
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 4, APRIL 2002 841

Processing of Multiple-Receiver Spaceborne Arrays
for Wide-Area SAR

Nathan A. Goodman, Student Member, IEEE, Sih Chung Lin, Devindran Rajakrishna, and
James M. Stiles, Senior Member, IEEE

Abstract—The instantaneous area illuminated by a single-aper-
ture synthetic aperture radar (SAR) is fundamentally limited by
the minimum SAR antenna area constraint. This limitation is due
to the fact that the number of illuminated resolution cells cannot
exceed the number of collected data samples. However, if spatial
sampling is added through the use of multiple-receiver arrays, then
the maximum unambiguous illumination area is increased because
multiple beams can be formed to reject range-Doppler ambigui-
ties. Furthermore, the maximum unambiguous illumination area
increases with the number of receivers in the array.

One spaceborne implementation of multiple-aperture SAR
that has been proposed is a constellation of formation-flying
satellites. In this implementation, several satellites fly in a cluster
and work together as a single coherent system. There are many
advantages to the constellation implementation including cost
benefits, graceful performance degradation, and the possibility
of performing in multiple modes. The disadvantage is that the
spatial samples provided by such a constellation will be sparse and
irregularly spaced; consequently, traditional matched filtering
produces unsatisfactory results.

We investigate SAR performance and processing of sparse,
multiple-aperture arrays. Three filters are evaluated: the matched
filter, maximum-likelihood filter, and minimum mean-squared
error filter. It is shown that the maximum-likelihood and minimum
mean-squared error filters can provide quality SAR images when
operating on data obtained from sparse satellite constellations.
We also investigate the performance of the three filters versus
system parameters such as SNR, the number of receivers in the
constellation, and satellite positioning error.

Index Terms—Array signal processing, multidimensional signal
processing, radar, radar signal processing, random arrays, space-
borne radar, synthetic aperture radar.

I. INTRODUCTION

A COMMONLY known design requirement for synthetic
aperture radar (SAR) systems is the minimum SAR an-

tenna area constraint [1]–[7]. The requirement arises because
the illumination area of the ground must be restricted so that the
radar does not receive ambiguous returns in range or Doppler. In
spotlight mode, therefore, there is a maximum area that can be
illuminated during a dwell. In stripmap mode, the width of the
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SAR swath is restricted. Since illumination area and aperture
size are inversely related, the maximum allowable illumination
area corresponds to a minimum aperture size requirement.

It is desirable to increase the single-pass spotlight area or
swathwidth of an SAR system. Increasing illumination area
is advantageous for applications that immediately require a
wide-area SAR map since fewer passes are needed to generate
the image. For dynamic remote sensing applications that
require wide coverage and monitoring over time, such as soil
moisture, ecological, or oceanographic applications, increasing
illumination area decreases revisit time. For these applications,
short revisit times are crucial to maintaining valid information.

There have been many proposed solutions for increasing il-
lumination area; however, most of them do so at the cost of de-
graded azimuth resolution. ScanSAR has been a popular method
[1], [6]–[11] that uses this technique. In ScanSAR, the synthetic
aperture size is limited, thereby reducing azimuth resolution but
also allowing time for the beam to be scanned in elevation for
multiple range swaths. One technique [5] changes the eleva-
tion dimension of the antenna in order to optimize the illumina-
tion area for different grazing angles, but the fundamental area
limitation is still present. Another proposed method [12] uses
multiple along-track beam positions and a larger along-track
aperture. The method provides better SNR but does not im-
prove revisit time for large areas. Several papers in the litera-
ture divide illumination time of a single receiver into smaller
segments called subapertures, but this is done to null large side-
lobe targets, improve processing efficiency, or reduce speckle
[7], [10], [13]–[17]. Multiple looks from different off-nadir an-
gles have also been proposed to improve range resolution [18].
Lastly, constellations of independent SAR satellites have been
proposed [19] for reducing revisit time. This last approach re-
duces revisit time by optimizing the orbits of several indepen-
dent SAR sensors, but the single-pass or instantaneous illumi-
nation area of each sensor is still limited.

