9. Same as Exercise 8 for the flat torus generated by (1,0) and (0, 1) in R2.

13



Let T? be the flat torus generated by (1,0) and (0, 1). Note that T? inherits the Riemannian metric from R?, and
is in particular locally isometric to R?. A trivial computation shows that the Christoffel symbols are

Ii, =0.
Hence, the geodesic equation becomes i(t) = 0. Now fix x € T? and then all geodesics are given by
r.(0)=(x+tv)/~,
for v € T, T?. In particular, we have that exp, : T, T?> = R? — T? is given by
exp,(v) =[x +v]..
Now we compute

d d
(dexp,),(w)= — exp,(v+tw)= — [x+Vv+tw]=[w].
de |- tli=o
In particular, we see that rank(d exp, ), is maximal for all v € T, T. Finally, we see that the injectivity radius of
exp, is exactly 1/2. m

Exercise 10. What is the transformation behavior of the Christoffel symbols under coordinate changes? Do
they define a tensor?

Let (x! : i€I)and (y* : a € A) denote two coordinate systems on some neighborhood of a manifold M. Note
that since g is a (0, 2)-type tensor we have that

. Ox' 9x
Similarly, we have that

~ap _ dy* dyP ij

© Oxt 9xJ
Now we compute
~ 3 [ox'ox
o= 57 (S r)
ox' ax} axk o [ axt ax’
e b))

Now substituting this back into the definition of Christoffel symbols in the x-coordinates gives us that
o los o
T = 58 (Sas,p +8p5.a — 8ap.s)
1(ayr ay® . dxt2 dxi2 dxke d [ 9xt dxk
= — —gll-’l ——g ik +g— -
2\ dxh dxh Oy dy6 dyp ot SRl gyp \ gya gy
+ dx's dxls dxks + o (9x®t dx)
dyP dys 9y 8isjaks T 8isjs dya\ dyb dyd
dx'+ 9xJ 9xhe 0 (0x4dx)
T\ Gy ayP ays Suisk T 8Ligy5 | Gya gy

_ 9y (i dx 6xk+ d%x!
© Oxi \JkgyagyB " gyadyB |
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The last equality follows from simple algebraic manipulations.

We now provide another (more elegant) method to derive the transformation behavior. Recall that in local coor-
dinates x = (x!,..., x™) the Christoffel symbols are given by

(VxY), =XY' + FjikaYk.

Now consider a coordinate transformation y = y(x) = (y*,...,y"). Let 3. = % and 8~J = aiyj. We compute
_rk
V3,0, =T;;0.
We now see that
V30, =T}
_ 8x"‘v dxP P
- dyi Oa 3y B
dx* ((dxP dxP
=—|=——V3+d,| =— |2
oy (33/1 K a(ayf) ﬁ)
_ Ox®9xP aykry 2%xP

= - - —— —3,0;.
Oyl Oy axr BT gyigyi TP

Now we conclude that

i _ 0x° axP oy . N ayk o9%x7
U 9yt dyi dxr P 9xr dyidyi’
which is exactly the same result as the first method (up to relabeling).

The important thing to note is that the Christoffel symbols are not tensors since their transformation laws are not
the same as those of any (r,s)-type tensor. [

Exercise 11. Let ¢y, ¢, : [0,1] = M be smooth curves in a Riemannian manifold. If d(cy(t),c;(t)) < i(co(t))
for all ¢, there exists a smooth map ¢ : [0,1] x [0,1] = M with c(t,0) = c,(t), c(t,1) = ¢;(t) for which the
curves c(t, ) are geodesics for all t.

Fix t € [0,1]. Note that since d(cy(t),c;(t)) < i(cy(t)) we have that the ¢,(t) € expCO(t)(i(co(t))). In particular,
since exp, () is injective on a ball (in the tangent space) with radius i(cy(t)) there exists a unique vector v, €
T.,(yM such that ¢;(t) = exp, () ;- Now we simply define ¢ : [0,1] x [0,1] — M via

c(t,s) = exp,1)(sv,)-
Note that
c(t,0) =exp, (0 v,) = co(t) and c(t, 1) =exp, (n(ve) = c1(8),

by choice of v,. Furthermore, by definition of the exponential map we see that s — c(t,s) = exp, (sv,) is a
geodesic for all t € [0,1]. Finally, we have that c is smooth since the exponential map is a smooth function of
both it’s base point and vector argument. ]

Exercise 12. Consider the surface S of revolution obtained by rotating the curve (x,y = e*,z = 0) in the
plane, i.e. the graph of the exponential function, about the x-axis in Euclidean 3-space, equipped with the
induced Riemannian metric from that Euclidean space. Show that S is complete and compute its injectivity
radius.

15



First we show that S is a closed subset of R®. Recall that we can parameterize using coordinates in R? via the
function ¢ : U € R? — R? given by
¢(u,v) = (u,e" cos(v),e"sin(v)),

where
U:={(wv)eR?:vel0,2m)}.

Note that since 8,(u)+ 3,(e*) = 1+e" # 0 and since e # 0 we have that ¢ : U — R?® is an immersion. To consider
the entire surface of revolution we consider the chart ¢ : U — R® given by ¢(u,v), where U = {(u,v) € R® :
v € [m,57/2)}; the transition functions are simply the identity map. Now consider a sequence {p, },ex € S that
converges (with respect to the Euclidean norm) to some point y € R3. Now for every n € N let (u,,v,) € U be
the coordinates of the point p,, € S. Since p,, converges, we see that (u,,v,) — (u,v) € U. By continuity of ¢, we
see that y = ¢(u,v) €S, and so S is closed. In particular, we see that S — R® is a proper embedding.

Let g denote the induced metric on S. We claim that ds(p,q) > dgs(p,q) for all p,q € S. Let ¢ : S < R3 be the
inclusion map. If y : [a,b] — S is a piecewise smooth curve from p to q in S then v oy is a piecewise smooth curve
from p to q in R%. Since

Lg()’) = Lgs(toy) = drs(p,q)

holds for all such y, we can take the infimum over all admissible curves on the left hand side to deduce that

ds(p,q) = dgs(p,q)- D

Now we use this to show that (S, dg) is complete as a metric space. Let {p, },ex be a Cauchy sequence in S. By (1)
we see that {p,},cy is also a Cauchy sequence in R® with the usual metric. In particular, p, — x for some p € R®.
Since S is closed, we deduce that p € S, and so (S, dg) is complete. By the Hopf-Rinow theorem we deduce that
(S, g) is geodesically complete.

Now we compute the injectivity radius of S. Visually, we see that S pinches off as x — oo, and so we should
expect the injectivity radius of S to be zero. Note that since S is geodesically complete, the exponential map is
defined on all of T,S for all p € S; therefore, computing the injectivity radius comes down to computing where
exp, is injective. Recall that ||w|| = L(exp, tw|.c[17) for v € T,S. Now fix a point x € R and consider the point
p = (x,e*,0) € S. Note that in the direction w = (0,0, 1) € T,S the curve traversed is a circle with radius e*. So
we see that 1g(p) < e*. Now by considering a sequence x,, — —o0 we see that

0<(S) < lim tg5(p,) =0.
n—oo

So we see that the injectivity radius is zero. [

Exercise 13. Show that the structure group of the tangent bundle of an oriented d-dimensional Riemannian
manifold can be reduced to SO(d).

Let M be a d-dimensional oriented Riemannian manifold. First we show that the Riemannian metric allows us to
reduce the structure group to O(d). Let {U,} be an open cover of M which trivializes the tangent bundle TM.
In particular, over U, we have sections s, ...,s4 : U, = TM such that {s;(p) : i =1,...,d} is a basis of T,M
for every p € U,. Now consider a point p € U, N Ug and let t;,...,t4 be the corresponding sections over the
coordinates in Ug. In particular, we have that {t;(p) : i =1,...,d} is another basis for T,M. Now we have a
change of basis matrix g,4(p) which transforms {t;(p)} to {s;(p)}, i.e. s{(p) = gup(p)t;(p) fori=1,...,d.

Now we can use the Riemannian metric, which is simply a inner product on T,M, to apply the Gram-Schmidt

process to obtain an orthonormal basis of T,M. So without loss of generality, we can assume that both {s;(p)}

and {t;(p)} are orthonormal basis of T, M. Now we see that
&)= (5:(p),5;(P)), = (8ap(P)t:i(P), 8ap (P)t;(P))

16



where (, ), is the Riemannian metric on T,M. Furthermore, we have that

55 = (tl(p)) t](p)>p;
and so we deduce that
(8ap(P)ti(P); 805 (P)1;(P)), = (t:(P), (D)),
That is to say that g,z preserves the Riemannian metric, and is in particular an element of O(d).
Now since M is also oriented, we choose that sections corresponding to each atlas in a unique way such that
the transition functions satisfy detg,s(p) > 0. Since the Gram-Schmidt procedure above preserves the sign

of the determinant, we can apply the above process to reduce the structure group of the tangent bundle to
0(d) N GL*(d,R) = SO(d). n

Exercise 14. Can one define the normal bundle of a differentiable submanifold of a differentiable manifold
in a meaningful way without introducing a Riemannian metric?

Yes, one can define the normal bundle of smooth submanifold of smooth manifold in a meaningful way without
introducing a Riemannian metric. More generally, one can define the normal bundle of an immersed submanifold.

Leti: M — N be an immersion. We now define the normal bundle via the short exact sequence
0—>TM —i"TN — Ny, — 0,

where Ny/y, :=i*TN/TM. Here i*TN is the pullback of the tangent bundle of N back onto M; this is simply the
restriction of the tangent bundle of N to i(M) if M € N. Explicitly, if M € N is an embedded submanifold, then
at some point p € M the fiber of the normal bundle (Nyy), is simply the quotient vector space T,N /T,M. [

Exercise 15. Let M be a differentiable submanifold of the Riemannian manifold N. M then receives an
induced Riemannian metric, and this metric defines a distance function and a topology on M. Show that this
topology coincides with the topology on M that is induced from the topology of N.

Let g denote the Riemannian metric on N. Leti : M — N be the embedding of M into N. Let g := i*g denote the
induced Riemannian metric on M. Recall the definition of the distance functions:
dy(p,q) =inf{L(y) : v : [a,b] — N piecewise smooth ,y(a) = p,y(b) = q}
dy(x,y)=inf{L(a) : a:[a,b] — M piecewise smooth , a(a) = x,a(b) = y}.
Now consider some local coordinates (x?!,...,x™) on some open neighborhood U € M where m = dimm. Now
fix some point p € U and let 0 < ¢ < 1 be small enough such that B := Bga(x(p),&) € U. Now let y € B and
v € R™ and note that
gv,v)=1"g,(v,v) = g,(di,(v),di,(v)),
and so there exists a positive constant A > 0 such that
1, .. ~ P .
ﬁlldl(V)Il2 < g vy < A%di, (IR
Now since i : M — N is an embedding we have that di is injective for all p € M and that the topology on i(M) =
M C N coincides with the induced topology of N. Since di, is nonsingular (and since i is a diffeomorphism), we

have that that there exists some constant u > 0 such that for all point y € B,

1 .
EIIVII2 < ldi()I? < p?llvIi®.
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So we deduce that

s < By < AP

in B. Now fix x,y € B and let v : [a, b] — B be a piecewise smooth curve (into the parameterization of M) with
y(a) = x and y(b) = y. In local coordinates we have that

b b
1 1
L(y)= ir(O)yi(t)yi(e) dt = — (Ol dt = —||x =yl
(r) L V&GO (6) de = P L Iy (o)l dt = o llx —ylI
So by taking the infimum over all such admissible curves in the definition of d(x, y) we see that
1 ~
X~ Yl =dCey) < L) < Apllx =y,
i
where ¥ is simply the straight line between x and y in B. Since this holds we have that
o
Bg | x, A_,u C Bgn(x,0) S Bg(x, Auod)

for all & < g/(uA). In particular, we have that the topology on M coincides with the topology on N. Furthermore,
since i is a homeomorphism we conclude by noting that the topology on M = i(M) also coincides with the induced
topology from N. m

Exercise 16. We consider the constant vector field X(x) = a for all x € R*™*. We obtain a vector field X (x)
on S" by projecting X (x) onto T, S" for x € S". Determine the corresponding flow on S".

Let 1, be the (n+ 1) x (n + 1) identity matrix. Note that the projection onto the tangent space T, S" is simply
given by
P.:=1,,—xx' :R"! > T.S"

Now we see that 5
X(x)=P,X(x))=P.(a)=(1,4, —xxNa=a—xx"a=a—{(a,x)x.

For any p € S", the flow associated to X is given by the solution to the following ODE

7(6) =X((1))
7(0)=p.

Expanding this out we see that v : I — 8™ must satisfy y(t) = a—{(a, y(t))y(t). Note that there are two fixed point

solutions given by the initial conditions satisfied by v,(t) = +a/||a||.

Fix a € R™"!. By considering an SO(n + 1,R) action on the usual coordinates of R*"! we can assume that we
have Cartesian coordinates such that a = (ay,0,0,...,0) € R*!. We begin by solving the flow map for any initial
condition on the circle C = {x = (xg,x1,0,...,0) : xg + xf =1, x, = 0} € S". The ODE above reduces to the
following two real valued ODE:s:

Yo(t) =ag—aeyo(t)?
71(t)  =—apyo(t)y,(t).

It isn’t hard to find that solutions are given by y,(t) = tanh(at —c;) and v,(t) = ¢; sech(at —c,). Solving for the

constants ¢, and ¢; in terms of the initial conditions x = (xg, x;,0,...,0) € C we find that ¢, = —arctanh(x,) and
X1
= .
V1-x2
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We can now take the solutions on C and act on them using an arbitrary SO(n+ 1, R) group action which preserves
the a-axis, i.e. any rotation around a, and we will generate all of the integral curves starting from any initial point
on S". So given any point p € S" the solution is given up to an SO(n + 1, R) action by the solutions on C. This of
course hits all initial points since SO(n + 1, R) acts transitively (and isometrically) on S". [

Exercise 17. Let T be the flat torus generated by (1,0) and (0, 1) € R?, with projection 7 : R> — T. For which
vector fields X on R? can one define a vector field 7, X on T in a meaningful way? Determine the flow of X
on T for a constant vector field X.

Since 7 : R? — T is a local diffeomorphism with d7 = id locally, we see that a vector field X € ¥(R?) must be
1-periodic for n,X € X¥(T) to make sense.

Let X = (a;,a,) be a constant vector field on R2. This induces (via the pullback of ) a constant vector field
a

le =a a—xl + as a—xz

on T, where (x;, x,) represent the local coordinates of p. The trajectories in R? are simply straight lines in the
direction (a;,a,). When we factor the flow map of X in R? by Z? we see that the effect on these straight lines is
as follows: when a trajectory hits the upper edge of the square [0, 1]? it continues from the corresponding points
on the lower edge; when it hits the right edge it continues from the corresponding point on the left edge, and so
on. So the flow map & : T x R — T is given by,

@((xl,xZ), t):(xl +a1t,x2+a2t) mOd 1.

Note that if (a;, a,) is irrational then the flow map is dense in T for any initial condition. Otherwise, the flow map
hits each edge at a finite number of points, and is therefore, in this case, periodic for any initial condition. n

Exercise 18. Compute the formula for the Lie derivative (in the direction of a vector field) for a p-times
contravariant and g-times covariant tensor.

Fix a smooth vector field X on M, and let & denote its flow map. Let S € I'(TM) and T € F(T;M ). Then,

(@) (s®T),=((2)S), ®(®)T),
for any point p € M. Now by differentiating at t = 0 we have that
L(SOT)=%S®T +S®%T.

In particular, consider a monomial tensor field written locallyas T =X; ®---®---X, ® a' ®---® a’. Then we see
that

r S
,%XT=ZX1®---®$Xxi®---®xr®a1®---®aS+ZX1®---®Xr®a1®---,<£Xaf®---®as.
i=1 =1

Now by considering the (r, s)-type tensor field % T as a multilinear map over the ¢ °°(M) module Q(M)" x X(M)*
we see that for any smooth 1-forms ((0, 1)-type tensors) a!,...,a" and smooth vector fields Y7, ..., Y; that for any
(r,s)-type tensor T that

.
(TN, Yy, V) =X(T(a, ., Yy, V) = D T(ah, . el Yy, L Y)
i=1

S
=Tl 0 Y Y ).
j=1
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This is fairly easy to compute in coordinates since we know that %xY; = [X,Y;] and for any 1-form a = ajdxj
we have that Zxaz(%Xi+g—§wi)dxj. .
Theorem 4. Let X € X(M) be a vector field on M. Then the Lie derivative ¥y is the unique derivation of the tensor
algebra T (V) with the following properties:

o & f =(df,X)=Xf forall f € €°°(M),

o Y =[X,Y]forall X,Y € X(M)

e ¥y commutes with the contraction operator tr : T:I%M - TM.

Exercise 19. Show that for arbitrary vector fields X, Y, the Lie derivative satisfies

‘ZX ofy _EY ng = E[X,Y]'

First, we show that the Lie bracket of vector fields satisfies the Jacobi identity. We have
[[X,Y],Z]1=[XY -YX,Z]=XYZ—-YXZ—ZXY +ZYX.
On the other hand, we have that

[X,[Y,Z11+[V,[X,Z]]=XYZ —XZY —YZX + ZYX
+YZX —YXZ—ZXY +XZY.

So we have that
([X,Y)z]=[X,[Y,Z]]+[Y,[Z,X]].

Now by using the anticommutativity of the Lie bracket we have the desired Jacobi identity

[[X,Y),Z]+[[Y,Z],X]+[[Z,X],Y]=0.

Now note that for any vector field Z € X(M) we have that
LynZ=[XY]2] and (Zo%)Z— (% 0%)Z=[X,[V,2]]-[V,[X,2]].
So in particular, using the Jacobi identity and the anticommutativity of the Lie bracket we have

‘S"ﬂ[X,Y]Z - ("%X ° 2y)Z + (gY ozY)Z = [[X:Y]:Z] - [X: [Y7Z]] + [Y: [X:Z]]
=[x, Y] Z]1+[lY,z],X]-[[X,Z],Y]
=[x, Y] z]+[lY, 2] X]+[[Z,X],Y]
=0.
So we have that [ %y, %y ]1Z = %x y1Z. Now note that [ %%, %y] is a derivation the tensor algebra since it is

the commutator of derivations. Finally, since the contraction commutes with both ¥y and %, we have that it
commutes with Z[x y1. So by Theorem 4 we have that [ %y, £y ] = £k y; for all (r,s)-type tensor fields. n

Exercise 20. Prove Corollaries 4.2.3 and 4.2.4 below with the arguments used in the proofs of Theorem 1.4.5
and Corollary 1.4.2.
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Corollary 4.2.3 (Gauss Lemma). Let p € M, v € T,M, c(t) := exp, tv the geodesic with c(0) = p, ¢(0) = v
(t €[0,1]), assuming that v is contained in the domain of the definition of exp,,. Then for any w € T,M

{(v,w) = ((d exp,),(v), (d exp,),(w)),
where (d exp,),, the differential of exp,, at the point v, is applied to the vectors v and w considered as vectors tangent

to T,M at the point v.

Proof. Let p € M be fixed. Let {e;}!_, be an orthonormal frame of the tangent spaces in a neighborhood of p.
Note that for every point x € im(exp,) we can uniquely write

X = exp, (xiel-).

Now we see that the family of functions {x"};?:l for a local coordinate system in a neighborhood of p. Clearly, in
these coordinates we have that the geodesics are given by y(t) = tv for any v € T,M. In particular, by taking
v = ¢; we deduce that

890) = 5(0) 55 (0)) = fene) =5y
This equality only holds at the point p € M. Note that the geodesic equations are given by
I‘i’}(y(t))vivj =0.
If we multiply this equation by t? we deduce that
Fi’;(y(t))xixj =0. (2)

Since the tangent vector has a constant length along y(t), i.e. g;;(y(£))v'v/ = g;;(p)v'v/ = viv/, we can multiply
the above by t? to obtain

gijx'x) =x'x!

along y(t). Now by expanding out the definition of the Christoffel symbols in (2) we deduce that
1 o
3 (8,8 + 8:gjk — B¢8i;) x'x) = 0.
Equivalently, that is to say
| 1 o ‘ .
0;gikx'x! = Eakgijxlxj = Eak (gijx'x)) — gy = x*F — gy
Note that on the left hand side we also have
ajgikxixj = aj(gijxi)xj - gikxi:
and so we deduce 3;(g;x")x/ = x¥, which implies
8j(gikxi —xM)xl = 0.
Hence, along y(t),
d i_ ok
—(gix'—x")=0.
dr (glk )
Since at p we have g, x' — x* = 0 we deduce that in the domain of exp,, that
giext = xk.
Now the result immediately follows:

((dexp,),(v), (dexp,),(W)) = g;(v',...,v" W'w = (v, w).
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We provide a second proof that is also based on the ideas in Theorem 1.4.5 and Corollary 1.4.2

Proof. Lets — v(s) be a smooth curve in the domain of exp,. Now define y(t,s) := exp,(tv(s)). We regard y as
a variation of the geodesic y(t,0) = exp,(tv(0)). Now we compute the energy of the geodesic t — y(t,s) for all
s in the domain of v:

1

1 0 2
() ZJO ¢ 21009, 21(09)
1 (dy ay )
- Zg(at(ofs)ﬁ at(o:s)
= ZIVOIP
Now consider the first variation of the energy,

1
E(Y(;S)) = f 0dt+ gy(l,O) (at'}/(t’ 0): as}/(lﬁs)) - g)/(0,0) (at'}/(o: O)’ 0) .
s=0 0

)
ds
From our first computation we note that the energy is constant, and so the first variation is identically zero; hence,

0= gy(l,O)(at}/(l: 0); as)/(lx 0)):

where J;y(1,0) is an arbitrary tangent vector of exp,(|[v(0)[|dB(0,1)). So we have Gauss’s lemma forw L v. Now

let w € T,M be any vector. Write w =w' + w', where w' is orthogonal to v. Now we see from the definition of
exp, that

((dexp,),(v), (d exp,),(w ")) = (v,w).
Since we proved the result for w', by the linearity of d exp, we are done. O

Corollary 4.2.4. Let p € M, and let v € T,M be contained in the domain of the definition of exp,, and let c(t) =
exp,(tv). Let the piecewise smooth curve y : [0,1] — T,M be likewise contained in the domain of the definition of
exp,, and assume y(0) =0, y(1) =v. Then

Ivil = L(exp, (tv)l;efo,17) < L(exp, oY),

and equality holds if and only if y differs from the curve tv, t € [0, 1] only by reparameterization.

Proof. Lety :[0,1] — T,M be a smooth curve, whose image is contained in the domain of exp,, with y(0) = 0
and y(1) = v. So we see that exp,, oy is a curve connecting the points ¢(0) and c(1). Now consider the unit normal
along y(t),

—_ @

A= on

Now we see that
7(t) = (7(6), a(t))a(t) + B(8),
where B(t) L a(t) for all t € [0,1]. Now by Gauss’s lemma we have
7(t) = (d expp),)7(t)
= (d exp, )y ((7(t), a(t))a(t) + B(t))
= (7(t), a(t))(d exp,),na(t) + (d exp,), ) B(t).
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Now we can compute the length of exp, oy as follows:
1 1 1
L(exp,oy) = J Iy (DIl = f 1(7(£), a())(d exp,),(Ha()ll dt = J Iy (2), a(6))]
0 0 0

1 1
zJ (70, (o) dr=f £ (0,a0) dt = (1), a().
0 0

In the above we used the fact that ||a(t)|| = 1, which implies that (a(t),a(t)) = 0 and in turn (y(t), a(t)) = 0.
Now observe (y(1), a(1)) = ||y(1)]| is the length of exp,,(tv)lcefo,1]- S0 we have shown
vl = L(exp,(tv)l:efo,17) < L(exp, 7).

Since the length functional is invariant under reparameterizations, we see that if y(t) is a reparameterization of
tv then equality holds. On the other hand, if y(t) differs then we see that $(t) in the above will be nonzero for
some t € [0, 1] which will make the above inequality strict. So we see that the remark about equality is true. [
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Chapter 2. De Rham Cohomology and Harmonic Differential Forms

Exercise 1. Compute the Laplace operator of S" on p-forms (0 < p < n) in the coordinates given in Section
1.1.

The coordinates on S" given in Section 1.1 are those given by stereographic projection. Explicitly, on U; :=
S™\ {(0,...,0,1)} we put

f1(&,9) = (£1(E,9), ., f(E,9))

e 51 gn
and on U, := 8"\ {(0,...,0,—1)} we put
f2(&,8) = (£ (E,5), ., f1(E,9))
()
C\1+sT 7 1+s )’

First we compute the metric tensor in U;. Note that the inverse of f; is h; : R" — S" given by

2x lxc]]? =1
lxll2+1" [Ix|2+1)°

h(x) = (n(x),.... yar (X)) = (

where x = (xq,...,x,,) € R". Now we compute fori =1,...,n,

2 2
1+ [|lx]|* —2x; - Z X X;
1

dy;(x)=2 ——————dx;.
Y= 2 e A+

J#i
Similarly, we have that

4 n
dYna(x) = —(1 X2 indxi.

Now we see that since (dy;),(0;) forms an orthonormal basis of T}, (,)S" that the induced Euclidean metric on U,
is simply given by

n+1

4 n
= d l®d i T o dxl®dxl
8 ; TRy (1+||x||2)2;

Now we compute the exterior derivative in these x-coordinates. First we see that for f € € °°(S") that
n
of
df = Z ox; dxi’
i=1 Y

where of course by % we mean a(g_;?l). Similarly, if we consider a monomial p-form a = fdx; A---A dxip we
have that .
of
da= Z dej Adxi A+ dxip.

j=1 Xj
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Now we compute the Laplace-Beltrami operator (A = dd* + d*d) on functions in these coordinates. We see that

n

*xdf = *Z %dxi

i=1 t

—Z( l)l“,/det(gu)g” fdxl cAdx A Adx,

. 2 1+|x]2\* af —
= -1 H'l( ) 2L dxs A Adxs A---Ad
;( ANCFY e 2 ) ax ! i o

i

: . 2 "2 5f —
= -1 l+1(—) 2.4 oo Adxs Ao Ad
;( PN TRE) Fedan e Adxaadx,

and now

n ; 2 TlZaf _
d*df :d(Z(—l) +1 (m) 8)(‘ Xm -/\dxi/\m/\dxn)

n

n—2 af
= dx; A Ad
lZ ax; ((1+||x||2) ax, ) n

1

n n—282f 2 n—1 af
= — —(n-2x; | —— ) == |dx;A---Adx,.
Z((anw) FP )x'(1+||x||2) ox; ) o

i=1

By applying the Hodge star once more, we obtain

n 2 2f 2 n+1 af
d+df = - (—=—) L )ax n---nd
i *(Z((annZ) il G M LSO

i=1

AR EIRWAN 2 \"2aF 2\ af
_( 2 )(;(anw) a_xi‘(”‘z)xi(1+||x||2) a_xi)
&1l 9% 1+ xl2) af
X (H) S e (PP

L

So we see that the scalar Hodge Laplacian in these stereographic coordinates on the sphere is given by the above:

(1R e 1+Ix]I*) of
Aof —Z(T) ﬁ‘(”‘z)Xf(T)a—xi-

1

Now we move onto the more general case of p-forms. First note that since g is conformally equivalent to the
standard Euclidean metric dx we see that on p-forms that

2 n—2p
*, = —— *dx -
§ (1 + IIXIIZ) o

Leta=fdxil/\---/\dxip be a p-form. Write I = {i; <---<i,}and I*:={1<2<---<n}\I={k; <--- <k, }.
Now we compute

*da = *Z j—fdxj /\dxil /\"‘dxip
jgr OXi

n—2(p+1) _
_Z( (1+||x||2) )sgn({j,kl,...,ks})dxj/\dxkl/\---/\dxks,
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f 2 n—2(p+1) ) _
dxda=d ;(a—(m) )sgn({J,kl,...,ks})dxj/\dxkl/\---/\dxks
I [ B T
L 9x; 1+ ||x||2 r

d )
aZf 2 n—2(p+1) 2 n—2p—1 8f
== (—— —(n—2(p + 1)x; dx .
.(a (=7) o2 (i) A e

J

Finally, we compute

aZf 2 n—2(p+1) 2 n—2p—1 Bf
*d*daz*(;(ﬁ(lﬂlxllz) —(n—2(p+1))x1'(m) EP dx e
Jjé¢I J

J

) n—2(n—p) aZf 2 n—2(p+1) 2 ) —2p—1 af
=\ — —(n—2(p + )x; [ ——— d
(1) ;(W? (57 =20+ () o )

J

n—2p—2 2 n—2 n—2p—1
1+ ||x|? af( 2 ) P ( 2 ) P of
= — h —(n—2 1))x;
( 2 D ] Gl e G| S o) B ol B

52 232 2
-S(E5 () e () 2 o

jél

Now we see that

82f 1+ ||x]? 2 1+ |x]? of
n(p+2)+1 E : ,
Pda=CU j¢I (3ij ( 2 ) (n=2(p 1))x]( ) dx )

2 2\2 2
=(—1)”P+1Z(% (ﬁ) —(n—Z(p+1))xj(1+!x” )j—j:j)dx,.
J

eI

The computations for dé are very similar. We compute for a € QP (M):

*xo = f dxl-l/\“-/\dxip

2 n—2p
:(—1+||X||2) fdxkl/\-../\kar,

and
dx, N---Ad
1+||x||2 Crax, x"’)

d~a= (
n—2p 2 n—2p+1
—(n—2 | — dx: Nd N |
Z( (1+||x||2) (n p)xl(1+||x||2) f) X A AXpey Ao A AX
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Similarly, we have

of 2 n—2p 2 n—2p+1
= ax; —(n=2p)x;| 7= dx; Adx, A---Ad
*d xa *(;(3XA(1+||X||2 (n P)Xl(1+||x”2) fldx; Adxg, A-+- ANdxy,
2 n 2(n—p+1) a 5 n—2p ) - N
) —(=2p)x;( s dx Adx. A Adx,
(1+|le|2 ax; 1+||x||2) (n p)xl(1+||x||2) fldx; ndxi A= Adxg)
Sl Ll | ey n—2 n—2p+1
L+ )2\ 6f( 2 ) » ( ) ) 1y
x; —(n=2p)x;\ 70w da Adx: A+ Adx
( 2 dx; L1+ ||x||2 (n—2p)x; T+ IxIP fdx; Adxy - Adxg

1 2 1 2 —
BT i

il
1 2 1 2 —
+ ||x|| ) —(n—2p)x, (%)f)dxi Adx; A=A dxip)
leI

22 2
8xl 2 ! 4
92 272 2 2
f 1+||x|| af (1+IxIP , 1+ IxI2 af
( +23xi 2 (n 2p)XL 2 axi

1+ [Ix]|? + 2x2
—(n—2p) — foldxy Ao Ndx;

NMV

dxd~a=d

”\%QM

I
~M M /—\

So we have shown that

PR 1+x22 d 1+ ||x]|? IESE AN
o S4B () (2}

i€l

1+ [Ix]1? + 2x?
~(n—2p)[ ———— | | dx, A ndx,

Concluding, we see that the p-form Laplacian on S" in stereographic coordinates is given by

2 22 2
Apaz(_l)npﬂz(%(ugxn ) _(n_z(p+1))xj(1+!x|| )if:)d .
J

JEI

9% (1+1xIP\* |, af (1+ x| L+Ixl*) of
+ (=t ST EL 2T )y o 8L [ 2EREL ) op)x [ X | 2L
-1 Z(axf( 2 ox; 2 (n=2p)x; 2 ax;

i€l

1+ [Ix]1? + 2x?
—(n—2p) (f)f)dxz-

It is easy to check that when p = 0 that this collapses to what we found at the beginning of this exercise.

Note that in these coordinates we have that
1+ [lx)?)?
A, gna = — (Ap,Rna —(n—2p)d(ty,a) —(n—2p —2y,da+2(n—2p)Vy Ag,a—2Vp A 5(1) s

where A, g is the Hodge Laplacian on p-forms in standard Euclidean coordinates, and
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Exercise 2. Let w € Q!(S?) be a 1-form on S2. Suppose that

Pro=w

for all ¢ € SO(3). Show that w =0.

Let w € Q'(S?) be such that ¢*w = w for all ¢ € SO(3).

First, we claim that w has at least one zero. Assume, for the sake of contradiction, that w, # 0 for all p € M.
Now consider the vector field w* € X(S?); that is if w = w;dx" in local coordinates then w” := g w;d;. Note
that given this definition we have for any other vector field X € X(M) that

(w”, X) = w(X).

Since w is nowhere zero, we have that w? is nowhere zero as well. However, this is a contradiction with the
Poincare-Hopf theorem since

D ind, ()= 2(8) =2,

peS?
and so the sum cannot be empty, i.e. w” must vanish somewhere on S2.
Now let p € S? be any point such that w, = 0 (at least one such point exists by the above argument). Recall
that SO(3) acts transitively on $2; that is to say that for every x,y € S? there exists some A € SO(3) such that
A-x = y. Now fix any point g € S? and let ¢ € SO(3) be the group action such that p(q) = p. Let X, Y € ¥(S?).
We compute

where in the last step we used that w, = 0. The result follows since ¢*w = w, and so
wg(X,Y) = (¢ w)y(X,Y)=0.

Since q € S? was arbitrary we deduce that e is identically zero. [

Exercise 3. Give a detailed proof of the formula

* A=A x.

Throughout this problem we write 6 for d*, this is both a common symbol for the codifferential and helps differ-
entiate it from the exterior derivative.

Let 1 < p < n. We see that
*pAp = *p0pi1dp +xpdy 10

= (—1)"@DH *p *nplnp—1*pr1dp + (—1)"erDH *p dp1 *npi1 dnp*p

= (—1)n(n+p)+1(—1)(H_P)pdn—p—1 *pi1 dp + (—1)yrle+b *p Ay 1 % pi1 dnp*p
= (1) I s dy g x et Dy xp HED I d (1P
= (—1)rerH *p dp1 *npi1 dnp *p +(_1)n(p+1)+1dn—p+1 *p1 dp *
= S padup *p o p 160y

=(6pps1dnp + dnp-160p)*p

=A

n—p *p

n—p *p -
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Exercise 4. Let M be a two dimensional Riemannian manifold. Let the metric be given by g; j(x)dxi ® dx/

in local coordinates (x!, x?). Compute the Laplace operator on 1-forms in these coordinates. Discuss the case
where

gij(x) = AZ(X)&']‘

with a positive function A2(x).

First we compute the Hodge star on all basis forms. We know that

*(1) = ,/det(gl-j)dx1 Adx?,

1
Jdet(g)

Recall the classifying property of the Hodge star: wAxn =g /\p(T*M)(w, 1) * (1), where the metric on /\p (T*M) is
induced by g~' = (g"). Hence,

dx! Axdx! = g“,/det(gij)dx1 Adx?, dx? Axdx! = glzw/det(gij)dx2 Adx?.

So we deduce that

and so
*(dxt Adx?) =

1
*xdx! = y/det(g;;) (g" dx?* — g'*dx') = W (g12dx" + gppdx?).

Similarly, we find that

*dx? = \/ det(g;;) (glzdx2 —gzzdxl) =—

(glldx1 + glzdxz) .

1
y/det(g;;)

Now we can easily compute the Laplace operator on 1-forms. Consider a simple 1-form a € Q!(M). In these local
coordinates write a = fdx! +hdx?, where f,h € €°°(M). Now we compute

Sda=—xdxd(fdx'+hdx?)

_ of . 1, Gh 4 2
——*d*(mdx /\dX +ﬁdx /\dX)
dh  of 1 2

S o) LU

o ;(ﬂ_ﬁ)
- Jdet(g,) \ax1  ax2

() (L) (5 2 )
9x, /det(gij) dx!  Ox2 /det(gij) d(x1)2 Idx20x1

NS 1 (ﬂ_ﬁ_f)+ 1 (32h_32f)dxz
axZ ‘\/det(gij) axl axz \/ng]) 3xlaxz 3(x2)2
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Now expanding this out give

2 1 oh af 1 azh azf
5da=—|:1/det(gij)gu(a_x1 (—))(ﬁ_ﬁ)Jr ( Ddxz

det(g;) \9(x1)?  dx2ax!

_ (ﬂ_f’_f L1 ( o*h 9% ) !
9x; \ fdet(g;) J\ox!  9x?) " [det(g;) \O(x1)? 9x?dx!
f

(&= )
+mg(i(%)(;_h_§_) L (o ))d
(&= )

+

Jdet(g,) \9x1dx2  3(x2)?

1 (ﬂ _of

y/det(g;;) dxt  Jx?

For simplicity we write |g| := 4/det(g;;). Similarly, we compute
dsa=—dxd+a=—dxd(/det(g;) (fg'ldx' - (f +h)g'2dx> —hg?dx"))

=d*[(fg" a,lgl+g"Iglof + flgld,g™t —hg®d,|g| + g*Ig|0oh + hig|,g%%) dx! A dx?
+ ((f +h)g'28,1gl + g"21gl(8Lf + 81h) + (f +h)Igldrg'?) dxt Adx?]

1 2%h o%f
+ - dx!
[det(g,;) Ox19x2 0(x2)? )

1
—d (|g—|(fg“32|g| 18" glaof + flglarg" —hg?d,lg] + ?2Ig|dh + hlgldg
T + g8, gl + £2IgI(Bf + A+ (F +h)lglag'))

After expanding out this (very long) expression we obtain that that the Hodge Laplacian on 1-forms given in local
coordinates is:

dx! &1 Jdx2

1 981 981 981 981 982 982 of oh
Aja :_m [(812822% “8nsny ., —2¢2, 2 +2811g12ﬁ + 811812 : )( )

x1 Jdx?2 OJx!
o2f o2f
3 2 2
+2 (812 - 811812822) FREIY N 2 (gllglz - 811822) —8(x2)2

3 a%h 5 2 2%h 1
—2 (812_811812822) m +2(811g12 _g11g22) 9x18x2 dx

1 981 2gn 9812 9812 982 982 of oh
- (det(g,,) [(géz EPs _glzgzzﬁ_z&zgzzﬁ +2¢3, 32 +g11gzzﬁ_guglzﬁ)(___)

Jdx?2 OJx!
o%f o°f
+2(gfzg22—g11g§2)m—2(832_811812822)m
32h 9%h
_2(8122822 —gugfz)m + 2(8?2 _gllglzgzz)axlaxz} dx?

Now we specialize to the case when the metric is conformally equivalent to the Euclidean metric, i.e.
2
gij(x) =1 (X)5ij,

where A2 is a sufficiently smooth positive function. We have that all of the diagonal terms drop out since g;, =
g21 = 0. Furthermore, we see that

det(g;;) = (A%).
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Just by removing all of the nonzero terms we have

1 dgn 2 082 of oh 2 o%f 2 —82h !
sur=gp| (mnen it - 52 ) (75 - )+ 26him gt ~2ehsmz g | 4

1 » 98n 98 \(df oh , O AL 2
_F[(gzz oxt 882G [\ Gar T ar ) T HSngag,e A nsag gy | 4
By using the fact that g, = g,, = A? we further simplify to see that
K] aZ 2
Aa=— ﬂ(_f_ﬂ)_& f__ O |40
A3 9x2\ 0x2 9x2 2\ 9(x2)2 OJxlox2

4 ax(ah 8f) A 8% 32h ,
===z |+= - dx?.
23| oxt\axt  ax2) 2\ oxiox? a(x1)e

Exercise 5. Suppose that a € H’}’Z(M ) satisfies
(d*a,d*p) +(da,dp)=(n,¢p) forall ¢e€QP(M),

with some given 1) € QP(M). Show that a € QP(M), i.e. smoothness of a.

Note that since d and d* are formal adjoints over H;’Z(M ) this question says that a is a weak-solution to the
p-form Laplace equation, i.e. Aya =7 in the sense of distributions, where a € H;’Z(M ).

We prove the following elliptic regularity estimate:

Theorem 5. Let f € H*"'(M), and u € H*(M) a weak solution to Lu = f, where L = A+X for some X € PDO(M).
Then u € H*"'(M), and
lull e < CllAUZc + CllullZ,, 3

for all u € H**'(M)nH(M).

Proof. First we prove (3) for k = 0. Note that for u € H'(M) that (Au,u) > C||u||12{1(M) for some constant only
depending on M. We also have

Cc 1
|(Xu,w)| < Cllullg lullz < = ( ellullZ: + =ull?, ).
2 €

So we have that

(Lu,u) = Cllull, — Cllull2,,  forue H'(M).

Hence,
lull?: < C(Lu,u)+ Cllull?,.

By Cauchy’s inequality we have
2 , C 2
(Lu,u) < CllLully- llulla < Cellully: + Zl1Aulf-..
Now by taking & small enough, we can absorb the ||u||?11 term to obtain

l[ullf < CllLullf - + Cllull?..
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Now we prove the result by induction on k. Given that u € H'(M) and Lu = f € H*"}(M) implies u € H**(M)
and that (3) holds, suppose that u € H(M) and Au € H*(M). We already know that u € H**!(M), and we want
to prove that u € H**2(M). First note that for any ¢ € €°°(M),

Lpw) = p(Lu) +[L, ¢ Ju,

since the commutator [L, @] is a first-order differential operator, the inductive hypothesis together with the ob-
servation that u € H**'(M) implies L(pu) € H*(M). So we can localize our analysis.

Suppose that u € H**1(M) satisfies Lu = f € H*(M) is supported on a coordinate neighborhood U. Now we can
apply (3) with u replaced by

Ojpu(x)= % (Tj’hu(x) - u(x)) = % (u(x + he;) —u(x)),

where e; are the standard coordinate vectors in R". Now take any 1 < j < n, and we have
18 pttll e < CILE; pullfc + CllullZin < CUIS;pLullZcs + CIIL, &4 ullZucs + CllullZe, -

Now we estimate the commutator in the above inequality. For a function a € 6 °°(M) consider the multiplication
operator M, : H*(M) — H*(M) given by M, p(x) = a(x)f (x). Now we see that

[My,0;,]v= ~Ms,,4)© TjhVs
so in turn
My, 8 pIvIlax < Cllvlige,

in turn
L, 6 p Jullger < Cllullgre.

Using this inequality, we deduce that
16 pull?en < ClILull?, + Cllull? -
Sl H H

Passing to the limit as h — 0 gives

aa—“ € H*1(M).

Xj

Since this holds for all 1 < j < n we have that u € H**?(M). So the desired result is shown. O

Using the above theorem, we immediately deduce (using a bootstrapping procedure) the regularity when p = 0,
i.e. when we are dealing with the scalar Laplacian on M.

To use the above result for the Hodge Laplacian acting on p-forms, we first establish a coercivity type condition
on A and prove a decomposition which will allow us to use the above elliptic regularity proof.

In local coordinates, we can write the Hodge Laplacian on p-forms as
An = g (x)3;8m + Yy, @

where Y; are first order differential operators. This decomposition follows since the symbol of the Hodge Laplacian
is given by o »(x, ) = ||&||?id. Now let 1 be a p-form in H!(M; /\p M). Cover M with coordinate patches U;, and

let ¢; € 6,°(U;) such that ng]z =1.So

(An,m)= D> (Al?n),m) = > (Alg;n).m) +(Yn,m),
J j
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where Y is a first order differential operator given by Y = > [A, ¢ ;1 The local coordinate expression (4) and
integration by parts yields B
(A(e;n), 9;m) = CllenllZ, —Clle;nll?..