In order to improve illumination coverage while maintaining
azimuth resolution, multiple coherent receive apertures can be
used [3], [11], [20], [21]. The illumination area is determined
by the size of the individual apertures, and range-Doppler am-
biguities that become illuminated are resolved through angle in-
formation provided to the system. The sum of the aperture areas
must still satisfy the minimum area constraint; however, illumi-
nation area can be improved over the single-receiver case by a
factor equal to the number of receivers.

Another reason for using multiple receive apertures is to miti-
gate the cost, fabrication, and deployment issues associated with
placing a large spaceborne aperture into orbit [2], [22], [23].
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When multiple receivers are employed, each receive aperture
can be carried on a small separate satellite called a microsat. The
reduced cost and deployment difficulties associated with these
small satellites may make a constellation of formation-flying
microsats more cost-effective than an equivalent large satellite
[9], [22], [23]. Furthermore, the likelihood of system failure is
reduced since failure will occur only to individual microsats,
instead of a satellite carrying an entire system. If enough mi-
crosats fail such that performance is degraded below an accept-
able level, replacement microsats can bepiggybackedon other
missions when room is available, thereby avoiding the cost of
dedicated missions.

The microsat constellation concept also provides flexibility
for performing in multiple modes and for multiple applications.
The multi-angle SAR data could be used for a variety of applica-
tions including parameter estimation and jam-resistant commu-
nications [22]. Interferometric applications, such as terrain ele-
vation mapping, would benefit from the constellation concept,
and the effective size of a constellation would prove advanta-
geous for space-based moving target indication.

Signal processing issues concerning the microsat concept
stem from the fact that the satellites must be significantly spaced
because the laws governing spaceborne formation flying only
allow specific orbits. The array will have a wide spatial extent
and will be sparsely sampled. It will be shown that, because of
the sparse spatial sampling of the array, advanced algorithms
must be used to process the spatial data.

The succeeding sections of this paper contain the mathe-
matics needed for developing the processing algorithms and
present simulations that demonstrate the performance benefits
of multiple receive apertures. Other results demonstrate effec-
tive processing of sparsely populated spaceborne arrays. In
Section II, we present a signal-space representation of the radar
system that will be used to derive and graphically demonstrate
the proposed algorithms. Section III provides results from
single-aperture SAR and specifically demonstrates the need
for multiple receive apertures. Section IV presents results for
multiple receive apertures in a close, regularly spaced array,
and multiple receive apertures in a sparsely populated array.
Performance of different algorithms versus several system
parameters is presented in Section V. Conclusions are provided
in Section VI.

II. SIGNAL-SPACE REPRESENTATION

The signal-space representation presented here encourages
implementation of estimation algorithms through well-estab-
lished linear algebra techniques and facilitates interpretation of
the SAR filters that are used. The complex signal that a radar
constellation measures, , can be written as

(1)
where is the position vector to the receiver,is the position
vector to a point on the ground, is the complex reflectance
per unit area at , is a time-variant function de-
scribing the radar physics such as propagation and antenna gain,

is the complex representation of the transmitted signal,

is the time over which the transmitted signal exists,is the
radar’s illumination area, and is complex noise. The
integration in time is performed over the length of the transmit
signal and is represented by to get

(2)

Therefore, the response from a differential area on the ground,
which depends on its position as well as the transmit signal, is
characterized by to within a multiplicative constant.
If the integration in (2) is approximated by a summation, the
received signal becomes

(3)

where the index includes all discrete areas that are illumi-
nated and is the position vector to the center of theth discrete
area. If the signal is sampled in space according to the constel-
lation and in time according to the signal’s bandwidth, theth
sample at the th receiver becomes

(4)

Finally, the entire set of measurements can be represented using
matrix-vector notation

(5)

where

(6)
and is the matrix or vector transpose. Also, is the re-
ceived time–bandwidth product of a single receiver,is the
number of receivers in the constellation, andis the number
of resolution cells of size . If the number of resolution cells

exceeds the number of measurements, , then any solu-
tion to the complex RCS vectorwill contain ambiguity.