Summing this inequality gives

(An, ) = Cyllnllf — Csllnlif, — Call Yull2llull 2.

2

Now the product in the last term is dominated by ezllulli,1 +(C/ellullis,

term on the right hand side to obtain

and so we can absorb sllullﬁl1 into the first

(An,m) = Colinllf = Cillnllz, — n e QP(M). ()

Now since we have this estimate, the proof of Theorem 5 follows through. The only thing to note is that nothing
changes if the first order differential operator X is matrix valued in local coordinates. So we see that the Laplacian
forces an elliptic regularity on sections between vector bundles as well. [

Exercise 6. Compute a relation between the Laplace operator on functions on R**! and the one on S" C R***,

First we compute the metric of R*™ (more precisely the induced metric on R \ {0}) in spherical coordinates.
Let (s1,...,5,) be any set of coordinates on S". We then obtain a parameterization of R™*! \ {0} over R* x S" via
the map:

(r,o)»x(r,0):=ro.

Let Gg. be the n x n matrix representing the metric on S" in the coordinates (si,...,s,). Note that if o € S™ then
o -0 =1 and so,

do 10 ( )=0

—0==-—(0-0)=0.
as; 2 Js;

Note that g, o form a basis of T,S". Now we compute for 1 <i <n,

a—x—ra—a and a—x—o
ds;  Os; ar

Since the partial derivatives of x form a basis of the tangents space of R""! we find that in these coordinates we
have

ox 9x ,00 00 4 &
g“:—._:r —_ =7 gH.
Y 9s; Os; ds; 0s; iJ
We also have that
_9x ox _ 99 . _,
Sir ds; Or as,
and
dx dx 1
= —_— — = g =
&= %r ar
So we see that the metric is given by
1(0 0
0
GRII+1 -
rstn
0
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It should now be clear (in light of the Laplace expansion and multilinearity of the determinant) that
det(g;;) = r2n det(gl.sj").

Now since the Hodge Laplacian on functions, given by A = —&d, in coordinates is

n+1 8f
t 1 l.] 5
\/ det(gu 1121 ( fetel J)g X )

we immediately compute for smooth functions f € € °°(M):

1 L —gl af 1 ) —of
Apef = —— v Jaergs) 2 2L —_(n det(g’ _)
©/ \/det(gS“)Z x| (r 82 8xj)+rn Totery or | VaeE)g;

i,j=1

S ()L (o)

det(gln)l] 1
B 10 [ of
B rzAsnf "ar(r 8r)'

Exercise 7 (Eigenvalues of the Laplace operator). Let M be a compact oriented Riemannian manifold, and
let A be the Laplace operator on QP(M). A € R is called an eigenvalue if there exists some u € Q°(M), u # 0,
with

Au = Au.

Such a u is called an eigenform or eigenvector corresponding to A. The vector space spanned by the eigenforms
for A is denoted by V, and is called the eigenspace for A. Show:

(a) All eigenvalues of A are nonnegative.
(b) All eigenspaces are finite dimensional.
(c) The eigenvalues have no finite accumulation point.

(d) Eigenvectors for different eigenvalues are orthogonal.
The next results need a little more analysis

(e) There exist infinitely many eigenvalues

A’ISA’ZS

A
>
IA

(f) All eigenvectors of A are smooth.

(2) The eigenvectors of A constitute an L2-orthonormal basis for the space of p-forms of class L.

(a) Recall that we endow the vector space of p-forms with the L2-inner product defined as

{a, B :=f aAxf, a, B € QP (M).
M

Since M is compact and orientable the above expression makes sense and is finite for any smooth p-forms.
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(b)

(@]

First we show that all eigenvalues of the Laplacian are real. This follows immediately since A is formally
self-adjoint. Let a € QP(M) for some 1 < p < n be an eigenform of the Laplacian. Then we see that

A{a,a) = (Aa, a)) = (Aa,a) = {a, Aa) = (a, Aa) = A{a, a),

and so A €R.

We now show the result for the scalar Laplacian (p = 0). Let f € Q°(M) = €°°(M) be an eigenfunction
for the Laplacian with eigenvalue A; that is A,f = Af. We have that

AJ |f|2d.u=f (Af)fdu=f (Aof)f dﬂzf §(Vf,Vf)du=0,
M M M M

so we see that A > 0, and so all eigenvalues of A, are non-negative.

Now let a € QP (M) be an eigenform of the p-form Laplacian; i.e. A,a = Aa for some A € R. It now follows
since d* is the formal adjoint of d that

(Aa,a)) = (A,a,a) = (dd*a,a)) + {(d*da,a) = (d*a,d*a) + {da,da)) = 0.
Since {a, a)) > 0, this implies A > 0.

Again, we consider the scalar Hodge-Laplacian A first. Consider some A > 0 and let {f;},; be an orthonor-
mal set of eigenfunctions in V,. Note that by integration by parts we have

J g(Vfi,Vf) dli:f fidofi dMZAJ Ifil* dp = A.
M M M

So we see that {f;},; is bounded in W2!(M). Since W2(M) is compactly embedded in L2(M) we see that
{f:} is relatively compact in L>(M). Now assume, for the sake of contradiction, that |I| = + 00, i.e. there
exists an infinite orthonormal system in V,. Then by the precompactness of {f;} in L?(M) there exists a
subsequence { fij};.’jl such that fi] — f in L?(M). On the other hand, since fij L f, forall j # k we see that

fij — 0in L%(M), and so we have a contradiction. Hence dimV, < +0c0.

For the general case of the p-form Laplacian we begin in the same way. Let {a;};c; € ©2(M) be an orthonor-
mal system in V; with respect to the L2-inner product on p-forms. Following the same argument in part (a)
we have that

(0ay, 6a:) + (da;,da)) = A{a;, a;)) = 4, i€l

So in particular, we have that
”ai“WLZ(/\pM) = (o, ;) + (6a;,6a;) + {(da;,da;) =1+ A.

Since we have the same compactness results for Sobolev spaces over vector bundles (cf. Lemma 2.2.2) we
can apply the Rellich-Kondrachov compactness theorem to find that {a;};c; is sequentially precompact in
L?( /\p M). Now we conclude in an identical manner as in the scalar case: if {f;};c; had an infinite number
of eigenforms then there would be a strongly converging subsequence in L( /\p M); however, the existence
of a strongly converging subsequence of an orthonormal sequence is a contradiction. So we deduce that
{fi}ie; only has a finite number of elements; in particular, dimV, < +oo.

Assume, for the sake of contradiction that the eigenvalues of the p-form Laplacian had a finite accumulation
point at u < +00. Let {A;};cn be a sequence of eigenvalues converging to u. Up to a subsequence (not
relabeled) we have that A; < 2u for all j € N. Now let

& :={ajlie
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(e)

be a basis for V- Observe that by part (d), Vi, LV, for j #k, and so we consider

s:=Js.
JEN
Now we see that for any p-form w € & that |||y Ay < 2u. Hence, by the Rellich-Kondrachov compact-

ness theorem we have that there is a subsequence {w; },ey € & such that w; — w for some w € L( /\p M).
However, since all of the elements in the sequence {w; };en are orthogonal we have a contradiction. Hence,
there is no finite accumulation point.

This immediately follows from the fact that A is formally self-adjoint. Let A and u be distinct eigenvalues
of the p-form Hodge Laplacian. Let a € V, and 8 € V,,. Then,

Aa, B) = (Aa, B) = (Aa, B) = (a, AB) = (o, uB) = ufa, B).

So we have that
(A —w){a, B) =0.

Since A # u this implies that {a, 8)) =0, i.e. that a is orthogonal to f3.

Note that in the case when p = 0 that ker A, is nonempty since all constant functions are scalar harmonics.
Now for p > 1 we claim that A, has at least one eigenvalue. Let D, : Q°(M) — QP(M) given by D,(a) =
d,—16,1 and Bp : QP(M) — QF(M). Then we see that 0,(A,) \ {0} = o,(D,)U op(f)p) \ {0}. In particular,
since D, is the product of two differential operators, we find that o,(D,)\{0} = o, (f)p_l)\{O}. Concluding,
we see that if we know the point spectrum of A, ; and A, ,; then we also not the point spectrum of A,,.
In particular, we will see that the existence of infinitely many eigenfunctions of the scalar Hodge Laplacian
will imply the existence of some eigenvalue of the the p-form Laplacian.

We show the existence of countably infinitely many eigenvalues inductively. Let A; < --- < A, be the first k
eigenvalues repeated according to their multiplicity, and let & :={a; : i = 1,...,k} be the corresponding
eigenfunctions. Now we consider the Rayleigh-Ritz quotient 2 : W12( /\p M) — R given by

(o Apa)openy  (8a,8a) + (a, a)

) e g al?

We now leave the subscript out denoting that the inner product is taken in L2( /\p M). Now let é”kl be the
space of p-forms in Wl’z(/\p M) that are Lz(/\p M)-orthogonal to &,. Now let

Ai= inf @(a)= inf L0200+ (@)

ozeé’kL ()LEIE"’kl ||a||2

We claim that A = A,,;. Note that since &,_; € &, we have that A > A;. Now consider an infimizing
sequence of unit norm p-forms {a;} ey € é”kl, ie. ||aj||L2(/\pM) =1 and

(daj,da;) + (6a;,6a;) = A as j— +oo.

Note that since {(a;, A a;)) converges we see that {a;};cy is bounded in W“*(/\” M). Since W2(/\" M)
is a Hilbert space it is reflexive, and so bounded sets are weakly compact. So up to a subsequence (not
relabeled) we can find some o € W52( /\p M). Note that we still have that a € é,”kl Now we see that since
the embedding from W 2( /\p M) into L?( /\p M) is compact we have that the L?-norm of a; converges to
the norm of a. So we see that ||a|| = 1. Now by the lower-semicontinuity of the W'2-norm with respect to
weak convergence we see that

{(da,da) + {(6a,ba) < liminf(((daj, da;) + {oaj, 5aj))) =A

j—oo
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So we see that a € é?kL attains the infimum which defines A. Now we claim that a is an eigenform (in the
sense of distributions — we show the smoothness in the next part of the problem). Let § € W12( /\p M) be
any p-form. Note that by the weak convergence in W12( /\p M) we have that

0= lim ((dB,da;) +(58,5a;) — (B, a;)) = (dB,da) + (5B, 5a) — A(B, @)

]j—00

=J BA*Apa—AB A*a du,
M

which implies that A,a = Aa weakly in W*(/\’ M). So we have that A;,; = A and a4, = a.
Consider the differential operator L : W2(/\’ M) - W'2(/\’ M) given by
L(w)=A,0+w.

Note that ker(L) is zero, and so by the Fredholm alternative, since a € W1%( /\p M) (as in the previous
part) there is a unique solution n € W**(/\" M) of Ln = (1 + A)a. Now we claim that n = a. Consider
n:=m—ac W1,2(/\p M). Since a is a weak solution to L(w) = (1 + A)a, we see that 7] is a weak solution
of L] = 0. That is to say that for all § € W'(/\” M) that

(dB,dm) + (58, 6m) + (B, a) =0.

Now by taking B = 1] we see that 7) = 0. This shows that a € W*2(/\” M). By repeating this procedure
we see that a € W52( /\p M) for all s € N. Now by taking s sufficiently large (say s > 2dim M) we can use
Morrey’s inequality to deduce that a € €7 ( /\p M) for some 0 < y < 1. Now since A, is an elliptic operator
we deduce that in fact a € €>7( /\p M). By repeating this procedure we have that a € €°7( /\p M) for all
s € N. Hence, we have shown that a € €*°(/\" M) = Q?(M).

Let IT, be the L2-projection operator onto the eigenspace spanned by the first k eigenforms. Note that I,
is self-adjoint. Explicitly, we write

M= D, (w.a)a.

1<i<k

We want to show that w —II;ew — 0 as k —» oo for any w € Lz(/\p M). First, we show this for any
weWh( /\p M). Note that by the definition of A,,; using the Rayleigh-Ritz quotient we see that

1

e —Me|l* < 7 (A, (w0 —w), w —w).

k+1

A direct computation shows that A, TT; = I1; A, and so we derive
(A, iw, w—Tw) =0.
In particular, we have that
(A, (0 —Tiw), 0 —iw) = (A, 0, 0 —Tw)
<(dw,dw)+ (6w,bw).

Now by plugging this into our bound on || — IT;w||?> and using the fact that A, — +00 as k — +00 we
find that
llw—w|[* — 0

for w € W?(/\’ M). This shows the density of the eigenbasis of the p-form Laplacian in W2(/\’ M). Now
let w € L?( /\p M). Recall that smooth functions (and in particular smooth p-forms) are dense in L% (of
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course with respect to the L2-norm). So fix ¢ > 0, and find some smooth p-form n € QP(M) such that
[l —nl| < €/2. Now let k be large enough such that || — IT w|| < &€/2. Since (w —11;n) L I} (w —n) for
any 1 € QP(M), we see that

llow = Mol = llo —enl? = [M(w = < [l — Ml
Concluding, we see that
o —Mwl? < flo—Tnl* < llo—nll +[In =Tl <e.

Now by taking £ — 0 we see that the eigenvectors of the p-form Hodge Laplacian form an L?-orthonormal
basis of L2(/\" M), the space of p-forms of class L2.

Theorem 6. Let M be a smooth compact manifold with boundary, and P a first order differential operator acting on
sections of a vector bundle, then

(Pu,v)—(u,PTv) = %f (op(x, v)u,v) de.

oM

Exercise 8 (Another long exercise). Let M be a compact oriented Riemannian manifold with boundary
OM #0. For x € 9M, V € T, M is called tangential if it is contained in T,0M C T, M and W € T, M is called
normal if

(V,W)=0 for all tangential V.

An arbitrary Z € T, M can then be decomposed into a tangential and normal component:
Z = Ztan + Znor'
Analogously, n € TP(TM*) can be decomposed into

7 = Ntan T Nnor

where 7,,, operates on tangential p-vectors and 7),,, on normal ones. For p-forms «w on M, we may impose the
so-called absolute boundary conditions

Wean =0
(6w)hor =0
on d M or the relative boundary conditions
('OHOI’ = 0
(dw)por =0

on d M. (These two boundary conditions are interchanged by the x-operator.) Develop a Hodge theory under
either set of boundary conditions.

We begin by providing an alternative formalization of the notion of tangent and normal differential forms and
vector fields. Leti : 9M — M be the inclusion map. We say that w € QP(M) is tangent to d M if the normal part

nw =i*(xw)
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is zero. Analogously, w is normal to d M if the tangent part defined by
tw=1*(w)

is zero. Now if X is a vector field on M, we can simply use the metric to determine when X is tangent or normal
to dM. Itisn’t hard to check that X is tangent to d M if and only if X* is tangent to M (which of course happens
precisely when iy vol is normal to d M). We have the analogous result for characterizing when X is normal to
oM.

This presentation clearly shows that these boundary conditions are interchanged by the Hodge star operator.

Now we prove two distinct Hodge decomposition theorems for smooth manifolds with boundary.

Theorem 7 (Hodge Decomposition for Manifolds with Boundary). Let M be a smooth compact oriented Riemannian
manifold with boundary. We have the following decomposition

QP(M) =dP ' (M) @ 5P (M) @ 76,(M),
where we define the relevant function spaces as

QP(M)" = {a € QP(M) : ais tangent to IM},
QP(M)' ={a € QP(M) : aisnormal to dM},
#,(M)={a € QP(M) : da=6a=0}.

Proof. Note that the condition da = da = 0 is stronger than Aa = 0 in the case when M has a boundary. We call
the elements of 7, harmonic fields. O

Theorem 8 (Hodge Decomposition with Specified Boundary Conditions). Let M be a smooth compact oriented
Riemannian manifold with boundary. We have the following decomposition

QM) = d" ()7 @ 5Q 1 (M)” @ 7 (M),
where & denotes the relative boundary conditions. Analogously, we have another decomposition given by
Q¥ (M) = d* 1 (M)7 @ 5 (M) @ 7 (M),

where .o/ denotes the absolute boundary conditions.

Proof. The main idea is that we use the Freedholm alternative to obtain an L? elliptic splitting of the space of
differential k-forms, and then we use the elliptic regularity of the Hodge Laplacian to force a €6 °°-splitting of
Qk(M).

We claim that
(Au,v) = (du,dv)+ (6u,6v) + % f ({o4(x, v)ou,v) + (du, o 4(x, v)v)) de. 6)
oM

To show this we want to use Theorem 6 in the case when P = d and P = 6. First we compute the principal
symbols of d and §. Since for a k-form u,

d(we™) = ire™ (dy) Au+ e du,
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we see that %ad(x, &)u = £ Au. Observe that o5(x,&) = 04(x,£)T, and that the adjoint of the map o, from

/\k T: — ol T; is given by the interior product tzu. Consequently, we see that %05(x,§)u = —tgu. Now
Theorem 6 implies, for M a compact Riemannian manifold with boundary,

(du,v)=(u,6v)+ %J

oM

(og(x,Mu,v) dl = (u,5v)+J (vAu,v) de,

oM

and

(6u,v) = (u,dv) + % j

oM

(050, u,v) dl = (u,dv)—j (Lu,v) de,
oM

where v is the outward-pointing unit norm to d M. So we see that
(Au,v) =(du,dv)+ (6u,6v) +J (v A(du),v)— (1, (du),v)) de
oM
= (du,dv)+ (6u,6v) + f ((6u,t,v) — (du, v Av)) de,
oM

which is exactly Equation 6. Note that if u and v satisfy absolute boundary conditions, then the boundary integral
in Equation 6 vanishes. For the rest of this proof we introduce the following function spaces. It is easy to see that
these are closed subspaces (and hence Banach subspaces) of the Sobolev space of k-forms:

k k
HyM, \ TM*) = {ue H'(M, \ TM") : 04(x, v)ulsy =0},
k k
HYL,M, [\ TM*) = {u e H'(M, \" TM*) : 05(x, vulsy =0},
k k
H2(M, /\ TM*) = {ueH*M, /\ TM*) : u satisfies the relative boundary conditions},
k k
H?,(M, /\ TM*) = {ue H*(M, /\ TM*) : u satisfies the absolute boundary conditions}.

Note that the elliptic regularity estimates from Exercise 3.5 (specifically Theorem 5) we deduce that in the case
of a compact manifold with smooth boundary that for all u € H}, (M, /\k TM*)UH! (M, /\k TM*) that

l[ullZy < Clldull}, + CllSullZ,g, + Cllullf.. 7)

This follows by considering an isometric dual of M, i.e. a manifold N such that 9N = @) and M < N is an isometric

embedding, and using the previous elliptic regularity results. Similarly, we deduce that if u € H é (M, /\k TM*)
satisfies .
(du,dv) + (61,5v) < ClVllpzqry,  forall ve Hy(M, [\ TM™),

then u € H;Z (M, /\k TM*). We have the analogous results for the absolute boundary conditions as well. We can
rewrite (7) as the following pair of estimates:

llullf, < Clldull}, + CllsullZ, + Cliog (e, VIl oy, + Cllull?, 8
l[ullZ < Clidullf, + Clldull}, + Cllos(x, Ml gy + Cllullf. 9

In particular, these two estimates hold for all u € H'(M, /\k TM*) regardless of boundary behavior.

Now we consider the linear operator
k k
Ly : Hp(M, [\ TM*) = Hy(M, [\" TM")"

defined via )
(Lpu,v) = (du,dv)+ (5u, 6v), u,veH;Z(M,/\ TM*).
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Similarly, we define L, : HL(M s /\k TM*) — HL(M s /\k TM*)* in the same way (we just change the domain).
Now we see for 7 € {.&/, Z} that the estimates (8) and (9) imply for some C, > 0,

k
((Ly + Colu,u) = Cllull?,, ueng(M,/\ TM™).

This coercivity implies that the operator is elliptic, and so the maps L, +C, : H ;7 (M, /\k TM*) — H; (M, /\k TM*)*
are bijective. In particular, the maps S, : H ;(M s /\k TM*)* > H ;/z (M, /\k TM*) giving the two sided inverses of
(Ly + Cy) are compact, self-adjoint operators on L?(M, /\k TM*). So we have orthonormal bases {u; »} of
L*(M, /\k T M*) satisfying
k
Sguj"k’g- = Aj’k’guj’k’g, llj’k’g € H;(M’/\ TM*)‘

Since ((Ly + u,u) = ||u||%2, we can clearly take C, = 1. So the magnitude of all of the eigenvalues of S, are

bounded above by 1. Furthermore, we can order them such that the eigenvalues are decreasing to zero as j — o0.
So for all k we have the eigenvalues of L, increase to infinity (i.e. they have no finite accumulation point). Now
we can prove in the same way as Theorem 5 the following generalization for manifolds with boundary.

Theorem 9. Given f € H/(M, /\k TM*) for j=1,2,..., a k-formu € H* (M, /\k T M*) satisfying

Au=f; on M

and either the relative or absolute boundary conditions, belongs to H'™2(M, /\k TM*). Furthermore, we have the
following elliptic estimates

lal.e < CHAUIR, + Cllog e, Wl + CloaCe MEul sy + Cliull
in the case of relative boundary conditions, and
lullf.. < CllAull?, +Cllos(x, vull? +Cllos(x, v)dull? +Cllullf ..

HI*3/2(aM) HI*1/2(3M)

in the case of absolute boundary conditions.

Now let 3?}(9 (M) denote the O-eigenspace of L. be the space of harmonic k-forms satisfying 7 -based boundary

conditions. Let I17 denote the orthogonal projections of L%(M, /\k TM*) onto J?f . Parallel to the case of the
Neumann boundary problem we have continuous linear maps

, k k
G7 : LA(M, /\ TM*) — H2(M, /\ TM™),
such that G” annihilates 7,7 and inverts A on the orthogonal complement (7 )L:

AGTu=(1-17)u, foruel?(M, /\k TM™). (10)
Furthermore, for j > 0,
G7 :H/(M, /\k TM*) - H'*2(M, /\k TM™).
Now we obtain from (10) candidate Hodge decompositions for a compact Riemannian manifold with boundary:
u=d5G%u+86dG%u+ %y,
and analogously for the case with absolute boundary conditions imposed

u=d6G%u+8dG%u+17u.
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It remains only to show that this decomposition is an orthogonal decomposition. By continuity, it suffices to check
orthogonality for u € €°°(M, /\k TM*). We will use the identity (du,v) = (u, 6v) + y(u,v) foru € /\J_I(M) and
ve N(M), with

1 1
r(w,v) = —.J (oq(x, V)u,v) dl = —.f (w,05(x, v)v) de.
v Jam U Jam
Note that y(u,v) = 0 if either u € H, (M, /\ji1 TM*)orveH. (M, /\j TM*). In particular, we see that

weH,M, N7 TM") = duLlkersnH'M, \ ' TM?)

j—1

veH. (M, /\j TM*) => &v Lkerd NH'(M, TM*).

Now from our definitions, we have
5 1M, \ T™M?) - HL (1, \ 7 T,
d :H}Z,(M,/\j TM*) - H', (M, /\j“ M),
and so in particular
dsH% (M, /\k TM*) Lker§ nH'(M, /\k TM"),
§dH?,(M, /\k TM*) L kerd NnH (M, /\k TM™).
This orthogonality implies
range(l’[?) L range(l’[?) + range(I1%), range(l’[t;{) L range(l’[f) + range(I1).

Furthermore, if u € %”k% and v = dG”#w, then y(u,v) = 0, and so (u, 6v) = (du,v) = 0. Similarly, if v € 3?3;‘2" and
u = 6G*w, then y(u,v) = 0, so (du,v) = (u,6v) = 0. This implies the desired orthogonality conditions, and so
the theorem is proved. O

Now as in the general Hodge theory for compact manifolds, we would like to relate the cohomology groups to the
spaces of 7 -harmonic forms, i.e. %”k‘% (M) or L%}f“ (M). First we consider the case of relative boundary conditions.
Consider the function space € °°(M, /\k TM*)={ue €M, /\k TM*) : i*u=0}. Since d o i* = i* od, we see
that d : 6 (M, \ TM*) — 6¢°M, \*!
exact forms as

TM*). Now we consider the space of relatively closed and relatively

P = {ue €™, )\'TM") : du=0},
20N =d6¢™(, )\ TM").

Now we define . . .
H(M,0M) =CF(M)/EF(M).
Now we prove that there is a natural isomorphism H;(M,dM) = %”k‘% (M). To see this, note that there is an
injection .
jr M) - M),

which yields a map (by postcomposing with the projection map) J : %;(‘% (M) — H (M, dM). The orthogonality
of the terms in the Hodge decomposition theorem imply that image(j) N Sk% (M) = 0, and so J is injective. Fur-
thermore, if u € C? (M), then u is orthogonal to §v for any v € €°°(M, /\k+1 TM*), and so the term 6(dG%u) in

the Hodge decomposition vanishes, and so J is surjective. Hence, J is a natural isomorphism as desired. We have
an analogous relationship for the absolute harmonic forms, the proof is identical. [
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Chapter 3. Parallel Transport, Connections, and Covariant Derivatives

Exercise 1. Compute the transformation behavior of the Christoffel symbols of a connection under coordinate
transformations.

Let V:T'(TM) -» I'(E) ® I'(T*M) be a connection on a Riemannian manifold M (where E is some vector bundle
over M). Let F,im be the Christoffel symbols of V in local coordinates {x} in some neighborhood U C M. By
shrinking U if necessary we can assume that U is also a bundle chart (i.e. local trivialization) of E. Now identify
E|y 2 U x R", where n = dimE,, is the dimension of the fibers of E. Under this isomorphism we see that a basis
for R" induces a basis u,, ..., U, of sections of E|;;. Now recall that the Christoffel symbols are simply defined via

Ve ;= Fil}.uk-

axt
Now let {y“} be another set of local coordinates over V. € M (such that the domains have nonempty intersection).
Let v4,..., v, be a basis of sections over E|, by following the same procedure above. Then we see that

—1
Vayiavﬁ—Faﬂvy.

Now let gy € € °°(U NV,GL(n,R)) be the vector bundle transition functions of E on U NV. That is to say for
x € UNYV any any section of s € ['(E|,n,) written as

s= Zs‘pi = Z?va that we have [s'] = guv[5®],
i=1 a=1

where [-] is the column vector with entries specified above. In particular, we can find some smooth functions g
such that
Vo = g:xtbl/l“

Now by using the fact that V is tensorial over TM and an R-derivation over the sections we see that

. A Kl A
Y _ _ J — o/ J
TpVy =V 2, 7=V 2 (gﬂuj) =gpV e bt —aya(gﬂ)uj

=gV 0%, g Oy
T8 g T Gyt T By i T gyt
. j : J
i Ox' 98p  Ox' 98p
— o/ k — o) k oY Y
_gﬁayarij“k+aya“i_gﬂaya ijgka+ayagj Yy

Now by comparing the coefficients of the first and last terms we find the following transformation behavior:

: {
dx! gYF.k. agﬁ gY.
aya k™ij aya 4

.|
Tap = 8

Note that in particular, if we consider a connection over T M we find that the transformation laws are simply given
by
rr = a_xia_xja_xkrk + —azxi M
af T dyagyB yr U JyedyB dxt’
Note that the transformation law is nonlinear, and so in particular we deduce that the Christoffel symbols do not
transform like a tensor at all. Note that if we choose some coordinates where the transformation is linear (i.e. the
second partials are zero) then the transformation rules of the Christoffel symbols are that of (1,2)-type tensors.
For the same reason, we see that the difference of Christoffel symbols associated to different linear connections
is a tensor. L]
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Exercise 2. Let E be a vector bundle with fiber C" and a Hermitian bundle metric. Develop a theory of unitary
connections, i.e. of connections respecting the bundle metric.

Let E — M be a complex vector bundle with fiber C". A Hermitian bundle metric is a smooth section h : M —
(E*)®? = (E ®g E)* such that (by using the natural duality pairing of the tensor product and multilinear maps)
h, : E, x E, — C is a Hermitian inner product. Note that with respect to a local frame {o,...,0,} of E the Her-
mitian metric is given by a Hermitian matrix-valued function H = (H;;) given by H;; = h(0;,0;), and transforms

. ~ =T . .
according to H = BHB , where B is a complex n x n matrix.

Now recall that a linear connection over E — M is a map V : I'(E) — I'(E) ® ['(T*M) = I'(E) ® Q'(M) that
satisfies certain properties. Observe that we can more concisely described a linear connection as a K-linear map
V : Q%(M;E) — Q'(M; E) satisfying the Leibniz product rule

V(fo)=df ®o—f(Vo),

where df ® o € Q}(M; E), when evaluated at p € M, is the R-linear map T,M — E, given by v — (df),(v)-o(p).
Similarly, f Vo is the element of Q'(M;E), when evaluated at p € M, is the R-linear map T,M — E, given by
v f(p)(Vo),(v). This is easily seen to coincide with the definition provided in the text since df (V) = V(f).

A linear connection V is a unitary connection if for any smooth sections 0,0, € T'(E) we have
d(h(o1,03)) =h(VEoy, VEoy) +h(oy, VEoy).

Here the exterior derivative, d, is applied to the complex valued function h(o;, 0,) and on the right hand side
we use the following definition h(a ® o, 7) := ah(o, 1) for a complex valued 1-form a € Q!(M;C) and smooth
sections o, T € I'(E). Analogously, we define h(o,a ® 1) = ah(o, ). Now we develop some theory regarding
unitary connections:

o Algebraic structure of linear connections: We show that the space of complex linear connections is an affine
space, whose group of translations is simply the vector space Q'(M;End(E)). Let V and V be linear con-
nections. It suffices to show that (V — V) is an element of Q'(M;E). Let f € €°°(M;C) and ¢ € I'(E).
Now we see that

(V-V)(fo)=V(fo)-V(fo)
=dfeoc+f(Vo)—df ® c—f(Vo)
=f(V-V)o.

So we see that (V — V) is a ¥°°(M; C) linear map from Q°(M; E) = I'(E) to Q'(M; E). Hence (V — V) is
an End(E)-valued 1-form on M. Furthermore, by an identical argument we find that the group of unitary
connections is an affine space, with translation group given by the vector space Q!(M;u,(E)), where w,(E)
is the Lie algebra associated to the Lie group U(E).

® Reduction of the structure group: The structure group of a complex vector bundle with a Hermitian connec-
tion reduces to U(n). To see this, we simply use the Gram-Schmidt orthogonalization procedure to obtain
a h-unitary local frame out of any given local frame of E. By localizing, we can identify E|; with U x C",
where C" is endowed with the usual Hermitian metric. The transition functions of such an atlas have an as-
sociated 1-cocycle of transition maps which preserve the Hermitian product; hence, this transition functions
are U(n)-valued.

e Existence of a unitary connection: Let V° be an arbitrary connection on E. We define its adjoint (V°)* by

h (Y1, (VO 42) = X - h(y1,42) —h(Vh1,1h,).
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Since h is non-degenerate this suffices to define (VO);‘( as a % °°(M)-linear function in X. In 1), we see that
R, (VO (f2)) = X - h(q,2) = h(V5 31, f 1)
=X - A1, 2) + fX - Ry, 2) — FR(VRP1,1P5)
=h(y1, Xf)P, +f(vo);*(¢2)-
Since this holds for all ¢; and 1),, we have
(VO (Fpa) = (X - flpa+ F (VO
for all v,< and so (V°)* is a connection.

The defining property of the adjoint implies that V is unitary if and only if V = V* and (V*)* = V. Since
any convex combination of connections is a connection, we take
1
V= 5(v0 + (V9.
We clearly have that V is equal to its own adjoint, and hence is a unitary connection.

The 8 operator: From here on out we will assume that M is a complex manifold and E — M is a holomorphic
vector bundle. Note that Q!(M; E) splits as Q'°(M; E)®Q%!(M; E), where Q1°(M; E) is the complex vector
space of C-linear 1-forms a : TM — E, and Q%}(M;E) is the complex vector space of C-antilinear forms.
This splitting follows in the same way as the splitting of the complexification of the tangent bundle:

TM®gC=T""Me T"'M.
Note that we can split a unitary connection as V = V10+ V%! where V%! : Q°(M; E) — Q%'(M; E) satisfies

Vol(fo)=3f @0+ fV®lio.

_ —E
We show that there exists a canonical d-operator. That is, there is a canonical 8 : €°°(M;E) — Q%(E)
operator satisfying the following Leibniz rule: for all f € €°°(M;C) and o € Q°(M; E) we have

3 (fo)=@f)o+f3 o.

The canonical 5E operator over the tangent bundle is simply given by the splitting of the exterior derivative
d = 3 + 3. This satisfies 52 = 0 and that 8f = 0 if and only if f is holomorphic. To generalize this to
arbitrary complex vector bundles E — M we simply define 5E locally as

3'(fo)=3(f)®o0.

The canonical unitary connection: Let 3 be any g-operator as above. We claim there is a unique unitary
connection on (E,h) satisfying V%! = 3. Let {e;} be a local holomorphic frame for E. Then any local
section o can be written as 0 = o'e;. Then we see that

Vo = (dGl + 0-19]1)® e;,
where 0; is the matrix of 1-forms given by Ve; = 0;; ® ¢;. Now if we assume that V has (0, 1)-part given
by @, then V®'e; =0, and so 0;; has type (1,0). We se h;; = h(e;, e;). Since V is a unitary connection,
dhl) == ahu +5hl] == h(Vei,ej) + h(el-,Vej) = Qikhkj + hikgjk'

By equating the (1,0) types we see that § = dh-h ™', which is entirely determined locally. A direct compu-
tation shows that 6 transforms in a way that makes V globally a connection on E — M.

— —E —
Now by taking d = 9 , the canonical d-operator coinciding with the holomorphic structure on E, we see
that there is a unique unitary connection which coincides with the holomorphic structure of the complex
vector bundle.
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Exercise 3. Show that each vector bundle with a bundle metric admits a metric connection.

Let E — M be a vector bundle with bundle metric g;. Recall that a connection V is said to be a metric connection
if and only if for all X € X(M) and o, 7 € T'(E) we have

gE(vXO-’ T) + gE(O-’ VXT) = X(gE(Ua T))

So in local coordinates, we see that the connection is a metric connection if and only if the associated Christoffel
symbols satisfy

0
W(gE)jk = Fiej(gE)Zk + Fl‘ek(gE)jf'

Now given a matrix function g, we can always find functions Fi’; that satisfy these relations. In particular, if we
consider a local trivialization of E, then we can find the associated Christoffel symbols. Now by covering M with
a family of open sets {U,},ca such that E — U, is a trivial bundle we can find the desired Christoffel symbols,
and then patch them together using a partition of unity. [

Exercise 4. Let x, € M, D a flat metric connection on a vector bundle E over M. Show that D induces a map
71(M, xo) — O(n), considering O(n) as the isometry group of the fiber E,, .

By starting with a flat metric connection we easily obtain a representation of the fundamental group. Let & (D, v, v)
be the parallel transport of the vector v € T,(o)E along the closed curve y with respect to the connection D.
First let Q(M, x,) denote the loop space of M with basepoint x,. Now we simply define the representation
p : M, xo) — End(E, ) given by

p(r)=(—-2(D,y,v)), VEE,.

Note that since #(D, v, -) is obtained by a linear ordinary differential equation we see that the flow map is a linear
map as well. Furthermore, by the same reasoning we deduce that & (D, v,-) is a linear isomorphism of vector
spaces. In particular, we have p : Q(M, x,) — GL(E,, ).

Now we use the fact that D is a metric connection to show that p(y) is an isometry for any y € Q(M, x,). Recall
that D is a metric connection if for any sections u, v € T'(E) we have

d{u, v) = (Du, v) + (u, D),

in Q!(M). In the above, the ¢ °°(M)-valued pairings on the right hand side between I'(E) and (TM* ® E) are
defined in the obvious way by taking the 1-form on the outside. Equivalently, we have that

X(‘LL, V) = (DX;u’ V) + (l"l” DX V).

Now fix y : 8¢ — M in the loop space, and let u : S* — E and v : 8 — E be smooth curves along 7, i.e.
u, v € T(y(SY)) and u(t), v(t) € E, - Let S! be parameterized by 6 € [0,27) with the obvious meaning. The

metric compatibility gives us
d _/Du Dv
@) = (T v+ ().

Now fix v,w € E, and define u(t) = #(D,y|jo,,v) and ¥(t) = P (D, y|jo,¢3, w)- Then we see that since y and v
are parallel along vy that
Du Dv _

de  dr
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and in particular
d d
a(u(t): ’V(f)) = a(y(D; YI[O,t]:V)’f@(D9 Y'[O,t]:w)> =0.

So we see that parallel transport is an isometry between the corresponding fibers for all t € [0, 27r). Now by fully
traversing the curve (taking t = 27) we see that

(e()v, p(r)w) = (v,w).

Hence p(r) € O(E,,) = O(n).

It now remains to show that p(y) only depends on the path-homotopy class of y — this will follow from the fact
that D is a flat connection. Let y,,7; € Q(M,x,) be path-homotopic, where y : S! x [0,1] — M is a smooth
function such that

r(6,0)=71o(t),  v(t,1)=71(t), tes

Now fix v, € E, . We claim that p(y,)vy = p(y1)v,. To do this, consider v : S! x [0,1] — E be a smooth section
over y defined as
V(t,s) = g(D’ Y(’)s)|[0,t]: VO)'

By the definition of parallel transport we have that % = 0. Now since D is a linear connection, a direct compu-

tation shows
D?%v B D?%v _7 (@ @)
deds dsde P\ 8s’ ot )’

where
TD(X, Y)O- == DxDYo- _DyDXo- _D[X,Y]O-

is the torsion tensor. Since D is flat we have that the torsion tensor is identically zero, and so by taking u := %

we have

o,

de
But for t =0, s € [0, 1] we have that v(0,s) = v,, and so u(0,s) = 0. In other words, for a fixed s € [0, 1] the path
u(+,s) is parallel in E with respect to D. Now by uniqueness of the parallel transport, we deduce that u = 0. Now
we use this at ¢ = 27. In this case we know that v(1,s) € E, for all s € [0, 1]. Moreover, from the definition of
covariant differentiation we have

Dv o ~
a(l,s) = a\/(l,s) S TXOEXO = Exo'

So we deduce that s — v(1,s) is constant. In particular, v(27,0) = v(2m,1), i.e. p(yo)vo = p(y1)vo- Now since
Vo € E,, was arbitrary we see that p(y) only depends on the path-homotopy class of y.

We now conclude: since (M, x,) is given as the quotient space of Q(M, x,) with respect to the equivalence
relation induced by path-homotopy equivalence we see that p([y]) is well defined for any [y] € ©;(M, x,). By
the above results we deduce that

p: TL'l(M, XO) - O(Exo)-

By considering 7;(M, x,) as a group (with group operation induced by path concatenation) we see that p is a
group homomorphism (this follows immediately from the fact that parallel transport is given by the solution to a
linear ordinary differential equation). Hence, p is a representation of the group 7t;(M, x,) over the vector space
E [

Xo*

Exercise 5. Let ST := {x € R™1 : |lx|| = r} be the sphere of radius r. Compute its curvature tensor and
volume.
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We endow S! with the induced Riemannian metric from R™1. Now let V denote the Levi-Civita connection on
R™"!. Now let X,Y € I'(TS"), and let X, Y be local extensions of X and Y to R"*!. Since VY at any point p € S"

only depends on the vector X(p) = X(p) we simply write VyY for 6;?. Since S is a Riemannian submanifold
of R™™! we have that the Levi-Civita connection, V, on S is simply given by orthogonal projection, i.e.

VyY =V, Y —(VyY, v),
where v = ¥(p) is the unit outward normal vector on ST. Note that for some p € ST we have that

v(p)= L =2
Ipll ~

Hence,
_ 1 _ 1
VxY =VyY — ;(VXY,p)p =X(Y)— r—2<X(Y),p)p,

where p €S C R""!. Now we compute at some point p € S?,
1
VxVyZ =X(VyZ)— ﬁ(X(VYZ):IﬂP
1 1 1
=XY(Z)— r—Z(XY(Z),P)P - ﬁ(Y(Z),X)P - r—z(Y(Z),P)X

(Y(ZZ),p) (X, p)p
r

— S XY (2),p)p+ (XY (2), p)p+ (V(2),X)p +
—XY(2)+ (1 - %) (XY(2),p)p+ (1 - %) (V(2),X)p— 5 (Y (2), p)X
—XY(2)+ (1 _ rz—z) (XY(2),p)p + (1 _ %) (Y(Z).X)p + r%(z, V)X,

where we have repeatedly used the fact that (X, p) = (Y, p) = (Z,p) = 0. Now we see that since the Lie bracket
of vector fields in R™*! vanish,

R(X, Y)Z = VXVYZ _vaXZ _V[ny]Z
= VXVYZ _VYVXZ

—XY(2)+ (1 - %) (XY(2),p)p + (1 - %) (Y2, X)p+ (2, ¥)X
- (yx(z) n (1 - %) (YX(2),p)p + (1 - rlz) (X(2),Y)p+ %(z,x)y)
= Lz X —(Z.x)7).
r
So summarizing we have shown that

1 1
(Y,Z)X —

RX,Y)Z =~ X,Z)Y.
r

=1
-

Now we compute the volume of S". Recall that the Gamma function is defined by
oo
r(e)= f xtle™ dx, t>0.
0

By the homogeneity of the #"-measure, we see that vol(S}) = r" vol(S]). We compute the following integral in

two ways
- 2
e IxI® Ay
Rntl
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First consider the polar coordinates change of variables §" x [0, c0) — R*™! given by (o, r) = ro. Now we can

write o o
J e IxIP dx = f rie " drf ldo = Vol(S’ll)J re dr.
Rn+1 0 sn 0

Alternatively, by writing x = (x,, ..., X,41) we deduce that

e I dx = eI dix, -+ -dix
1 n+1
RYl+1 RH+1
—x2 ) 2
:f e ™ dxl J e %2 dX2 J e Xnr1 dxn+1
R R R
n+1
2
= e’ dy .
R

Now by considering the change of variables u = —r2? we can compute

Since we know the circumference of the circle S* € R%, we deduce

_ 2
e XI” dx = 7.
RZ
n+l
I —lxIP P m
e dx = e dx =mz.
Rn+1 R2

,n:n+1

—_.
fo ete~" dr

Hence,

In particular, we find that

vol(S]) =

Now by considering the change of variables u = > we find that

oo
_.2
f re™ dr =
0

N | =
o ?
3

g
N

o

L

o

o

Il

N | =
—
N\
=

N | 4
—
N

So we find that

n+1 n+1

2n'z 2nz
vol(S™) = s vol(S)) = ———~.
(%) r(*)
Where the last step follows from the homogeneity of the Hausdorff measure. L]

Exercise 6. Consider the hyperboloid in R® defined by the equation
x2+y2—22=—1, z >0,

and compute its curvature.
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Denote the hyperboloid as
H:={(x,y,2) eR® : x*+y*—2*=—1, 2> 0}.