Since the measurements contain noise, the SAR problem is
one of estimating the values in the RCS vector. As seen in (5),
the radar process is approximated as linear; therefore, we seek
an estimator that can be applied as a linear process. A weight
vector, or filter, will be found for each resolution cell. When we
take the inner product of the received measurements with each
of the weight vectors, the estimated RCS vectoris

(7)

where

(8)

(9)
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is the weight vector for theth target, and denotes the
conjugate-transpose operation. It is also important to note that
this is the type of processing traditionally done in SAR, where

is typically matched to measurements received from theth
resolution cell. Although some algorithms require more com-
putation for finding each , the total size of remains con-
stant; consequently, the data-dependent process of calculating
inner products is equivalent for all linear estimators.

III. SINGLE-APERTURESAR

Ambiguities occur when the number of illuminated resolu-
tion cells exceeds the number of independent measurements
collected. In spotlight mode, SAR focuses on a particular area
for some time, . During that time, independent complex sam-
ples can be collected at a maximum rate determined by the
signal bandwidth . Therefore, the maximum number of in-
dependent, complex samples that can be collected is equal to

, also known as the time–bandwidth product. The problem is
that bandwidth and observation time are fixed by the resolution
requirements of the system. The range resolution requirement
determines bandwidth, and the azimuth resolution requirement
determines observation time. Since it is only possible to image
unambiguously as many targets as there are independent sam-
ples, and since the number of independent samples is related
through bandwidth and time to particular range and azimuth res-
olutions, the maximum imaging area is fixed. A simple example
for a sidelooking, spotlight SAR is presented in the following.
Suppose the resolution requirements imposed on the radar are

and in azimuth and range, respectively. Range resolu-
tion is given by

(10)

where is the speed of light. For a 90sidelooking geometry
where the azimuth extent is small compared to the range, the
azimuth resolution can be approximated as

(11)

where is the wavelength at the center operating frequency,
is the average target range, andis the along-track velocity

of the radar platform. The area per pixel is then the product of
the azimuth and range resolutions

(12)

The maximum area is the time–bandwidth product multiplied
by the area per pixel

(13)

As can be seen from the right side of (13), the maximum area
that can be imaged is determined by range, wavelength, and
platform velocity.

One solution appears to be increasing the time–bandwidth
product. However, (10) and (11) clearly show that the resolu-
tion dimensions are inversely proportional to bandwidth and

time. For example, it is possible to get four times as many in-
dependent samples by increasing bandwidth and time each by a
factor of two, but the resolution pixels would be half the original
size on each side. This would result in four times as many sam-
ples, but the area of each pixel would be four times smaller, and
the total area would remain the same. Radar designers some-
times stagger the transmit pulse repetition frequency (PRF) or
apply other signal coding in order to modify the ambiguity func-
tion. However, the total energy in the ambiguity function must
remain constant [24]. Therefore, these methods can rearrange
ambiguity, but cannot make it disappear. It is impossible to get
around the fact that more resolution cells are being illuminated
than there are measurements available to distinguish them.

Fig. 1(a) shows the original SAR image used as the input to
the simulations in this paper. Areas of zero scattering are indi-
cated by black while areas of high scattering are indicated by
white. If pixel values calculated through SAR processing are
at or above the maximum scattering level in the input image,
then they appear white in the processed image. Therefore, when
scattering estimates become very large due to high input noise
power, the visual representation of the output image becomes
saturated with white. All ambiguity functions and array patterns,
however, are represented as black on white in order to improve
reproduction quality.