Since we are only dealing with a 2-dimensional hyperboloid it is easy to do all of these computations in coordi-
nates. We parameterize H by coordinates (6, ¢ ) as follows:

sinh(60) cos(¢)
(6,¢)— | sinh(6)sin(¢)
cosh(6)

Now we compute the orthogonal coordinate basis vectors of the tangent space

o = (cosh(6)cos(¢), cosh(0)sin(¢), sinh(60)),
9, = (—sinh(8)sin(¢), sinh(8) cos(¢), 0).

Now we see that the metric is given by g;; = J; - J;:

_ (cosh(26) 0
(&) = ( 0 sinhZ(Q)) :

Since this is a diagonal matrix we easily compute the inverse (g/):
1
. — 0
(gl]) — (cos}gze) 1 )
sinh?(0)
Now we compute the derivatives of the basis vectors:

0p,9 = (sinh(0)cos(¢), sinh(6)sin(¢), cosh(8))
99, = (—cosh(8)sin(¢), cosh(8)cos(¢), 0)
05,0 = (—cosh(0)sin(¢), cosh(0)cos(¢), 0)
94,4 = (—sinh(0) cos(¢), —sinh(6)sin(¢), 0).

The associated dual basis is given by d6 = g% d;jandd¢ = g% ;. Computing them gives us

1 . .
0= m (cosh(6)cos(¢)dx + cosh(8)sin(¢p)dy + sinh(6)dz),

1 . . .
¢ = M (—sinh(8)sin(¢)dx + sinh(0) cos(¢)dy).

Now we compute the Christoffel symbols Fjik = F]ij =di(9;,):
1
1—‘999 =d9(89,9)=tanh(26), F69¢ :d@(&’e’d)):o, 1—‘¢9¢’ :d9(8¢’¢):—5tanh(29)
Y, =d¢(5) =0, Iy, = d¢(dp,4) = coth(6), 9 =d¢(8s4)=0.
We now write out the two Christoffel matrices

L (T 0 _(tanh(20) 0 (0 W) 0 —jtanh(20)
°“lo 14,) U 0o coth(®)) T\ 0 )7 \coth(6) 0 '

Now we have

_ 0 cosh?(0)sech?(260)
LT, Ty 1= (cothz(G)sechZ(ZQ) 0 )
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Recall that the Riemann curvature tensor in coordinates is given by
Rimnk = (Rnk)in = [ak + Fk: 8n + Fn];n = (Fn,k - 1—‘k,n + Fkrn - Fnrk);n

Now we have that the derivatives of the Christoffel symbols are given by

T, = 2sech?(20) 0 r. — 0 —sech?(20)
0.6~ 0 —csch?(0) )’ ¢.0 | —csch?(0) 0 ’

and the rest are identically zero. Since Rin@ 0= Rin b6 = 0 and Rg 0p = R® =0 we have that the nonzero terms

¢0¢
of the curvature tensor are
Rg% =—(Ty0)5 + [r¢,r9]§¢9 = csch?(0) + coth?(0) sech(26)

Rge o= —(r¢,9)g + [r¢,,r9]g = sech?(26) + sech?(26) cosh?(0).

Now we compute the Ricci curvature, which is simply the contraction of the Riemann curvature tensor:
0
Rgg =R§gq +R%y, = csch?(6) + coth?(6) sech(26)

Ryp = RZ% +R$¢¢ = —sech?(20) —sech?(260) cosh?(0).

Now we compute the scalar curvature, which is simply the contraction of the Ricci curvature tensor: R = g<™R, ;.:
R=g%Ryy + g¢¢R¢¢ = 2sech?(26).
Note that we can also express the scalar curvature implicitly as

2

R=———.
(1—222)2

Since we are working with a 2-manifold we see that the Guassian curvature, K, satisfies R = 2K, and so we deduce
that
K =sech?(20).

Exercise 7. Verify that the catenoid, the helicoid, and Enneper’s surface are minimal surfaces.

e (Catenoid: we parameterize the catenoid as follows:

cosh(u) cos(v)
(u,v) — | cosh(u)sin(v)
u

Now we compute the basis tangent vectors
9, = (sinh(u) cos(v), sinh(u)sin(v), 1), 3, = (—cosh(u) sin(v), cosh(u)cos(v), 0).
Now we see that the normal vector is given by
8, % 8, = (—cosh(u)cos(v), —cosh(u)sin(v), sinh(u)cosh(u)).
We also compute ||, x 8, || = cosh?(u), and so the unit normal vector field is given by

cos(v) sin(v)
" cosh(u)’  cosh(u)’ tanh(u)).

w(u,v) = (
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Furthermore,
ng y=20,(v)= (cos(v) sech(u) tanh(u), sin(v)sech(u)tanh(u), sechz(u)) s
Vl;vs v = 3,(v) = (sin(v) sech(u), —cos(v)sech(u), 0).

Now we compute the shape operator

508, v)=28,(»)—{(8,(v),v)v= (Cos(v) sech(u) tanh(u), sin(v)sech(u)tanh(u), sechz(u)) ,
S(8,,v)=9,(v)—{(8,(v), v)v = (sin(v) sech(u), —cos(v)sech(u), 0).

So we can write
$(8,, v) = sech®(u)d,, S(8,, v) = —sech?(u)d,.

Now we compute
1 1
H,= 5 tr(S,) = > (sechz(u) — sechz(u)) =0.
So we see that the mean curvature vector is identically zero; hence the catenoid is a minimal surface.

Helicoid: we parameterize the helicoid as follows:

ucos(v)
(u,v) — | usin(v)
v

The basis tangent vectors are given by
9, = (cos(v), sin(v),0), 8, = (—usin(v), ucos(v), 1).

The normal vector is given by
9, x 8, = (sin(v), —cos(v), u),

with norm |8, % 9, || = ¥ 1+ u2. So the unit normal vector field is given by

1
w(u,v) = (sin(v), —cos(v), u).
v1+u?
Now we compute the shape operator
S(3,,v)= ;(—usin(v) ucos(v), 1) = ;8
w1+ u2)32 ’ T (4w
1 1

S(9,,v)= (cos(v), sin(v), 0) = 0,

v1+u? 1+u?

Now it is clear that H,, = %tr(Sv) =0, and so the helicoid is a minimal surface.

Enneper’s surface: we parameterize Enneper’s surface, E, as follows:

u u ow? AR T U Ve
(u,v) = 5——+— -t =, ===

6 2’7 26 272 2

As in the previous two examples, we now compute the basis tangent vectors
1 u? V2 1 u? V2
oy=|lz——=+—=, —uv, u|, o,=|lu, ————+—, —v|.
2 2 2 2 2 2
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The normal vector is again given by the cross product:

1 1 1
d,%x0,= 3 (u(l +u?+v2), v(1+u?® +v?), 5(—1 +ut 4 2u?v? + v4)), 16, x 3,|| = Z(l +u? +v2)?,
and so 1
R S _ 2., .2
v(u,v)—1+u2+v2(2u, 2v, —1+4+u +v).

Now we compute the shape operator:

4
_ 9,2 2 _ = -
S(8,,v) = A aave (2—2u® +2v*, —4uv, 4u) = (1+u2+v2)28u,
and 1 4
_ 2 2 — __
S@,,v) = (—4uv, 204" =), 4v) =~

(1+u?+v2)?
Now we see that 1
H,= Etr('sv) =0,

and so the Enneper’s surface is a minimal submanifold of R>.

Exercise 8. Determine all surfaces of revolution in R® that are minimal. (Answer: the catenoid is the only
one.)

We claim that the only minimal surfaces of revolution in R® are the catenoid and the plane. A surface of revolution
is parameterized as f : R x [0,27) — R® given by

f(r(t)cos(6), r(t)sin(6), h(t)),
for some positive function  : R — R* and h : R —» R. Now we compute the basis tangent vectors as
8, =(r"cosO, r'sinf, k'), 0y = (—rsin@, rcos0, 0).

The metric in these coordinates is given by
P +®)? 0 iy (omaye O
(8ij) = ( 0 P2 and (eN=(" )26(11 N

Now we see that the normal vector field is simply given by

1
y=—————(—h'cos@, —h’'sin0, ).

/(r/)Z + (h/)Z

Rather than computing the shape operator, we begin by computing the principal curvatures. The second deriva-
tives of f are simply given by

O, f =(r"cos0, r"sin6, h"), g9)f =(—rcosf, —rsin0,0), 0,0 = (—1'sin@, r’cos B, 0).

Now we see that binormal matrix is given by

r/h// _h/r// rh/
by = (attf’ v) = m, bge = (399f, V) = m, b= (3u9: v) =0.
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Since both (b;;) and (g;;) are diagonal matrices we see that g 'bis also diagonal. Hence the basis vector directions
are principal curvature directions, and we see that x; = g‘*b,, and x, = g% b,,. Hence

H= K1tk
2
In particular, we see that f (R x [0,27)) is a minimal submanifold of R® if and only if

r(r'h” —n'r") + () + (W)?) =0. (11)

Now we see that if h(t) = ¢ for any fixed constant ¢ € R that Equation 11 is satisfied. Hence, this is a minimal
submanifold. Geometrically, we see that the corresponding surface of revolution is given by P = {z = c}.

Now suppose that h(t) is not constant. So we see that there is some point t, € R such that h’(t,) # 0, and in
particular h is locally monotone. By a reparameterization of r and h we can assume that h(t) = t locally. In this
case Equation 11 becomes

rr’ =1+ (), r>0.

The solution of this ordinary differential equation is simply given by
t—t
r(t):acosh( 0),
a

for any a > 0. By the uniqueness of the Cauchy-Lipchitz-Picard-Lindel6f theorem these are all of the solutions
locally. Furthermore, these solutions extend globally for all ¢ € R. As a result, we see that h’(t,) # 0 for some
to € R that h’(t) # 0 for all t € R. Since these are all solutions, we deduce that the only other minimal surfaces
are given by

f(t,@)z(acosh(t_to)cose, acosh(t_to)sine, t),
a a

where a > 0 is a free parameter.

Of course since rotations and translations are isometries of R® we have that all minimal surfaces of revolution are
given by translated and/or rotated catenoids and planes. L]

Exercise 9. Let F : M™ — R™! be an isometric immersion (m = dim M). Give a complete derivation of the
formula
AF =mn,

where A is the Laplace-Beltrami operator of M and 7 is the mean curvature vector of F(M).

Of course by AF we mean that the Laplace-Beltrami operator is applied coordinate wise. By postcomposing with
the projections we can write F = (Fy,...,F,,,), where F; : M™ — R.

Fix any vector v € R™"!; we will consider the real valued function f = (F,v) : M™ — R. Now fix p € M
and let {e;,...,e,} be a geodesic frame in a neighborhood of p. Let N be the local normal frame in the same
neighborhood of F(p) € F(M™) C R™"!, Now recall that the Laplace-Beltrami operator in geodesic coordinates
is given by
Ah=>"e(e(h), he€x(M).
i=1
Note that for some vector w € T,M, that df,(w) = (de(w), v). We use this to compute

m m m

Af =AFv) =D ele(Fv)) =Y e(df(e)) =Y e{dF(e,),v).

i=1 i=1 i=1
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Since F is an isometric immersion we have a natural identification, T,M = T,F(M), which respects the inner

product. In particular, we have that e;(dF(e;),v) = dF(e;){dF(e;),v). Now we use the compatibility of the
Levi-Civita connection, V, of R™*! with the Euclidean metric (-,-) to obtain

Ms

idF(eixdF(ei): v)=

i=1

(Vare)dF(e),v) + (dF(e;), Vape)v)

Il
—_

[
Ms

(Vare)dF(e),v)

I
-

[
INGE

(dF(V,e;),v) + (LI(dF(e;),dF(e;)), v),

Il
-

where II is the vector valued second-fundamental form. Now since e; was chosen to be a geodesic frame at p we
have V, e;(p) =0, and so

m m

D UdF(V,e),v) + (I(dF(e,), dF(e))),v) = D (I(dF(e,), dF(e;)), v) = mH(N,v).

i=1 i=1

So we have shown that
A(F,v) =mH(N,v).

Now by applying this result where v = x; are the standard unit vectors of R™"! we find that

AF =mHN = mn.

Exercise 10. Let F : M™ — S" C R*™! be an isometric immersion. Show that F(M) is minimal in S" if and
only if there exists a function ¢ on M with AF = ¢F, and that in this case necessarily ¢ = m.

Let V denote the Levi-Civita connection on R*™*! and V the Levi-Civita connection of $". Now if 7 and 7 are the
mean curvature vectors of F(M) in R*™! and S", respectively, then

_ ( )TS (VF)TS"

where we used Exercise 3.9. Now we see that F is minimal in S" if and only if there exists a function ¢ : M - R
with AF = ¢F. Note that in this case
(AEF) = ¢lIF|I* = ¢.

Observe for v € T, M, that (dF(v),F) =0. Now let {e;,...,e,} be an orthonormal basis of T,M, and so we have
(dF(e;),F)=0foralli=1,...,m. In particular,

0=dF(e;){dF(e),F) = <$dF(ei)dF(ei): F) + (dF(e;),dF(e;)),
where we used the comptability of the Levi-Civita connection with the Euclidean metric. Since
(Vare)dF(e;), F) = dV gpe)dF (&))",

we deduce that
0= (tr(Il),F) + m=—(VF,F)+m

So we deduce that ¢ = m in this case. ]
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Exercise 11. Show that for n > 4, there exists no hypersurface (i.e. a submanifold of codimension 1) in R
with negative sectional curvature.

Assume, for the sake of contradiction, that all of the sectional curvatures of a hypersurface M € R" for some
n > 4 are negative at some point p € M. Now let {e;,...,e,} be an orthonormal basis for T,M where the vector
valued second fundamental form, II, is diagonal, with corresponding eigenvalues (A;). From the Gauss theorem
we know that

K(e;,e

)= Klewe)) +Kleie)) = Aid,

since the ambient space is flat. Now by assumption, for i # j, we deduce that A;A; < 0. However, since dimM > 3
this is impossible. To illustrate this contradiction, note that in the case dim M = 3 this would mean that

AAy <0, AA3<0, AyA53<0,

which is clearly nonsensical. The same thing generalizes to all dimensions. [

Exercise 12. Verify the formula # = cl o V given in Section 3.4.

Fix p € M. Since TM is a locally trivial vector bundle, we can find an open neighborhood U of p such that
TM|y = TU is trivial. Now let {ej,...,e,} be a global frame as a vector bundle over U, and let {e,...,e"} be the
associated dual frame for TM*|;; = TU* as a vector bundle over U. Now we see that for any 1-form w € Q*(M),

n
w= Z w(e;)e.
i=1
Similarly, if we consider a section o € T'(U, P), we can write
n
Vo=>YeoV,oel(U,P),
i=1
where this equality is valid over all of U. Now by postcomposing by the Clifford multiplication we see that over

U,
clovV=cl (Zei ®V810') =cl (Zei ®V8i0) =ch(ei ®V,0) =Zeiveio.

i=1 i=1 i=1 i=1

Since the above right hand side is exactly the “definition” of the Dirac operator in local coordinates, we see that

d=cloV.
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Chapter 4. Geodesics and Jacobi Fields

Exercise 1. Let M;, M, be submanifolds of the Riemannian manifold M. Let the curve c : [a, b] — M satisfy
c(a) € My, c(b) € M,. A variation ¢ : [a, b] X (—e, &) — M is called a variation of c(t) with respect to M;, M, if
c(a,s) € My, c(b,s) € M, for all s € (—¢, ¢).

What are the conditions for ¢ to be an extremal of L or E with respect to such variations?

Compute the second variation of E for such an extremal and express any boundary terms by the second funda-
mental forms of M; and M,.

Letc :[a, b]x(—e,e) = M be a variation of c(t) with respect to M;, M,. Note that in particular, %(a, 0) € To()M;
and %(b, 0) € T,(q)M;. For —& < s < ¢ define c,(t) := c(t,s), which is a curve connecting M; to M, for all s.

We compute the first variation of E with respect to such a variation by a direct computation:
b
d 1 d [dc dc
—E(c;) == — (=, = )dt
as o) 2Ja as<at’at>
b
dc dc
= —,— )dt
Ja <v% as’at>d
ECOREUEE
~ ). \ec\as>ac/ \aos» "Fac/)

Now define X(t) = %(t, 0) and note that %(t, 0) = ¢(t). We now use the fundamental theorem of calculus to
find

b
%E(cs) = —f (V2 600, X (1)) de + (X(b), é(b)) — (X (a), é(a)).
s=0 a

Similarly, we compute

FHe) o _f (7 (o) 20 aex (xn i) = (x@- )

Now suppose c is extremal for E. It is easy to check that ¢ must be geodesic in M. Now for any v € T,,)M; and
w € T, M, we can find a variation ¢ : [a, b] x (—¢,€) — M of ¢ with respect to M, M, satisfying ;c(a,0) = v
and d,c(b,0) = w. Then from out first variation formula, we find that

0= Z5)| = wi®)— @)
S

s=0

So we deduce that ¢(a) € TC(a)MlL and —¢(b) € Tc(b)le for ¢ to be extremal. A direct computation shows that

the conditions that ¢ is geodesic, ¢(a) € Tc(a)MlL, and —¢(b) € Tc(b)le are also sufficient for ¢ to be extremal
with respect to E. These conditions are also necessary and sufficent for ¢ to be an extremal curve of L.

Finally, we compute the second variation of E for such an extremal curve c.

e 3 dc dc
ZE(c)=| —(v.Z, e
a2 2@ f as< %as’at> ‘
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A direct computation shows

3<VaﬁQ>=<V6Vaﬁ@>+<vcaﬁvz9@>
ds\ o 9s’ dt s Gt gs’ Ot % ds’ Ot
=<VaVaﬁ@>+<R(ﬁ @)2ﬁ>+<VaﬁV(vz>
% % gs’ Ot s’0t) ds’ dt %% 9s’ ot Js
S A WL L S
at\ & Js’ ot s 9s’  w ot s’ ot ) at’ Os % gs’ wds/’

Now by taking s = 0 we see that V 2 % = 0 since c is a geodesic. Furthermore, ¢(t) is smooth and we get
t

d2

b
SR =J (<VX(t),VX(r)>—<R(X(t),c'(t))c'(r),X(r)>)dt+<vg@(b,oxé(b)>—<vi@(a,oxc‘(a))
s =0 Ja % 0s % Js

Now since c is extremal we have ¢(a) € Tc(a)MlL and ¢(b) € T, ;)M 1, and so we can write the boundary terms in
terms of the shape operator to obtain

L

b
i = f (VX (£), VX (£)) — (R (£), &(£))é(6), X (1)) dt +(S_¢5yX (B), X (b)) + {SeorX (@), X (@) -
s=0 a

Exercise 2. Let M be a submanifold of the Riemannian manifold N, ¢ : [a,b] — N geodesic with c(a) € M,
¢(a) € T yM L. For 7 € (a, b], c(7) is called a focal point of M along c if there exists a nontrivial Jacobi field
X along ¢ with X(a) € T, ()M, X(7) = 0. Show:

(a) If M has no focal point along c, then for each 7 € (a, b), c is the unique shortest connection to c(7) when
compared with all sufficiently close curves with initial point in M.

(b) Beyond a focal point, a geodesic is no longer the shortest connection to M.

There is a typo in the definition of a focal point. We need to require X(t) = 0, X(a) € T, )M, and
X(a) + 5 (X (@) € (T M)

(a) Fix any 7T € (a, b]. We want to show that any curve y : [a, b] = N with y(a) € U and y(7) = c(7) satisfies
L(y) = L(cljq,7)), where U is some open subset of c(a) in M. Clearly, we only need to consider the case
when v is geodesic, since other curves cannot locally minimize the length between their endpoints.

Find a Jacobi field J along c satisfying

[ ] J(Cl) S Tc(a)M1

o |lJ(a)lly =1,

e J(1t)=0.
We choose J in such a way since we will associate it to a variation c(t,s) = ¢,(t), and we want to have
cs(a) € M for all s € (—¢, ) for some sufficiently small &€ > 0. Define J; = dc(, (%) =c'(t,s).

We now use the fact that J | ¢ to compute the second variation of L with respect to J:

. = <%Js(t),é(t)> s

0 ) ;
_ —<£Js(a), c(a)> — (@), (@)

t=1,5=0

d2
@L(CS)

+f (J,JY—R(J,¢,J,¢) dt
0

s=l|
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(b)

Now we just need to show that this is positive. Since J is a Jacobi field with [|J(a)ll, =1 and [|[J(7)l|, =
we have that J(a) = —%J(a). Therefore,
d2

EL(C )

= TlTa - <%Js(a), c'(a)>

Now if c(7) was a focal point of M along ¢ then we would like to be able to say that

s=0 s=0

d2
@L(C‘;) =0.

s=0

This is since we should expect the length of the geodesics to be constant in a neighborhood of t = 0. Let
c(A) be the first focal point of M along c, if one does not exist we set A = +00, where c(A) is understood in
the usual sense as a limit. So we can find a Jacobi field X that witnesses c(A) as a focal point. We normalize
X such that [|X(a)|l; = 1. Now we compute

— (X(a),X(a))

= (2-x@6@) 3

__(%(Xs(a),és(a» <X (a), C(a)>)

d2
@L(Cs)

— (X(a),X(2)).

s=0

By the construction of X; we have that (X;(a),¢(a)) = 0 for all s; we also have %c’s(a) = —S:)(X(0)).
Hence,

2
S| =~ {K(@),X(@) + S, (X (@) =0

s=0
So we conclude that

ds A

Note that this value depends only on Riemannian structure of M and the point c(a), but not on the point
c(7). In particular, this justifies the computation using a different vector field X than J. Now we use this
computation to compute the second variation for any variation that fixed c(7) as

(2200000 = 5.

1 1
T—a A—a’

d2
@L(Cs)

s=0
From the above we deduce that
>0
s=0
for all T < A. Now we deduce that in a neighborhood of c(a) that there is no shortest geodesic to c(7)

expect c. By a simple compactness argument we can find a neighborhood of c¢(a) in M such that the desired
result holds. Explicitly, consider any Vv € Ty M with ||v||, =1 and find a Jacobi field X with X(a) =v. Now

d2
@L(cs)

we find some ¢, > 0 such that @L(cs) > 0 for all s € (—¢,,¢,). But since §" C T,,)M is compact, we can
take the minimum of these call it £, and take an actual neighborhood of c(a) in which c is a local minimizer.

By the above, we see that & iz L(c ) < 0 for any point after a focal point. So we deduce that a geodesic
cannot be minimizing past it’s focal pomt

We also present an alternative proof for this fact. Expand the domain of the index form I to the set of all
vector fields X along c satisfying X(t) L ¢(t) for all t € [a,b] and X(a) € T,,)M. This set will be denotes
at T, and T}, will denote the set of X € I' such that X(b) = 0 as well. Let 7 € (a, b) be such that c(7) is a

focal point of M along c. We claim that for any t > 7 that c|, ] is not a minimal geodesic from M to c(t),
i.e. dist(M, c(t)) < L(cliq,e1)-
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Since c(7) is a focal point of M along c, we have a nonzero Jacobi field J along ¢ with J(7) = 0 and
J(a) € T,(;yM. Define

Te) = {J(t) ift ela, 7],

0 else.

Note that J € T, and I(J,J) = 0. Now we want to perturb J to produce some X satisfying I(X,X) < 0.

Note that J(7) # 0. Now let Z(t) be the parallel transport along c satisfying Z(7) = —J(7). Let ¢ : [a,b] —
R be a smooth function such that ¢(a) = ¢(b) =0, and ¢(7) = 1. Define

A direct computation shows that
[(X5,X;)=I1(J,J)+ 2 (J, 9Z) + O(A%)

= 2)Lf ((J,(pZ)) = (R(¢,T)¢, 9Z))dt + O(A%)

= 20J,9Z)|,_. + 6(22)
=22l (D)II> + (1),

which is clearly less than O for sufficiently small A > 0. Since I(X,X) is the second variation of L with
respect to X, we see that ¢ cannot be a minimal geodesic past c(7)

Exercise 3. Let $"!:={(x1,...,x",0) € R™ : > xix! =1} C S" be the equator sphere. Determine all focal
points of $™! in S, and also all focal points of §” in R"**.

First note that for any geodesic c : [0,27] — S™ that the Jacobi fields J along c that satisfy J = 0 are of the form
J(t) = cos(t)E(t) where E is any parallel vector field along c. I proved a completely analogous result in Exercise
4.11. So we see that every geodesic that starts normal to ¢ hits a focal point exactly at distance 7/2. In the
case when ¢ parameterizes the equator S*~! we find that the set of focal points in S" is exactly the set of poles
orthogonal to 8"}, i.e. N =(0,0,...,0,1) and S = (0,0,...,0,—1) are the only focal points of §"! in S".

Now we compute the set of focal points of S" in R™"!. Consider any geodesic c : [a, b] — R"™! such that c(a) € $"
and ¢(a) € (TC(G)S")l. Since dimS™ = n = dimR™"! — 1 we see that the normal bundle of S" is simply a line
bundle over S", and since all geodesics in R" are affine we see that c is of the form

c(t)=0+ta)p,

where a € R is any constant. Again, since R™! is a constant curvature (flat) manifold we see that all Jacobi
fields are of the form J(t) = v where v € R™! is any vector, and where we make the usual identification of
T.(oR"™ = R™!. Now we clearly see that the only focal point of $" € R"*! is the origin O = (0,0,...,0) € R**™.

||
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Exercise 4. Let p,q be relatively prime integers. We can represent S> as
S® ={(z1,2,) €C* : |z, > + |z,[* = 1}.

Z, operates on S° via

2mi 27mi
(zl,zz)H(zlexp(ﬂ),zzexp( mmp)) with0<m<qg—1.
q q

Show that this operation is isometric and free. The quotient L(q,p) := S/ Z, is a so-called lens space. Compute
its curvature and diameter.

Identify R* with C? by letting (x, X5, X3, X4) correspond to (x; +ix,, X3 +ix,). Let
S° ={(21,2,) € C? : |z, * + |z,* = 1},

and let h : S® — S3 be given by

2mip

2mi
h(zq,2,) = (eTzl,e 1 zz), (z1,2,) € S3

where p and q are relatively prime integers and q > 2. For simplicity write @« = 27/q and 8 = 27tp/q.
We first show that the group action induced by h is isometric. Fix k € {0,...,q—1} and u,v € T, $3 ¢ C2. Write

u=(u,uy) = +id,uj +iv2) and v=(v;,v5) =(v; +ivZ,v) +iv2)

then

(e*uy, e™Pu,) = ((cos(ka) + i sin(ka))(ul +iu?), (cos(kB) + i sin(kB))(u + iu2))
= (uj cos(ka) —u? sin(ka)) + i(u? cos(ka) +u; sin(ka)),
(u; cos(kp)— u% sin(kf3)) + i(ug cos(kB) + ué sin(kf3)))
= (u] cos(ka) —u? sin(ka), u? cos(ka) + u] sin(ka),
uy cos(kfB) —uj sin(kf), ul cos(kf) + u, sin(k3)),
where the last equality follows since we identified R* with C2; hence the inner product in question is that induced
by R*, not the usual Hermitian inner product of C2. Similarly,
(e™**vy, e Pv,) = (v! cos(ka) — vZ sin(ka), v} cos(ka) + v; sin(ka),
v, cos(kf3) —v2 sin(kp), va cos(kf) + v, sin(k)).

We compute ' '
dhk = (elk“dzl, elkﬁdzz) ,

(z122) —
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where dz; = dx; + idy;; therefore,

(dh* (W), dR* (")) = ((€*uy, €™ Puy), (e 4vy, e vy))

= (u; cos(ka) —u? sin(ka))((v; cos(ka)—v?sin(ka))
+ (u% cos(ka) + ui sin(koz))(vl2 cos(ka) + vl1 sin(ka))
+ (uy cos(kB) —uj sin(k3)) (v, cos(kB) —v3 sin(ka))
+ (uﬁ cos(kB) + u; sin(kﬁ))(vz2 cos(kp) + v21 sin(ka))

= uivl1 + u%vl2 + uévz1 + ugvz2

= {(uy, uf,ug, 1), (1, v1,v;,v3)

= ((u] +iud,u) +iud), (v +ivZ, vy +iv3))

= ((uy,up), (v1,v2))

= (u,v)

and hence h : $® — S3 induces a discrete group of isometries given by G = {id, h, h%,h%,...,h971}.

Now we show that the group action is free. It suffices to show that for all 1 < k < q— 1 that h*(z,,2,) # (21,25)
for all z;,2, € C. Since p and q are relatively prime, there exists s,t € Z such that sq + tp = 1. Now if some
ke{1,...,q—1} satisfies

ef*=1 or e*f=1

then k = mq or kp = mq for some m € Z. In the first case we immediately obtain a contradiction with the
coprimality of p and g. In the second case we also obtain a contradiction since

k =skq+ tkp = skq + tmq = (sk + tm)q.

So we have shown that the group action is free.

To ensure the the Lens space S3/ Z, is well defined we need to ensure that the group action is properly discontin-
uous. We need to demonstrate for all p € S® the existence of an open set U containing p such that h*(U)NU =0
forallk =1,...,q—1. Fix p = (2,,2,) € S$° and write q, = h*(p) for all k = 1,...,q — 1. Since S® is Hausdorff
and since the group action is free there exists open sets V. containing g, respectively, such that U NV, = @. Since
h is continuous, we may retract U such that h*(U) € Vi forall k =1,...,q—1. In particular, we see that such a U
suffices, and so the group action induced by h is properly discontinuous. Now we deduce by the quotient manifold
theorem that S3/ Z, is a smooth manifold endowed with a canonical smooth structure making the projection map
a local diffeomorphism.

Now we study the geometric properties of the Lens space. Since the group action acts freely and isometrically on
S® we see that S*/Z, inherits the Riemannian structure of constant curvature 1, and the projection §*> — $%/Z is
a local isometry. Since the projection is a local isometry we see that every geodesic on L(g, p) lifts to a geodesic
on S3; in particular, we deduce that all of the geodesics on L(q, p) are closed.

Now we compute the diameter. From the Bonnet-Myers theorem we immediately deduce that diam(L(q, p)) < 7,
unfortunately this is too weak of a bound. Consider any orbit Z, - x of the action on $3, and the associated Voronoi
tiling, that is: since Z, - x is a finite set of points in S® we can partition S® into n := |Zg - x| = {xq,...,x,} cells
based on their distance; namely, fori =1,...,n we let

Vii={ye$s®:d(y,x;)< d(y,x;) for all j # i}.

Note that the tile V,, containing the point x, is the intersection of the hemispheres bounded by the bisectors of
x and gx for all g € Z; \ {1}. We have a similar result for all of the other tiles. In particular, we deduce that V,
is contained in a hemisphere centered at x, and so the distance from x to any point y € V, is bounded above by
/2. It then follows that since the group action is isometric and since all of the point Z, - x are identified in s3/ zZ,
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that the distance between [x] and [y] in S3/ Z, is at most 7/2. Since the Voronoi cells cover $3, we deduce that
diam(L(q, p)) < 7/2. We claim that the diameter is exactly 7t/2, and so we need to exhibit a two points in L(g, p)
with distance exactly 71/2. Let 7t : $2 — L(q, p) be the projection, and set x = 71(1,0,0,0) and y = 7(0,0,0,1). We
claim that d(x, y) = 7/2. Indeed, they are connected by a geodesic y(t) = m(cos(t),0, 0, sin(t)) for t € [0, /2],
and since t — (cos(t),0,0,sin(t)) is contained entirely in a single Voronoi cell we deduce that y(t) is globally
minimizing, since it is the projection of a globally minimizing geodesic in S3. In particular, we deduce that
L(y) = m/2. In particular, we have shown that diam(L(q, p)) = /2. n

Exercise 5. Show that any compact odd-dimensional Riemannian manifold with positive sectional curvature
is orientable.

Let M be a compact odd-dimensional Riemannian manifold with positive sectional curvature. Recall that from
Exercise 3.4 that the parallel transport map, with respect to the Levi-Civita connection, induces a group homo-
morphism 7t;(M;p) — O(T,M) for all p € M. In particular, we see that for any closed curve y € m;(M; p) that
#,: T,M — T,M is an isometry; in particular det %, = +1.

Assume, for the sake of contradiction, that M is not orientable. Then consider any non-orientable closed path,
y* € m;(M; p). Then we see that [y*] is a nonzero homotopy class such that for any closed curve y : [0,1] - M
in [y*], det®, = —1. Now fix y € [y"] to be the representative which minimizes the length functional. Since
2,(7(0)) = 7(0), we see that

det ‘@Y|(Y(O))J‘ =-1,

where (7(0))* is the orthogonal complement in T,M. Observe that
dim(y(0))* =dimT,M — 1 =dimM — 1
is even. So in particular, there exists a unique fixed point v € (y(0))* such that
2.(v)=v.

Now let X be the parallel vector field along y with X(0) = v. Now consider any variation ¥ : ! x (—¢,¢) : (t,s) —
7(t,s) of y with ¥'(t,0) = X(t) for all t € S'. Since ¥ is a geodesic variation, we see that

=0,

d
B0

and since X is parallel and satisfies X(0) = X (2n),

2n

27
:f (V2 x(0), V2 X(0)) dt—f (R(8,7,X)X,8,y) dt
0

0

% _
552 E(r(:5))

s=0

21

:_f (R(8,7,X)X, 0,y) dt
0

<0.

Hence, for sufficiently small s > 0,
E(y(-,s)) < E(y).

However, since the variation remains in the same homotopy class we have a contradiction with the fact that y
minimizes the length (and energy) of all closed curves in it’s homotopy class. So we deduce that M is orientable.
L]
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Exercise 6. Show that the real projective space RP" is orientable for odd n and non-orientable for even n.

Since RP" is the quotient of S" under the equivalence relation identifying oppositive points, we have a natural
two-fold covering map S" — RP". Now recall that S" is simply connected. Now it is a standard result from
algebraic topology that if  : X — X is a universal covering space, then m;(X;x,) = 7 '(x,), as sets. Hence,
71, (RP"™; x,,) has only two elements; now we deduce

71 (RP"; x0) = Zy,

since Z, is the only two-element group up to isomorphism. Recall that the scalar curvature of RP" is identically
1. Now by Synge’s theorem we immediately see that RP" is non-orientable for even n. On the other hand by
Exercise 4.5 we see that for odd n that RP" is orientable.

We can also obtain this result in a more direct way without using Synge’s theorem. Let ¢ : 8" — R™"! be the
inclusion map, @ : R*"' — R™! be the antipodal map x — —x, and a : S® — S" be the restriction of @ to S*. We

have the following commutative diagram:
a

§T——§"

|
Rn+1 a ) Rn+1
Now let w =dx! A--- Adx™! be the standard volume form on R**!, and consider the vector field

n+1
. 0
— i_Z n+l, n+1
X = E x axiEF(R ; TR,
i=1

Note that the function f : R™! — R, given by f(x) = ||x||, is constant on S", and so d fp vanishes on T,S" € R

Now since
n+1 a n+1

X()= 2 x5 (=22 00 =2l
X(f), # 0 for all p € 8"; hence X, ¢ T,S". Now since w is a volume form on R™"! it follows that the form
a:=1"(iyw) = (ix )| rgn
is a volume form on S". Since @*w = (—1)""'w and dd(X) =X on R™"!,
a*a = a*t*(ixw) = @ (iggpy @) = (ix (@ w)) = (1) ¥ (iyw) = (1) a.

So we see that a : 8" — S" is orientation preserving if and only if n + 1 is even. Now recall that if M is a smooth
manifold and G is a group that acts on M smoothly and properly discontinuously that M = M /G is a smooth
manifold, with smooth structure induced from that of = : M — M. In particular, we have that

Q" M/G)={r*a : acQ* (M)} ={aecQ (M) : g¥a=ua forall g €G}.

Now if n is odd, then a € Q"(S"/Z,) = Q"(RP") and defines an orientation on RP"; so RP" is orientable if n
is odd. On the other hand, if n is even, there exists no nonvanishing f € Q"(S"/Z,) = Q"(RP") and so RP"
is not orientable in this case by the above. To see that there doesn’t exists such a volume form, note that for
B €Q"(S"/Z,) that = f a for some f € €°°(S"). Hence,

fa=p=a"p=(foa)a’a=—(f oa)a,

which implies f oa =—f. Hence, f and 8 must vanish somewhere on S". [
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Exercise 7. Show that Synge’s theorem does not hold in odd dimensions.

By the previous two exercises, we see that 7t; (RP") = Z,, RP" has positive sectional curvature, is compact, and is
oriented. Hence, this would produce a counter example to the following false theorem:

Theorem 5.1.2% (False odd-dimensional Synge). Any compact oriented odd-dimensional Riemannian manifold with
positive sectional curvature is simply connected.

Exercise 8. Try to generalize the theory of Jacobi fields to other variational problems.

Exercise 9 (A more difficult exercise). Compute the second variation of volume for a minimal submanifold
of a Riemannian manifold.

Let M C N be a minimal submanifold. Now consider a smooth variation M : M x (—e, &) — N for some & > 0
that is compactly supported, i.e. there is a compact set K € M such that for all x ¢ K M(x,t) = x for all
t € (—¢, €). By the implicit function theorem, by shrinking ¢ if need be, we can assume that &,(:) := M(-,t)isa
diffeomorphism from M — M, for all t € (—¢,¢). Since we are considering local variations we can assume that
{x €M : M(x,t)# x} is orientable. Now let {e,, ..., e,,} be a positively oriented orthonormal frame of TM, and
note that e; A - -+ A e,,, has unit norm in /\m(TM ) with the induced inner product.

Since @, is a diffeomorphism we can write
1
vol(M,) = f voly, = J ®7voly = f (D67 A AD e, Pl A ADe,)? voly, .
M, M M
Now we can compute

d d 1
a VOI(Mt) = _<q>t*el AN ANy, Breg Ao A CI’t*em) : VOIM
M

f dc (‘I) o AB ey, Per A ADLen)
= voly,

1

2 (q)t*el NPy, P /\"'/\i’t*em>2
2

i (@61 Ao A gg®ej A Ay, Brep Ao ADpey)

||¢t*el ARERNA <I>t*em“

voly, .

We now explain the notation %@r*ei. Let v,(s) be a smooth curve on M with v;(0) = p and y,;(0) = d¥; ( % |S:0) =
e; and let y;(s, t) = ®,(y;(s)). We then have by the chain rule

d 0

t* l_dcb (e)_dq> (d}/l(
ds

0
szo) - %Yi(s: t)

Now by %@t*ei we mean the covariant derivative %@t*ei. In particular, we have

s=0

v 3 v 2 —
B PRGOS FRFTIAS )s=t=o

=V, X

i
s [s=0

s=t=0
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2
where X := Z‘I’t|f=o'

Since a tangential variation of M does not affect its image in N, without loss of generality we can assume that
X € T(TM%'). That is to say we only consider normal variations of M in N. I'm still not sure how to make this
entirely rigorous!

We now compute the second variation

d? - d (q)t*el ARRRRAN %q)t*ei /\“'/\q)t*em’q)t*el /\“'/\q)t*em>
—vol(M,) = — vol
3 vol() Z i "

“q)t*el A A (bt*em”

a a
B J‘ zi (Prer Ao Agp®rei A A gp®raej A A, @reg Ao Apey)
M ”(I)t*el/\'“/\q)t*em”

i<j

a a
N i (Prer Ao A5 @i A APpey, Breg A A5 Bpe; A ABpey)

ij=1 ||(1)t*el/\"'/\q)t*em”

d a
_ i <(I)t*el ASRRRAY ﬂq)t*ei AN NP, Preg A A (I)t*em><q)t*el ARRRNA ﬂq)t*ej AN APy, Preg A A ‘I)t*em>
||CI>[*61 ASRRNA ‘I’t*emHB

i,j=1

22
+i (Cpt*el ARRRRAS W‘bt*ei A ANDen, Pel A Acbt*em) vol
M

i=1 ”‘I’t*el /\”'Aq)t*emH

2
The only new thing we need to compute is (®,.e; A+ A %@t*ei A A e, Pei A A e at t = 0. Since
®,.e;|,—o = ¢; form an orthonormal basis of T,M we deduce that
< = >
=( =—,.¢;,,.¢
o T kI Ttk
=0 at

Again, let y;(s) be a smooth curve on M with y,;(0) = p and y;(0) = e; and write y;(s, t) = ®,(y;(s)). Then

32
<<I>t*e1 VARERIAY ﬁqn*ei AN AP e, Preg A A <I>t*em>
=0

a2 V V3
— &, e = ———v.(s,t
81?2 t*el —o Bt at aS Yl(s) )S=t=0
vV Vo
easae B
- zz%+R(%,%)%
dsdt at 3s’ at ) at | ey
_R(ebX)X;

where R is the (3, 1)-type Riemann curvature tensor field on N. Note that the first term dropped out since v;(s, 0)
. . . . . v dy
is a geodesic and the geodesic equations are simply 77 3t = 0. So we see that
82
<ﬁq>t*ei;<pt*ei> = (R(e;, X)X, ;) -
t=0
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Plugging this into out equation for the second variation of volume gives us

2

d
ﬁ VOI(M )

i<j

=f (22 A AV XA AT XA g, e Ao Aey)
t=0

+Z(el/\---Aﬁix/\---/\em,e1/\---/\in/\---/\em)
=1
m
— D e A AV A Al e A Aep) (e A AV X At Aeg,eq Ao Aey)
=1
m

+Z(el /\---/\R(el-,X)X/\---/\em,el/\---/\em))volM

m
=f (ZZ(veiX/\ver,ei/\ej) + D et A AT XA Aeg,er A AV X Ao Aey)
M\ i< ij=1

m m
— > (Vo X, e}V, X,¢)) + D (R, XX, e») voly
ij=1 i=1
where Ric is the Ricci curvature tensor.

Let ve T,M 1 and consider the second fundamental tensor S, : T,M — T,M, defined as S,(X) = (V7). Now
consider the normal connection V*+ on TM* given as follows: if v € I(TM*') and X € I'(TM) then

L 1T
Vv =1I"Vy,

where IT*(p) is the orthogonal projection of T,N onto TM L. Now we see that V)%v = Vyv—S,(X). For all
i=1,...,mwrite Sy in the {e;,...,e,} basis as

— il
Sxe; =Sy €.

Now since we are only considering normal variations we see that X7 = 0. We simplify the first sum in the
integrand as

Z<€EIX /\?er,ei Nej) = Z(Sx(ei) ASxej,e; Nej) Z Z ee Neg,e; Aej) = Z(s;sﬁg s;sgg)

i<j i<j i<j £,k=1 i<j

We can write this last expression as tr ( /\2 SX), where we use the functoriality of /\2 to obtain the map /\2 Sy :
NTM - N TM.
Similarly, we deduce that the second sum in the integrand simplifies to
m m
Der A AT XA Aeger A AT X A Z isy + (ViX, V1X).

7
ij=1

Finally, the third sum in the integrand simplifies to

m m
D (Ve X,e) (Vo X,e)) = kst
i,j=1 i,j=1
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Now we see that our second variation of volume formula becomes

d—zvol(M) :f (2tr(/\2 Sx )+ IVAX]1? + Rice(X, X)) vol,,
M

dt2

t=0

= f ((trSx)* —tr(S:Sy) + VX1 + Rie(X, X)) voly,
M

= f (m®Hy — tr(S;Sx) + VX |1* + Ric(X, X)) voly,
M

where Hy is the mean curvature of M in the direction of X in N. Now we see that if M = M, is a minimal
submanifold that the mean curvature vanishes identically and we have that

2

de2

= f (VX |2 — tr(S};Sx) + Ric(X, X)) voly; .
M

Exercise 10. Give examples to show that the curve exp, tv as in Corollary 4.2.4 need not be the shortest
connection of its endpoints.