When a single aperture meets the minimum antenna area con-
straint, the number of illuminated resolution cells, or pixels,
does not exceed the time–bandwidth product of the system, and
the result is as shown in Fig. 1(b). However, if a larger area SAR
map is desired, and the illumination area is increased for this
reason, the result is as seen in Fig. 1(c). Another way of demon-
strating why the poor result of Fig. 1(c) occurs is to determine
the amount of correlation between all combinations of pixels.
This is determined with the conjugate transpose ofby

(14)

The values on the diagonal of are the correlations of each
target with itself; therefore, their values are the squared magni-
tude of the normalized measurement vectors. Off-diagonal el-
ements, , represent the amount of correlation, or am-
biguity, between targets and . For example, the values in
row one show how target one correlates with all other targets.
The correlation matrix for a case where the number of illumi-
nated targets exceeds the time–bandwidth product is shown in
Fig. 1(d). It is seen in Fig. 1(d) that there are very dark off-di-
agonal elements; consequently, it is inferred that there is a large
amount of correlation between some targets.

IV. M ULTIPLE-APERTURESAR

A necessary requirement for increasing SAR map area is to
increase the number of independent samples, or amount of in-
formation, that is collected without modifying resolution cell
size in the process. It was shown that this is not possible by in-
creasing bandwidth or illumination time. However, the amount
of information collected can also be increased by adding infor-
mation in the spatial domain. By adding more antenna apertures
to the SAR system, each with its own receiver, angle-of-arrival
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Fig. 1. Simulation results for a single-receiver SAR. (a) The original image is reconstructed from a system that (b) limits illumination by meeting the minimum
antenna area constraint and one that (c) does not satisfy the minimum antenna area constraint. (d) The target correlation matrix for the case in (c) is shown.

information can be collected. If is the total number of re-
ceive apertures, then the number of independent samples avail-
able to the system is now . The maximum area is again
the product of the number of independent samples and the area
per pixel

(15)

which is times larger than was possible with a single receiver.
Furthermore, it is noted that the angle-of-arrival information
is unique from the time and frequency information, making it
possible to discriminate between range-Doppler ambiguities. In
other words, targets that are ambiguous in time and frequency
(range-Doppler) will have different angles of arrival and can be
distinguished.

Fig. 2 demonstrates how multiple receive apertures can re-
solve range-Doppler ambiguity. In this simulation, a single aper-
ture that satisfied the minimum area constraint was divided into
nine smaller apertures of equal size, each with a coherent re-
ceiver. In Fig. 2(a), the range-Doppler ambiguity function for
a target is shown. From this figure it is apparent that for any
target there are eight other targets that are ambiguous in the
time and frequency domains. Fig. 2(b), however, shows the array

pattern when the array is focused on the center target. This is
the spatial-domain ambiguity function for the center target. The
eight targets that are ambiguous with the center target are lo-
cated in the nulls of the array pattern. The total ambiguity func-
tion for the center target is, approximately, the product of the
range-Doppler and spatial ambiguity functions. This product is
shown in Fig. 2(c), which shows that the total ambiguity func-
tion approaches the idealthumbtackshape. Energy from am-
biguous targets has been eliminated rather than rearranged be-
cause of the addition of spatial information. Likewise, the cor-
relation matrix for this scenario shown in Fig. 2(d) exhibits no
significant off-diagonal elements, indicating that no ambiguities
are present. The result for this method of processing applied to
every target is shown in Fig. 3.

Figs. 2 and 3 demonstrate the effectiveness of multiple receive
apertures. The question now becomes what is the best method
of processing the newly added angle-of-arrival information for
a given array formation.

A. Correlation Filter

Fig. 3 was generated using matched-filter, or correla-
tion-filter, processing with nine receivers in a 3 3 regular
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Fig. 2. Ambiguities in the (a) range-Doppler map fall on nulls in the (b) receive array pattern to approximately form the (c) total ambiguity function.(d) The
target correlation matrix has no significant off-diagonal elements, demonstrating reduced ambiguity.

Fig. 3. SAR results using matched filter processing for a three-by-three closely
spaced receiver array.

array. The vector representation of the correlation filter for the

th resolution cell is the weighted conjugate transpose of its
measurement vector

(16)

where the superscript, , denotes that the filter is a correlation
filter. If the matched filters for all resolution cells are placed into
the columns of a matrix, the matched-filter estimator, , is
given by

(17)

where is described in (6), and is a diagonal matrix defined
as

...
...

.. .
...

(18)
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When the matched filter is applied to the measurements re-
ceived, the estimate of theth target is

(19)

As seen in (19), error in the matched filtering operation comes
from two terms. The first error component is represented by
the summation term. This is the error due to clutter because
of correlation between the desired target and other scatterers.
The second error component is shown in the last term of (19)
as the error component due to noise. The matched-filter vector,
however, has the smallest magnitude of any filter vector that
gives as its expected result. Therefore, the matched filter has
the least noise power at its output of any linear filter. While the
matched filter maximizes output SNR, it does not account for
clutter in any manner. In cases that are clutter limited rather
than noise limited, the matched filter does not provide optimal
estimates. However, it is this lack of dependence on clutter that
also makes the matched-filter vectors the least computationally
expensive to generate.

An important interpretation of the matched filter applied to
angle information is that the matched filter is equivalent to
beamforming. The matched filter maximizes SNR by focusing,
or steering, the array pattern directly toward each target it is
estimating. Range-Doppler processing reduces all but the target
and its range-Doppler ambiguities. The spatial matched filter
then forms a beam that maximizes array gain in the direction of
the desired target and simultaneously attenuates range-Doppler
sidelobes and ambiguities that fall outside the array’s mainlobe.

B. Sparse Arrays

The microsat concept calls for placing each receive aperture
on its own, smaller satellite. Furthermore, the orbital dynamics
of formation flying require the satellites to have significant,
random spacing between them. Therefore, the microsat array
is sparsely populated, and different spatial processing must be
applied. Fig. 4(a) shows a sparse array configuration. It is seen
in Fig. 4(a) that the spacing between apertures is not regular
or periodic; the apertures are randomly placed in three dimen-
sions. This represents control of the array structure by orbital
dynamics rather than antenna array design and does not assume
that those orbital dynamics produce a formation that is either
linear or planar. It is assumed that the apertures have the same
azimuth and elevation angles at boresight; therefore, the satel-
lites’ illumination patterns on the ground are assumed to be
identical.

The sparse, randomly sampled array has significant conse-
quences on the algorithms applied to the spatial data. As seen in
Fig. 4(b), matched filtering has become less effective because
the array pattern has sidelobes that fall on range-Doppler am-
biguities. This is easily understood by viewing the ambiguity
functions in Fig. 5(a)–(c). In Fig. 5(a), the range-Doppler ambi-
guity function is again shown. Instead of the well-defined main-
lobe, nulls, and sidelobes seen in Fig. 2(b), the array pattern
in Fig. 5(b) has a smaller mainlobe due to the increased array
spatial extent and a random pattern of sidelobes and grating

(a)

(b)

Fig. 4. Results from a sparse array configuration. (a) The sparse, randomly
located receiver array used with matched-filter processing to generate the SAR
image in (b).

lobes. Because the array pattern behaves in this way, in gen-
eral the nulls of the spatial pattern will not lie on ambiguities in
range-Doppler. Unambiguous targets in range-Doppler are still
unambiguous overall, but ambiguities in range-Doppler have
varying degrees of correlation depending on where they fall in
the spatial pattern. The result is the total ambiguity function
shown in Fig. 5(c). The correlation matrix for the sparse, mul-
tiple-aperture case was also calculated and is shown in Fig. 5(d).
The perfect matrix occurs when all targets are completely un-
correlated. In this ideal case, the measurement vectors are or-
thogonal to each other, and the correlation matrix is in the form
of an identity matrix. All dark off-diagonal elements represent
deviation from the ideal case; therefore, it is seen by comparing
Figs. 2(d) and 5(d) that, as expected, the situation has degraded
in the sparse case.

C. Maximum-Likelihood Filter

If the vector of measurements,, is defined as before, and
the vector of noise values,, is jointly Gaussian, complex noise
with zero mean and a covariance matrix given by, then the
conditional density of the observation and RCS vectors becomes

(20)
Using (20), the maximum-likelihood (ML) estimator is obtained
by maximizing the argument of the exponential function

(21)

The ML estimator then becomes

(22)
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Fig. 5. (a) The range-Doppler ambiguity function and (b) receive array pattern for the sparse array combine to give the (c) total ambiguity function. Ambiguities
seen in (c) also appear as off-diagonal components in (d).