Let M be a the flat torus T?> C R* parameterized by (s, t) — (e, e'*), where we make the natural identification
of G2 x C2 = R*. We endow T? with the induced Riemannian metric from R*. Since T? is compact we have that
T2 is geodesically complete and so the domain of exp, is all of TpT2 for all p € T?. Now consider the points

p=(e”"™/%,e™) and q = (¢"™/4,¢'™), the vector v € T,T? be given by v = (—3im/2,0) € R* and w = (in/2,0), and
the curves v, : R — T? defined by

ry(t) = epr(tv) = (d’(%—%‘t)’ ei”) ’
and 7,, : R — T* defined by
Yw(t) = expp(tW) = (ei(%["'%f)’ ein) .

A direct computation shows that

L{(r)lpo,11 )—J Iy, (Ol dt—f —dt——

but
1

1
. m T
L((rulo1) = | Irw(@®Ill dt = f 2 dt = 3
0 0
We deduce that the curve v, (t) = exp,(tw) is not globally minimizing.

Another way to show that the exponential map need not be globally minimizing is as follows. Again, consider T2.
Consider the dense geodesic given by
Y(t) — (eit, eiﬁt) .

This curve extends for all time and never intersects itself. Since the diameter of T? is finite we see that there exists
some time t > 0 such that L(y|jo 1) > diam(T?). Now take p = y(0) and q = y(t), and clearly Yl[o,7 is not the
shortest connection of its endpoints. [

68



Exercise 11. Letc: [0, 00) — S" be a geodesic parameterized by arc length. For ¢t > 0, compute the dimension
of the space J of Jacobi fields X along ¢ with X(0) = 0 = X(t). Use the Morse index theorem 4.3.2 to compute
the indices and nullities of geodesics on S".

Let ¢ : [0, 00) — S" be a unit speed geodesic. Let J be any Jacobi field. Then

d2 .

U8 =06 =~ =0,
and so (J, ¢) is a linear function of t. We compute ({J,¢)) = (J,¢), and so we deduce that J, and J are orthogonal
to v if and only if (J,¢) = (J,¢) = 0, which is clearly equivalent to (J,¢) = 0 for all t > 0. Note that in particular,
if J(t;) = J(ty) = O for two distinct times t; # t, then (J,¢) = 0 for all ¢ since the map is linear.

From this we deduce that all Jacobi fields J along ¢ with J(0) = 0 = J(t) for any t > 0 must be normal to ¢ for
allt > 0.

First we characterize all of the normal Jacobi fields, J, along ¢ with J(0) = 0. We claim that they are all of the
form J(t) = s;(t)E(t) = sin(t)E(t) where E is any parallel normal vector field along c. Recall that the Riemann
curvature tensor of §" is given by R(X,Y)Z = (Y, Z)X — (X, Z)Y . Plugging this into the Jacobi equation, and using
the facts ||¢|| =1 and (J, ¢) = 0, gives us

J+{¢,e)T—{,ée)ée=T+J=0.

Now we see that J = —J, and so it is reasonable to look for J of the form J(t) = a(t)E(t) where E is a fixed
parallel normal vector field to ¢. We compute J(t) = a(t)E(t)+a(t)E(t), J(t) = a(t)E(t)+2a(t)E(t)+a(t)E(t),
and so we find that the Jacobi equation reduces to

(a(t) +a(t))E(t) =0,

where we used the fact that E(t) is parallel to ¢ to deduce that E = E = 0 identically. By standard uniqueness
of ordinary differential equations we find that all solutions are constant multiples of a(t) = s;(t) = sin(t). We
find that these are all possible solutions since the dimension of the space of all such solutions is n — 1, and the
dimension of the space of all normal Jacobi fields with J(0) =0 is also n — 1.

Since sin(t) = 0 only when t € Nn we deduce that if t € N that dimJ; = n—1. On the other hand, for all other
t we have that dimJ| = 0. This follows since the Levi-Civita connection is flat, and so the parallel transport map
is an isomerty of the tangent spaces; i.e. if E(0) # 0 then E(t) # 0 and since sin(t) # 0 we see that J(t) # 0 as
well. Hence, J! = {0} for all t ¢ N7. Summarizing, we have

dimJt n—1 ift =nmn for some n €N,
imJ! =
¢ 0 else.

Note that every geodesic ¢ : [0,00) — S™ has a period of 27, so we only consider ¢ : [0,2w] — S". By the

Morse-Index theorem we have
Ind(c) = Z dimJ; =n—1,

te(0,2m)

Indy(c) = Z dimJ! =2n—2.
te(0,27]

So we deduce that the nullity of ¢ is
N(c) =1Indy(c) —Ind(c) =n—1.

We could have also used Lemma 4.3.3 to immediately deduce that N(¢) =n—1. [
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Exercise 12. Show that if under the assumptions of Theorem 4.5.1 we have equality in (4.5.6) for some t
with 0 < t < 7, then the sectional curvature of the plane spanned by ¢(s) and J(s) is equal to u for all s with
0<s<t.

We first recall the theorem:

Theorem 4.5.1. Suppose K < u, and as always, ||¢|| = 1. Assume either u > 0 or J*" = 0. Let f,, := |J(0)|c, +
|71°(0)s,, solve

f+uf=0
with f(0) =1J(0)|, f(0) = |J['(0), i.e. f, =|J(O)lc, + [J[(O)sp,.
If
fult)>0 foro<t<m, (4.5.3)
then
(D) fu= (0N, onlo,7], (4.5.4)
S';;((—ttll))lslji((—z))', fo<t;<t,<m, (4.5.5)
17(0)[c, () + (s, () < (D) forO<t <. (4.5.6)

We now solve the exercise.

Suppose that there exists some t with 0 < t < T such that
17(0)]c,, () + |J1(0)s, () = [T (¢)].
We will consider the function ¥(s) = [J| (s)f,(s) — |J(s)|fu(s) for 0 <s < 7. Note that
w(0) = [7(0)£,(0) = 7 (0)1£,(0) = 171 (0)lJ (0)| = | (0)]|J](0) = O.

Furthermore, we have that ¥(s) > 0 since f“ + uf, = 0. Note that this implies

JY 1 ) .
(%) = WL WIR) =0

In particular, since we have equality in (4.5.6) at time t we also have that (ljf—l) = 0. Hence,
uw

W(6) = VI (Of,(0 = 10)f,(6) = T (OO = O] (£) =0.

So we have shown that ¥(s) = 0 for all 0 <s < t, and so |J(s)| = f,,(s) for all 0 < s < t. Since |J|" + u|J| = O for
all0 <s <t, we have

T+l = 0,0 = RO, 6,1+ 7 (TP = (7,9)?)

= ﬁ (H(J:J) —K(J,C)|J|2) + # (|J|2|J|2 _ (J’j)z)
=0.

By the Cauchy-Schwartz inequality we have that (J,J) < |J||J|, and so from the above equality we deduce that J
and J are linearly dependent for all 0 < s < t. In light of this, the above chain of equalities reduces to

1 . .
i (ul? =KW, O ) = plI | -k, O | =0.
Since |J| # 0 we deduce that u = K(J,¢) for all 0 < s < t, as desired. n
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Exercise 13. Letp € M, n=dimM, r(x)=d(x,p),

1 o (%)
/2 P 4t )

In the Euclidean case, w(x, t) is the fundamental solution of the heat operator, i.e. for (x,t) # (p,0)

(% +A) w(x,t)=0.

Under the assumptions of Lemma 4.7.1, derive the estimate

'(% +A) w(x,t)

w(x,t):=

2
< ZAZMW(X, t)
4t

for (x,t) # (p,0).

Lemma 4.7.1. Suppose exp, : T,M — M is a diffeomorphism on the ball {v € T,M : ||v|| < p}, and suppose that
the sectional curvature in B(p, p) satisfies

ALK<u with A <0, u=>0,
put A := max(—A, u), and assume

s
p<— in case u > 0.
Vi

Then, with r(x) =d(x,p) for x # p

|Alogr(x)| < 2A ifn=dimM =2, 4.7.1)
-2
AP ™) < E2Ar7"(x)  ifn=dimM > 3. (4.7.2)
We begin by computing
*(x) ’(x)
9 )= _nexp (_%) N r?(x)exp (_r4tx ) _ r2(x)—2nt wx)
at 7 2t1+3 4¢2+3 4¢2 '

Computing the Laplacian of w is a lot more involved since we need to work out some sort of chain rule for the
Laplace-Beltrami operator on M.

Leth: M — Rand f : R — R. Then grad(f oh)(x) = f’(h(x))grad h(x). Recall that divergence can be defined
as the trace of the covariant derivative, from which we can easily deduce that div(FX) = F div(X) + X (F) for any
Fe€*°(M)and X €T(TM). We deduce

A(f oh) = —div(grad(f oh))
= —div((f’ o h) grad h)
= —(f' o h)div(grad(h)) — grad(h) (f' o h)
= (f' oh)Ah—grad(h)(f’ oh)
= (f' oh)Ah—d(f’ o h)(grad(h))
=(f'oh)Ah— (d fiey© dh(.)) (grad(h))
= (f’ oh)Ah—(f" o h)dh(grad(h))
= (f'oh)Ah—(f" o h)|| grad(h)|1>.
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We now can try and apply this to w(x, t) where f(s) = tn% exp (—%) and h(x) = r?(x). We find that

2 2
st )= exp (-2 )2 () - L enp 22 ) fgraa ()
_ (%) oy 1 _rz(x)) )
= exp( a0 )A(r (x)) pyor exp( 2t re(x)
3 r2(x) + tA (r?(x))
——( a2 )w(x, t).

So we have

—tA (rz(x)) —2nt
4t2

w(x,t)

0
—+ A ,t
‘( Z4a)wrno
Given our manifolds sectional curvature bounds we deduce that
2n(1 —Ar?(x)) < —Ar?(x) < 2n(1 + Ar?(x)).

Using this we have
—tA(r*(x))—2nt L 2ne(l+ Ar?(x))—2nt _ 2Ar?(x)

42 - 42 4¢2
and
—tA(r?(x))—2nt _ 2ne—Ar2(x) —2nt _ 2Ar3(x)
4¢2 - 4¢2 B 4t
Hence,
—tA(r?(x))—2nt - 2A12(x)
4t2 T 4t 7
and we conclude )
a
’(E + A) w(x, t)| < ZA%W()C, t).

I think there is a typo in the question since the bound I have does not have the A? term, only A.

72



Chapter 5.  Symmetric Spaces and Kdhler Manifolds

Exercise 1. Show that the real projective space RP" can be obtained as the space of all (real) lines in R***.
Show that RP! is diffeomorphic to S'. Compute the cohomology of RP". Show that RP" carries the structure
of a symmetric space.

I already showed the fact that RP" can be obtained as the space of all real lines in R**! in Chapter 1, Exercises 1
and 3.

Since RP! and S are both 1-dimensional smooth manifolds, to show that they are diffeomorphic it suffices to show
that they are homeomorphic. Note that RP! = S' /7, where 7(x) = —x is the antipodal involution of S'. Now we
just need to show that S /7 is homeomorphic to S*. Write S' = {z € C : |z| = 1} and consider the map f : S* — S!
given by f(z) = z2. Note that f is clearly a continuous surjective function with f(z) = f(—z). Hence, f factors
through the quotient map under the equivalence determined by 7. Now by the universal property of the quotient
topology we find that there exists a unique homeomorphism ¢ : S!/~— S!. Hence, RP! is homeomorphic (and
therefore diffeomorphic) to st

Note that the involution 7(x) = —x of §" induces a splitting QP(S") = QF (S")@QF (S™), where Q% (S") only consists
of the differential forms with 7w = £w. So we have a splitting of the de Rham cohomology groups H*(S") =
H(S")®H*(S") = R. Now the quotient map ¢ : S" — RP" induces an isomorphism ¢* : Q*(RP") — Q*(s"), and

hence an isomorphism ¢* : H*(RP") 5 H’;(S"). Finally, note that the canonical generator [w,] € H"(S") = R[w, ]
is in H}(S") or H"(S") depending on whether n is even or odd (this follows since 7*(w,) = (—1)""w,. So we
have computed

R ifnisodd,
0 if niseven.

Hn(RPn) — {

Now since RP" is connected we have that H°(RP") = R. Now since HP(S") = 0 for all 0 < p < n we deduce that

HP(RP") = {R if p=0, orp=nand nis odd,

0 else.

Consider the symmetry o : S™ — S™ on S" around the north pole N = (0,...,0,1) € S" given by
oy(x)=2(N-x)N —x,

where we consider " C R"™"!. Note that oy o T = 7 o oy, and so o descends to an isometry of the quotient
space RP" = S§" /7. We compute

oy(N)=2(N-N)N—N =2|N|[N—N =N

and since we can write oy (x) = (2NN T —1)x we have

0

_lnxn

0 1

Doy(x)=(2NNT—-1)=

Since TyRP" = Ty S™ = R" x {0} we see that the restriction Doy (N) : TyRP" — TyRP" is given by Doy (N) = —id,
as desired. So we have shown that RP" is a symmetric space. n

Exercise 2. Similarly, define and discuss the quaternionic projective space HP" as the space of all quaternionic
lines in quaternionic space H"*!. In particular, show that it is a symmetric space.
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We define HP" as the quotient of H"*! \ {0} by the equivalence relation Z ~ AZ whenever Z = (Z,,...,Z,) €
H" \ {0} and 0 # A € H. Now consider the unit sphere §***3 C H""! as the set of points such that Z - Z = 1,
where - is the usual dot product and the - denotes the quaternionic conjugation. Any quaternionic line in H”Jr1
must intersect the unit sphere. Furthermore, if Z € $*'*3, then AZ € $***3 if and only if |A| = 1. Now by
identifying Sp(1) with the group of unital quaternions we see that HP"*! = §41*3/Sp(1) (as sets). Since Sp(1)
is a compact Lie group acting effectively on $**"* we deduce by the quotient manifold theorem that HP"*! is a
smooth manifold. Note that Sp(n + 1), the group of (n + 1) x (n + 1) quaternionic matrices which preserve the
natural quaternionic Hermitian form X - Y, acts transitively on the unit sphere in H"*'.

Let [N] be the coset of the north pole N € $***3, Let L be the quaternionic line through [N], and define a linear
operator o : H**! — H""! such that |, =id and o|,. = —id, i.e. 0(Zy,Z3,...,2Z,) = (Z9,—Z3,...,—Z,). Since &
is linear, o factors through the quotient to HP" to define the involution oyj : HP" — HP". It is straighforward to
see that oy ([N]) = [N] and Doyi([N]) = —id. Since the isometry group acts isometrically on HP" we deduce
that this involution extends to all points in the quaternionic projective space. Hence, HP" is a symmetric space.

Exercise 3. Determine all Killing fields on S".

We claim the the following vector fields form a basis of the vector space of Killing fields on S": Consider S C R"*!

and the vector fields 5
=

Ky =x' dxJ Jxi
forany 1 <1i,j < n+1. Note that the flow of K;; is given by &;;(x, t) = exp (tA(ij)) x where (A(ij))ij = —(Aij)ji =1
and all other entries are zero. Since for any t the flow map &;; is an isometry of R"™*! that preserves the sphere,
we see that ®;;(x, -) is a local group of isometries of S" for any x € S", and so we deduce that K;; is a Killing field.
Note that
n(n+1)

dim(span{Kij : 1Si,j$n+1})= 2

Now since the isometry group of S" is SO(n+ 1) and since dimSO(n+1) = @, we deduce that span{K;; : 1<
i,j < n} is the set of all Killing fields on S™.

||
Exercise 4. Determine the Killing forms of the groups SL(n, C), Sp(n,R), SU(n), U(n).
Note that if we have any basis {e,,...,e,} of a Lie algebra g then we can find coefficients c” such that
i i1 — Ak
[e',e/]=c e".
Then we find that ' ' o o
(ad(e") o ad(e)(e") = [¢',[¢/, e 1] = €], ¢/ e ] = clic; e
Since the Lie bracket is anticommutative we deduce that c,ij = —c]’?k and since the Lie bracket satisfies the Jacobi

idelltity we haVe
m kj
Cll km C ]Clk C J ml — O

Now we can easily check that

ik
By(ei,e)) =cilc; .
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e SL(n,C): Let E(7) be the matrix with (E*)), ; = 1 and all other entries zero. Define D;; = E;; — E;; and let
h; = D; ;4. Note that hy,...,h,_; and the EUW for i # j form a basis of sl(n,C). Since sl(n,C) is a simple
Lie algebra over C, we know that any two symmetric invariant bilinear forms are scalar multiples of each
other. So we deduce that

Bﬁ[(n,C)(X’ Y) = Atr(XY)

for all X,Y € sl(n,C), where A is a constant. If Z is a diagonal matrix with tr Z = 0 then

[2,ED] = (Z;; — 2;;)EY,
and

tr(ad, oad,) = Z (Zil» — Zl-j)2 =2ntr(Z?).
i.J

In particular, B, c)(hy,h;) = 2ntr(h?) = 4n. This shows that A = 2n, and so

Byino)(X, Y) = 2ntr(XY).
Alternatively, we can just use determine the structure constants of the Lie bracket in sl(n, ¢) to determine

the result in the same way.

e Sp(n,R): We just use the structure constants of the Lie bracket of sp(n, R) to find that

Bopyur)(X,Y) = (2n+2) tr(XY).

e SU(n): We compute the structure constants of su(n). First note that every Hermitian n x n-matrix can be
written as a real linear combination of the following matrices:

O .-+ 0 O [0 0o - 0 O [O 0 00
O .-+ 0 O o1 -+ 0O 0 0 00
: N I P P (12)
00 0 0 0 0 0 0 0 0 00
0 0 o 0o/ \o o 0 0 \0 0 0 1
0 1 0 0 0 O 0 O [O 0 0 O
1 0 0 0 0 0 0 O 0 0 00
: Do P (13)
0 0 0 0 0 0 0 0 0 0 0 1
\0 0 0o/ \o o 0 0] 0 0 10
0 O 0 0\ (0 0 0 0\ 0 0 0 O
0 O 0 0 0 0 0 0 0 0 0 O
: L : (14)
0 —i 0 0 0 0 0 0 0 0 —i
i O 0 0 0 0 0 0 0 0 i O
Note that the matrices in (14) are traceless. Now if we replace the matrices in (12) by
1 0 0 0 0 0 0 0 0 0 0 O
0 -1 0 0 0 1 0 0 0 0 0 O
: : : a4)
0 O 0 0 0 0 0 0 0 0 1 0
0 O 0 0 0 0 0 0 0 0 0 -1



then we obtain a basi;s for all Hermitian matrices with zero trace. Now let these basis matrices in (14’) and
(14) be denoted as A'. Then the basis of su(n) is given by

: 1
el = _El),l

Now we can write

[el,e]=c/ef,

and o 3
[AL, A= 2ic/ A%

It is easy to compute that tr(A'A7) = 25,; for A', A7 in (14). Now we find that
tr([AT, M1, AK) = 2ic] tr(A'A%) = 4ic/.
So we can compute the structure coefficients as
ij 1 i aj1 9k
¢ = —t([AL V] A5).

41
Since the trace is invariant under cyclic permutations of its operator we see that

- 0 ik

4ic, = 4le .

Similarly, we find that c;{j is antisymmetric in all indices. Now we deduce that

n
i ,i) — ik .Jjk
Bﬁu(n)(e ,ej) = Z _Cl CZ .
£k=1

In particular, we find that
Bsu(n)(X: Y) =2n tI'(XY).

e U(n): Since su(n) is an ideal in u(n) we deduce that they have the same Killing form. That is to say

Bym(X,Y) =2ntr(XY).

Exercise 5. Discuss the geometry of S" by viewing it as the symmetric space SO(n + 1)/SO(n).

We prove that S" = SO(n+1)/SO(n), and discuss the geometric interpretations along the way. This is essentially
just the orbit stabilizer theorem.

Intuitively, note that SO(n+1) acts by rotations on R**!. This action restricts to a transitive action on S”. Now fix a
vectore; =(1,0,...,0) € §". Note that we have a continuous map SO(n+1) — S" given by A — Ae;. The subgroup
of SO(n + 1) which stabilizes e, is the kernel of this map. It is the block diagonal subgroup H = {1} x SO(n). It
follows that the quotient SO(n + 1)/H = SO(n + 1)/S0O(n) is in continuous bijection with S". Since both spaces
are compact Hausdorff spaces, we deduce that the map is a homeomorphism. ]

Exercise 6. Show that CP" = SU(n + 1)/S(U(1) x U(n)). Compute the rank of CP" as a symmetric space.

76



We will use the Hopf fibration S**! — CP". Note that U(n + 1) is the isometry group of C*™! which preserve the
complex structure. This U(n + 1) acts transitively on $?**!, and the action descends to a transitive action on CP".
Now if x € U(n + 1) fixes a point p € $"™1, then x also stabilizes the orthogonal complement of x, and so the
stabilizer of a point is U(n), where we view U(n) is embedded in U(n+1) as U(1) x U(n) € U(n+1). In particular,
we deduce that

CP" =U(n+1)/(U(1) x U(n)) =U(n+1)/S(U(1) x U(n)).

The rank of CP" as a symmetric space is 1. n

Exercise 7. Determine the closed geodesics and compute the injectivity radius of the symmetric space RP".