Next, if it is assumed that the noise samples are independent,
then the noise covariance matrix is diagonal

(23)

where is the identity matrix. The ML estimator then reduces
to

(24)

where denotes the pseudoinverse operation. In order to
obtain good results when the spatial array is sparsely sampled,
it is clear that ambiguities in range-Doppler must fall on nulls
in the spatial pattern. The ML estimator forces this condition on
the array pattern.

The estimate of theth pixel’s RCS due to the ML filter is
then

(25)

Comparing the forms of (25) and (19), it is seen that the clutter
term is absent in (25). The last term in (25), however, becomes

important. If is ill conditioned, then the magnitude of the
weight vectors that make up can be very large and any
noise present in the measurements will be significantly ampli-
fied. Thus, SNR and the condition of become crucial factors
in determining the quality of the SAR image obtained through
the ML filter.

The condition of can be improved by adding more aper-
tures because the spatial degrees of freedom will increasingly
exceed the number of range-Doppler ambiguities. The effect is
the same as what is seen in array pattern synthesis where the
degrees of freedom largely determine how much the mainlobe
distorts when nulls are enforced. More apertures correspond to
more degrees of freedom, and more degrees of freedom corre-
spond to maintaining gain on the target without sacrificing the
number and depth of array pattern nulls.

Results for the ML filter are shown in Fig. 6. Fig. 6(a) shows
the output of the ML filter when the SNR of the measurements
is high. In this case, range-Doppler ambiguities are nulled by the
ML weight vector with excellent results. In Fig. 6(b), however,
the SNR is low. Since the pseudoinverse operation calculates
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Fig. 6. ML processing of a sparse, random array for (a) high SNR and (b) low SNR.

weight vectors that are large in magnitude, the high noise power
is amplified and overwhelms the output.

The ML filter maximizes the signal-to-clutter ratio (SCR).
In cases where the number of receivers is significantly larger
than the number of range-Doppler ambiguities, the ML filter
produces an excellent result. Disadvantages of the filter include
poor results when the SNR is low and increased computation
required to calculate due to the pseudoinverse operation.

D. MMSE Filter

The minimum mean-squared error (MMSE) method uses sta-
tistical properties of the targets and noise to calculate the filter
that achieves the best compromise between output SCR and
SNR. The MMSE filter maximizes the signal-to-interference
ratio (SIR) where interference is the sum of noise and clutter.
The MMSE filter, therefore, is the mathematically optimum
compromise between the correlation and ML filters.

The derivation of the linear MMSE filter begins with the or-
thogonality principle, which can be expressed as [25]

(26)

where is used to represent all linear combinations of the data,
. Beginning with (26) and following through gives the MMSE

operator

(27)
If the elements of the RCS vector,, are assumed to be inde-
pendent with identical statistics, and is recognized as
the noise covariance matrix, , then (27) reduces to

(28)

where the expected value of the squared RCS magnitude for
each target is .

Looking at (28) gives some important insight into the be-
havior of the MMSE filter. First, in a low-noise or zero-noise
case, will be negligible and becomes

(29)

which is the same as the ML filter. In the low-noise case, there-
fore, the MMSE filter maximizes SCR. In the high-noise case,

dominates and becomes

(30)

The filter representation in (30) is a vector in the same direc-
tion as the matched filter. An importance difference, however,
is that the MMSE filter becomes inversely proportional to the
noise variance. Hence, as the noise variance approaches infinity,
the magnitude of the MMSE filter approaches zero. Therefore,
inherent in the equation for the MMSE filter is the concession
that, in the presence of overwhelming noise, it is best to estimate
the RCS values not by the measurements, but by the statistical
properties of the targets.