First note that the geodesics of RP" are simply the projections of the geodesics of §". This follows since the map
S§" — RP" is a local isometry, and hence preserves the geodesics. Using this, we immediately find that a geodesic
¢ : R — RP" satisfying ¢(0) = p = n(x), and ¢(0) = X = n(x,u), with ||X|| = 1 is written as

c(t) = m(x cos(t) +usin(t)) = exp,(tX).

From this we immediately deduce that all of the geodesics in RP" are closed. Note that L(c) = m/2, and so
diam(RP") = 7t/2. Now since we have an explicit expression of the exponential map, and since 7 : S* — RP" is
non-singular that the injectivity radius of RP" is exactly 7/2. n
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Chapter 6. Morse Theory and Floer Homology

Exercise 1. Show that if f is a Morse function on the compact manifold X, a < b, and if f has no critical
point p with a < f(p) < b, then the sublevel set {x € X : f(x) < a} is diffeomorphic to {x € X : f(x) < b}.

Let Crit(f) denote the set of critical points of f in M. Note that since M is compact we have that the sublevel sets
are compact, and that the set Crit(f) is closed. So we can find some & > 0 such that

{a—e < f <b+e} c M\Crit(f).

Now consider a smooth function ¢ : M — R* satisfying

(x) = |grad(f)f 7! if f(x) € [a, ],
4 0 if f(x) & (a—g,b+¢).

Now consider the vector field X = —¢ grad(f) on M and the associated flow map ¢ : R x M — M. Now consider
an integral curve, y, of X. Now we consider the derivative of f along vy to find that in the region {a < f < b} that

d(fey) _ ., _ grad(f)f _
& T grd)f

So we see that in {a < f < b} the value of f decreases at a rate of one unit per second. This implies, by the
fundamental theorem of calculus, that

—-1.

®, ({xeX:f(x)<bh)={xeX: f(x)<a}

and
b, ,({xeX : f(x)<a})={xeX : f(x)<b}.

Hence, ®,_; is a diffeomorphism between {x € X : f(x) <a} and {x €X : f(x) < b}.

Note that we don’t need f to be a Morse function for this proof to go through. Similarly, we don’t need M to be
compact if we assume that all of sublevel sets are compact.

Exercise 2. Compute the Euler characteristic of a torus by constructing a suitable Morse function.

Consider the n-torus T" = 8! x --- x 8! C C". Now consider the function f : T" — R given by

n

f (eiel,...,eien) = Zcos 0;.

j=1

It is easy to compute
grad(f) =—(sin6,,...,sin6,),

which vanishes if and only if e’ = £1 for all 1 < j < n. In particular,

Crit(f) = {(by,..., b,) : b; = %1},
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with | Crit(f)| = 2". We can partition Crit(f) = | J Crit,(f ), where Crit,(f) is the set of critical points of f with k
indices equal to +1 and n—k indices of f equal to —1. For any p € Crit,(f) we see that k of the second derivatives
of each term, cos 0, are equal to —1 and n — k are equal to 1, with no other contributions to the second-order
Taylor series expansion of f. So we deduce that all critical values of f are non-degenerate with index k; hence f
is a Morse function. Now we compute the Euler characteristic

2(T) = i(—l)’w Crity () = Zn](—nk(;l) =o.
k=0 k=0

Exercise 3.
Zero.

Show that the Euler characteristic of any compact odd-dimensional differentiable manifold is

Let M be a smooth n-manifold with n = dimM odd. Consider a Morse function f : M — R. Since | Crit,(f)| =
| Crit,_; (—f )| we have

2 (M) =D (=1 Crit (f)]

k=0

— Z(_m Crit,_(—f)|
k=0

= (=1)" > (—1)"¥| Crit,_(—f)|

k=0
=(-1)" Z(—l)k| Crit, (—f)| (by reindexing)
k=0
= (—1)"x(M).
Since n is odd we deduce that y (M) = 0. n

Exercise 4. Show that any smooth function f : S — R always has an even number of critical points, provided
all of them are nondegenerate.

By using the standard height function h : S* — R given by x — x,; we find that

x(8)=1+(-1)",

which is even. Now consider any Morse function f : S™ — R and note that

2OM) = D (1 w(f) =1+ (=1)".
k=0

Now we compute

Crit(F)l =D ()= 2 (D'm(H+2 D wm=0+EDD+2 > (),
k=0 k=0

k is odd, 0<k<n k is odd, 0<k<n

which is clearly even. [
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Exercise 5. Prove the following

Theorem (Reeb). Let M be a compact differentiable manifold, and let f € ¢°3(M,R) have precisely two critical
point, both of them nondegenerate. Then M is homeomorphic to the sphere S" (n = dim M).

Let f € €3(M,R) have precisely two critical point. Since M is compact we see that f attains its maximum at some

point p...x € M and a minimum at some point p.;, € M. In particular, these are the two nondegenerate critical
points of f. By rescaling if need be, we may assume that f (M) = [0,1], i.e. we define f(x) = %.
Note that this transformation is well defined since f has two nondegenerate critical points and so f(Ppax)

f (Pmin)- Now we can use the Morse-Palais lemma to find some & > 0 such that f 71([0,¢]) and f *([1—¢,1]) are
diffeomorphic to closed balls in R". By Exercise 6.1 we know that the sublevel set M, :={x € M : f(x) < ¢} and
M,_, :={xeM : f(x) <1—e¢} are diffeomorphic. So we deduce that M,_, is also diffeomorphic to a closed

ball in R™. In particular, we see that M is the union of two disks glued along their common boundaries.

Now we construct an explict map 7 : 8" — M as follows. Write S" = 8} US" where S’ = 8" N {sign(x,;,) = £1}.
We immediately have a diffeomorphism ¢ : S — M;_, from the work in the previous paragraph. Let 1), be the
restriction of ¢ to 98" = df'([1—¢,1]) = S"', and extend v, radially to a homeomorphism v : f~([1—
g,€]) — ST Explicitly, we can write

_flxlio () ifx #o,
vix)= {o if x =0.

Now by considering the map

(x) = p(x) ifxeS?,
T = 1 p(x) ifxes.

This map is clearly a homeomorphism between S" and M. [

Exercise 6. Is it possible, for any compact differentiable manifold M, to find a smooth function f : M — R
with only nondegenerate critical points, and with u; = b; for all j (notations of Theorem 6.10.2)?

We will show that this is not always possible by considering M = RP3. Note that by Poincaré duality and Bochner’s
theorem (alternatively from Exercise 5.1) we obtain b,(RP?) = b;(RP%) = 1 and b, (RP?) = b,(RP?) = 0. Assume,
for the sake of contradiction, that there exists a smooth function f : RP> — R with only nondegenerate critical
points satisfying u;(f) = b;(RP?) for all j =0,...,3. That is to say that

3 3
|Crit(F)l = > py(F) = > b (RP®) =2.
i=0 i=0

Now by Reeb’s theorem (Exercise 6.5) we deduce that RP® is homeomorphic to S. This is clearly impossible since
RP? is not simply connected, while S* is. So we deduce that such an f cannot exist. ]

Exercise 7. State conditions for a complete, but noncompact, Riemannian manifold to contain a nontrivial
closed geodesic. (Note that such conditions will depend not only on the topology, but also on the metric as is
already seen for surfaces of revolution in R®)
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Exercise 8. Let M be a compact Riemannian manifold, p,q € M, p # q. Show that there exist at least two
geodesic arcs with endpoints p and q.

Exercise 9. In (6.2.1), assume that f has two relative minima, not necessarily strict anymore. Show
that again there exists another critical point x5 of f with f(x3) = max{f(x;),f(x,)}. Furthermore, if
x = inf,cr max, ¢, f (x) = f(x;) = f (x;), show that f has infinitely many critical points.

Exercise 10. Prove the following statement:

Let y be a smooth convex closed Jordan curve in the plane R%. Show that there exists a straight line ¢ in R?
(not necessarily through the origin, i.e. £ = {ax! + bx? + ¢ = 0} with fixed coefficients a, b, c) intersecting y
orthogonally in two points.

By the Jordan curve theorem we know that y bounds a compact set Q C R2. Now let £ denote the set of all line
segments £ in Q with d¢ C y, and let P denote the set of all points on y. In £ we will admit trivial curves, i.e.
a single point in P is a line in Q. This will allow our space to be closed with respect to the following notion of
convergence. We now say that a sequence of lines {£,} converges to £ € L if the endpoints converge as points.

Now consider any continuous map v : [0,1] — £ satisfying v(0) = v(1). Let V denote the set of all such v. For
every t € [0, 1] we can partition Q across v(t) into Q} u Qf We pick an arbitrary choice for t = 0 and determine
Q! and Q2 for t > 0 by continuity. Note that this implies Q) = Q3. Now define

k := inf sup L(v(t)).

VEV 1[0,1]

We claim that k¥ > 0. Let
r:=sup{p > 0 : for some x, € Q, B(xy,p) C Q},

and let x; be the corresponding center of the ball. Note that

k> K :=inf sup L(v(t)NB(x,r)).
VeV tel0,1]

Set ﬁlt = Qlt N B(x,, ). Note that ﬁlt varies continuously as well, and since SNZ(l) = ﬁg there exists some t, € [0, 1]
such that 5 5
£2(Q,) = £2(Q),

where £? denotes the Lebesgue measure on R2. Since v(t,) divides B(x,, ) into two subregions of equal area,
we deduce that L(v(t,) N B(xg,r)) = 2r. Hence,

K>K=2r>0,

and so our claim that xk > 0 is shown.

We want to show that « is realized by a critical point of L among all lines £ € £. Let {v,} € €([0,1];£) be an
infimizing sequence of paths in £, i.e.

inf sup L(v(t))= lim sup L(v,(t)).
VEV tel0,1] =09 tei0,1]
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Now find a subsequence {v,, }«en such that for every t € [0, 1] we have that v, (t) — v*(t) € L. We can pick such
a subsequence dues to the continuity of v and the obvious compactness of y C R2. Furthermore, we deduce that
v* € V since the convergence of the lines is clearly uniform. Now since L is sequentially lower semicontinuous
we deduce that

inf sup L(v(t))= sup v*(¢t).

VeV tel0,1] te[0,1]

Since v* is continuous we deduce the existence of some t* € [0, 1] such that

inf sup L(v(t))= sup v*(t)=v*(t¥).
VEY tef0,1] te[0,1]

Now it is clear that v*(t*) is a critical point for L among all smooth curves with endpoints on y. Now by Exercise
4.1 we deduce that v*(t*) must intersect y orthogonally at both of it’s endpoints. ]

Exercise 11. Generalize the result of Exercise 10 as follows:
Let M be diffeomorphic to S, y a smooth closed Jordan curve in M. Show that there exists a nontrivial geodesic
arc in M meeting y orthogonally at both endpoints.

Exercise 12. If you know some algebraic topology (relative homotopy groups and a suitable extension of
Lemma 6.11.3, see E. Spanier, Algebraic topology, McGraw Hill (1966)), you should be able to show the fol-
lowing generalization of 11:

Let M, be a compact (differentiable) submanifold of the compact Riemannian manifold M. Show that there
exists a nontrivial geodesic arc in M meeting M, orthogonally at both endpoints.

Exercise 13. For p > 1 and a smooth curve c(t) in M, define

1 .
E,(c):= —f [|¢]|P de.
p

Define more generally a space HP(M) of curves with finite value of E,. What are the critical points of E,
(derive the Euler-Lagrange equations)? If M is compact, does E,, satisfy the Palais-Smale condition?

Letc:[a,b] — M be a smooth curve.

A direct computation shows that if ¢ : [a, b] X (—¢,€) — M is a variation of ¢ then

b p=2
d 1 dc dc 2 g [/Jdc Jdc
—E = — —_— —_— —_— —_— —_— .
T (c5) ZL <8t(t,s),at(t,s)> 85<8t(t’s)’8t(t’s)>dt

It is now identical to the computation of the first variation of the energy. We deduce that

d NV
—E — AN all A / . .
o] = o (Fea-v.a)a
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So we see that c is critical for E, if and only if
% c)"%z(a (X,8) — (X,V c')) 0
—_— —_— Kl =
b at J b E
for all t € [a, b] for all X € T(c*TM). Since (¢, ¢) # 0 we deduce that c is critical for E, if and only if
9 X, X,Vac)|=0
E( B C) - ( B %C> -

for all X € I'(c*TM), but this is the same condition for c to be critical for E, and L. Hence, c is critical for E, if
and only if ¢ is a geodesic, and the Euler-Lagrange equations of E, are just the geodesic equations.

Now we define the Sobolev space H?(M) to be the space of curves with finite E,-energy (really the closure of
6 °° (M) with respect to the E, norm). Now we say that ¢, — ¢ in H LP as n — oo if ¢, converges uniformly to ¢
and if E,(c,) = E,(c) as n — oo.

Now we claim that E,, satisfies the Palais-Smale condition. Consider a sequence {c, },en € H LP(M) satisfying
E(c)<Ci  IIDE,(c,)] —0asn— oo.

Now let y € HY?(M) and t,, t, € [a,b] with t; < t,, and compute

d(r(ty),7(t,)) < f ((gio)7'7)"* de

t P 1/p
P 1]
< (ty—ty)P T (f (g oY) dt)
t

1
o
< ¥/plta— |77 {/Ep (7).

So we see that H*?(M) € €%/?([a, b]; M). Note that this is just an easy case of the Sobolev embeddings where
n =1 and the target space is M. Now since {E,(c,)},cn is bounded by C; we can use the Arzela-Ascoli theorem
to find a uniformly convergent (in 6([a, b]; M)) subsequence. Let us call the limit c. Now we need to show that
¢ € HYP(M). Note that the HP-norm in local coordiantes is lower semicontinuous with respect to LP-convergence
(which we have since M is compact and the convergence c, — c is uniform), and so the fact that E,(c) < +00
follows immediately.

By the uniform convergence ¢, — ¢ we can find coordiante charts f, : U, — R" for u =1,...,m and a covering
[a,b] =V, U---UV,, by open sets such that for sufficiently large n,

c,(V,))cU,and c(V,)cU, foru=1,...,m.
Now if & € 65°(V,,R") for some u then for sufficiently small |¢| we have that
fule(®) +ep(t)) C f,(U,) forall t €V,.

That is we can compute local variations without leaving the coordinate chart. This is what we mean in the
following when we write ¢ + e (or things of this form). Now we can view the first variation of DE,, as a linear

functional from Hé’p (M) — R, and so we endow it with the dual norm:

IDE, ()l = sup{%Ep(Hes) : € € Hy([a, b M), f €l de < 1}.
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Now we compute

d d . s ..
Lo (rted)= i(@f ((gijo (y + €N +eED0(G + 851))p/2 dt)

- f (810 (r-+ 26N + €07 +660) T ((a1y0 (r+ sEDTET + 5 (g0 (r + £ + €07 + ) e

Now at € = 0 we see that this simplifies to

d oo 2 | o
ng(Y +€&) . = f ((gij ° Y)}"IYJ) : ((gij oy)y'&l + E(gij,k o Y)Yl}}]gk)dt«

Now let {n,} be a partition of unity subordinated to the V,,. We want to show that E,(c,) — E,(c). So in the
above, we take &/ =1, (c/ —¢’) and compute the second term in the integrand

J ((gl] ° Cn)crl-lc;ll)% (gij,k o Cn)cyllc;,ln,u,(c’; - Ck) dt < C2 Supd(cn(t)7 C(t))Ep(cn) -0

tev,

where the limit follows by the uniform convergence of ¢, — ¢ and since E,(c,) < C;. Since ||DE,(c,)|| — 0 as
n — oo we deduce that the first term in the integrand also goes to zero. So we see that

E,(c,) —Ey(c) = f((gij oc,)élel — (gij° C)éiéj)nu dt — 0.

That is to say that E, (c,) — E,(c) asn — oo. Again, by the lower semicontinuity of E, with respect to convergence
in L? we deduce that DE,(c) = 0. So we have shown that E, does indeed satisfy the Palais-Smale condition on

HYP(M).
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Chapter 7. Harmonic Maps between Riemannian Manifolds

Exercise 1. Determine all harmonic maps between tori.

Exercise 2.

(a) We call a closed subset A of a Riemannian manifold N convex if any two points in A can be connected by
a geodesic arc in A. We call A strictly convex if this geodesic arc is contained in the interior of A with the
possible exception of its endpoints. We call A strongly convezx, if its boundary dA is a smooth submanifold
(of codimension 1) in N and if all its principal curvatures with respect to the normal vector pointing to
the interior of A are positive. Show that a strongly convex set is strictly convex.

(b) Show that a strongly convex subset A of a complete Riemannian manifold N has a neighborhood whose
closure B; and B, := A satisfy the conclusions of Lemma 8.2.2.

(c) Show that Theorem 8.2.1 continues to hold if N is only complete, but not necessarily compact, again
with m,(N) = 0, provided ¢(X) is contained in a compact, strongly convex subset A of N. In that case,
the harmonic f : ¥ — N also satisfies f () C A.

Exercise 3. In this exercise, still another definition of the Sobolev space H?(M,N) will be given. The
embedding theorem of Nash implies that there exists an isometric embedding

i:N—>R

into some Euclidean space.
We then define
Hil’Z(M,N) :={f e H"*(M,R") : f(x) €i(N) for almost all x € M}.

Show that

1,2 12
H'2(M,N)=H"*(M,N).
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Exercise 4.
(a) For1<p< oo and f € LP(M,N), we define

Ep,e(f):w; f J (£ (), £ () dvol(y)d vol(x),
M J B(x,e)

"

and
E,(f) = lim E, .(f) € RU {co}

(show that this limit exists). We say that f € LP(M,N) belongs to the Sobolev space H'P(M,N) if
E,(f) < co. Characterize the localizable maps belonging to H LP(M,N).

(b) Show lower semicontinuity of E, with respect to LP-convergence, i.e. if (f,),ey converges to f €
LP(M,N), then
E,(f) < liminf E, (f,).

(c) Derive the Euler-Lagrange equations for critical points of E,. (The smooth critical points are called p-
harmonic maps. The regularity theory for p-harmonic maps, however, is not as good as the one for
harmonic maps. In general, one only obtains weakly p-harmonic maps of regularity ¢ for some a > 0.)

(d) Show the existence of a continuous weakly p-harmonic map (minimizing E,) under the assumptions of
Theorem 8.2.1.

(e) Extend the existence theory of §7.5 to E,.

Exercise 5. Derive formula (7.2.13) in an invariant fashion, i.e. without using local coordinates.

Exercise 6. Prove the following result that is analogous to Corollary 7.2.4. A smooth map f : M — N between
Riemannian manifolds is totally geodesic if and only if whenever V is openin N, U = f(V),h: V —» Ris
convex, then ho f : U — R is convex.

Exercise 7. Let M be a compact Riemannian manifold with boundary, N a Riemannian manifold, f : M — N
harmonic with f (M) = p for some point p in N. Show that if there exists a strictly convex function h on f (M)
with a minimum at p, then f is constant itself.

Exercise 8. State and prove a version of the uniqueness theorem 7.7.2 for minimizers of the functionals
E,. Show that, as for the energy functional E, any critical point of E, (with values in a space of non-positive
sectional curvature, as always) is a minimizer.
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Chapter 8. Harmonic Maps from Riemann Surfaces

Exercise 1. Show that every two-dimensional torus carries the structure of a Riemann surface.

Exercise 2. Determine all holomorphic quadratic differentials on a two-dimensional torus, and all holomor-
phic quadratic differentials on an annular region {z € C : r; < |z| < ry} (0 < r; < ry) that are real on the
boundary.

Exercise 3. Show that the conclusions of the Hartman-Wintner-Lemma 8.1.7 continue to hold if (8.1.17) is
replaced by

luz| < K(Juy| + ful).
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Exercise 4. We let & be a Riemann surface and H : R®> — R be a smooth function. For a map f : ¥ — R® we
consider the equation

2 2
(8— d )f=2H(f(z))fx/\fy

+ —_
dx2 Jdy?
where z = k + iy is a conformal parameter on X and A denotes the standard vector product in R>.
(a) Show that, if f is conformal, H(f (2)) is the mean curvature of the surface f(3) at the point f(z).
(b) If = = S?, show that every solution is conformal.
(c) If 3 is the unit disk D and f is a solution which is constant on D, show that it is constant on all of D.
(d) Show that for a nonconstant solution, f, and f, have only isolated zeros.
(e) At those points where f, and f), do not vanish, we define
o (fxx’fx Afy)
lfe Ayl
(fay> fx NSy
ISyl

'_ (fyy:fx Afy)
M= AT

(using the Euclidean metric of R®).

Show that for a solution with H = const, ¢ dz? := (L —N — 2iM) dz? is a holomorphic quadratic
differential.

Conclude that ¢, since holomorphic and bounded, extends to all of X as a holomorphic quadratic differ-
ential.

(f) If H = const and X = S, show that every solution f(X) has constant and equal principal curvatures at
each point. Conclude that it is a standard sphere of radius %, ie. F(Z)={xeR®: |x—x,*= %} for
some x.

Remark 10. By the uniformization theorem, every two dimensional Riemannian manifold M diffeomorphic to S?
admits the structure of a Riemann surface and a conformal diffeomorphism K : 82 — M. It thus is conformally equiv-
alent to S%. The exercise then implies that every surface diffeomorphic to S? and immersed into R® with constant mean
curvature is a standard “round” sphere. This result, as well as the method of proof presented here, were discovered by
H. Hopf. o

Exercise 5. Prove theorem 8.2.3, assuming only that N is complete but not necessarily compact.
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Chapter 9. Variational Problems from Quantum Field Theory

Exercise 1. Show by a direct computation that (9.1.28), (9.1.29) imply (9.1.6), (9.1.7).

Exercise 2. Derive the Euler-Lagrange equations for the functional defined in (9.2.16).
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