Fig. 7 shows the results for the three filters when applied to
three different SNR cases: low SNR, moderate SNR, and infinite
SNR. The apertures for Fig. 7 are in a sparse, randomly located,
12-element array. It is seen that in the infinite-SNR case, the
ML and MMSE filters produce the same results. The matched
filter, however, produces results that are much worse because it
remains clutter limited. In the low-SNR case, the matched and
MMSE filters produce similar results, but the matched result is
brighter. This is because the matched filter does not reduce its
magnitude as noise is increased, and the brightness increases
with increased noise power. The ML filter becomes unstable
in the low-SNR case. Its magnitude for some targets is very
large because it must compensate for loss of gain due to strict
enforcement of the null constraints. In the moderate-SNR case,
the MMSE filter again produces better results than either the
ML or matched filter.

The primary advantage of the MMSE filter is that it, by def-
inition, provides the minimum mean-squared error in all noise
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Fig. 7. SAR images from a sparse, random array with 12 receive apertures. Comparison of the correlation, ML, and MMSE filters for low, moderate, and infinite
SNR.

and clutter scenarios. The filter accounts for the statistical prop-
erties of the targets and noise in order to maximize SIR. The
cost of implementing the MMSE filter is increased computation
for calculating compared to the matched filter.

V. NUMERICAL RESULTS

The images presented thus far pictorially demonstrate the ad-
vantages of multiple receive apertures and ML or MMSE spa-
tial processing, but it is also informative to assess performance
of the different algorithms numerically. Several error curves
are presented that demonstrate the performance of the three al-
gorithms versus different variables. The error criterion is the
mean-squared error (MSE) of the pixel magnitudes normalized
by the image’s mean-squared pixel magnitude

(31)

It is mentioned here that the ML and MMSE filters could be
calculated using the entire measurement vectors of all targets,
including time, frequency, and spatial measurements. However,
this would require inversion of an extremely large matrix. Since
this is unrealistic, it has been tacitly assumed throughout this
paper that matched filtering is applied in the time and frequency
domains, and the more complex filters are reserved for spatial
processing. Once the time–frequency matched filter is applied,
it is only necessary to force the spatial weight vector to null
range-Doppler ambiguities because these are the targets that
cause significant problems when they come through sidelobes
of the spatial pattern. In this implementation, spatial processing
is a second layer that nulls out those clutter targets that were not
already filtered by the range-Doppler processing. Some effects
of processing the data in this way can be seen in the numerical
results of this section and will be pointed out as necessary.

First, the effect of SNR on performance is investigated. Fig. 8
shows the mean-squared error as a function of input SNR and
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Fig. 8. Correlation, ML, and MMSE filter performance versus SNR for a
12-receiver, sparse, random array.

clearly validates the conclusions that have been stated about the
performance of the three filters. Most important, the MMSE
filter has the lowest error at every SNR. Also of importance is
the rapid increase in error as SNR decreases for the ML filter
and the flattening of the matched filter curve for high SNR.
The flat curve for the matched filter as SNR increases shows
that the matched filter is clutter limited; therefore, improving
SNR does not improve the results. The ML and MMSE curves
begin to flatten at lower error and higher SNR than the matched
filter. The error floor is due to range-Doppler matched filtering.
The level of range-Doppler sidelobes due to matched filtering in
time and frequency determines the best achievable performance
when the SNR is high. If the ML and MMSE filters were ap-
plied to the entire data set in time, frequency, and space, the
error would continue to decrease for increasing SNR. Applica-
tion of the ML and MMSE filters in the spatial domain only,
however, does yield significant improvement over the matched
filter as shown by the right side of Fig. 8.

Another important factor that has not yet been mentioned is
the accuracy of information about the physical scenario. Since
the physics must be known in order to calculate the measure-
ment vectors, any deviation from the expected scenario will in-
troduce error in the results. Fig. 9 shows the behavior of the
estimation error versus one particular deviation: receiver posi-
tioning error. In this simulation, the filters were calculated using
assumed receiver positions. When the radar measurements were
simulated, however, the receiver locations were randomly devi-
ated from the assumed locations according to a Gaussian distri-
bution of standard deviation, , in each dimension. The stan-
dard deviation of the total positioning error for each receiver
was then

(32)

Fig. 9 shows estimation error versus for simulations per-
formed at infinite SNR. The matched filter results vary little
versus amount of positioning error. However, since placing nulls
requires accurate phase information, the ML and MMSE results
are very sensitive to positioning error.

Fig. 9. Correlation, ML, and MMSE filter performance versus antenna
positioning error for a 12-receiver, sparse, random array and infinite SNR.

Fig. 10. Correlation, ML, and MMSE filter performance versus number of
receive apertures for a sparse, random array and moderate SNR.

It was mentioned earlier that forming nulls in the spatial
pattern requires enough degrees of freedom. More degrees of
freedom allows forming the required nulls without sacrificing
gain on the target. Hence, it is expected that estimation error
will decrease as the number of apertures increases. Fig. 10
demonstrates this result. The estimation error versus number
of receivers in Fig. 10 is relatively flat for the matched filter
because it only has one constraint: that the gain on the target be
maximized. The entire range from nine to 20 receivers provides
enough degrees of freedom to satisfy this one constraint. The
ML and MMSE filters, however, have nine constraints (the
target and eight ambiguities). Therefore, as the number of
receive apertures is increased from nine to 20, the degrees of
freedom increase significantly. The slight improvement seen
for each of the filters as the number of receive apertures is
increased from 13 to 20 is due to improving SNR. This SNR
improvement occurs because each additional aperture increases
the amount of signal energy collected.
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VI. CONCLUSION

We demonstrated the utility of multiple receive apertures. The
spotlight area, or swathwidth, of a SAR system is fundamen-
tally limited by the amount of information that can be collected
at a given resolution, and multiple receive apertures mitigate
this situation by adding independent angle-of-arrival informa-
tion. We presented a sparsely populated array with randomly
placed elements and discussed the motivation for such an array
in space. We also presented additional algorithms for processing
the angle-of-arrival information and applied them to multiple
receive aperture simulations. We showed results produced by
the three different algorithms for varying SNRs and investigated
performance versus the factors of SNR, receive-aperture posi-
tioning accuracy, and number of receive elements.

The results presented in this paper demonstrate both the needs
for and methods of applying multiple receive apertures to ob-
tain wide-area SAR images. Future spaceborne systems of the
microsat concept are being studied, and this paper demonstrates
how the measurements from such systems can be processed ef-
fectively. Several factors will affect this processing. One of the
most important factors is the number of receivers. In order for a
system such as the one proposed to work, there must be enough
receive apertures to null all range-Doppler ambiguities as well
as keep the mainlobe on the target. A sufficient number of re-
ceivers ensures that the ML and MMSE algorithms will not pro-
duce unstable results in the presence of noise; therefore, any
operational system based on the constellation concept should
have enough receivers that some gain can be maintained while
still enforcing nulls in the array pattern. The SNR received by a
sparsely populated, spaceborne array affects the processing that
should be used. In situations where the received SNR is high
enough, the improved performance of the ML and MMSE fil-
ters justify their added computational expense.

Another important factor is the ability to position the receive
apertures accurately. As with any pattern synthesis problem
where nulls are desired, the relative phase shifts between ele-
ments are the dominant components in the algorithm. Ability to
estimate these phase shifts accurately is crucial. Although the
results presented in Fig. 9 are for only one particular microsat
constellation, the improvement shown by the ML and MMSE
solutions for absolute positioning errors of one-tenth of a
wavelength or less is probably a good rule of thumb. Again,
a benefit of having extra receive apertures becomes apparent,
as increasing the number of apertures will ease positioning
accuracy requirements for a given error level. However, the
ability to obtain accurate knowledge of the receiver positions
is an essential technological requirement for any operational
implementation of the constellation concept.

The MMSE solution is the most robust solution. It maxi-
mizes SCR in clutter-limited cases and SNR in noise-limited
cases. Its computational expense is significantly more than for
the matched filter, but only slightly more than for the ML filter.
Furthermore, the added computation is not data dependent, and
the MMSE filter can be calculated before data is collected. In
moderate-to high-SNR cases with low positioning error, the re-
sults produced by the MMSE filter certainly justify its added
computational burden.
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