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Abstract— Effective cache utilization is critical to performance 
in  chip-multiprocessor  systems  (CMP).   Modern  CMP 
architectures  are  based  on  hierarchical  cache  topology  with 
varying  private  and  shared  caches  configurations  at  different 
levels.  Cache-aware   scheduling  has  become  a  great  design 
challenge.  Many  scheduling  strategies  have  been  designed  to 
target specific cache configuration. In this paper we introduce a 
cache  hierarchy-aware  task  scheduling  (CHATS)  algorithm 
which  adapt  to  the  underlying  architecture  and  its  cache 
topology.   The proposed scheduling policy aims to improve cache 
performance  by  optimizing  spatial  and  temporal  data  locality 
and reducing communication overhead without neglecting load 
balancing.  CHATS has  been  implemented  in  the  parallel  loop 
construct of XPU framework introduced in previous works [1,7]. 
We  compared  CHATS  to  several  popular  scheduling  policies 
including  dynamic  and  static  scheduling  and  task-stealing. 
Experimental results on synthetic and real workloads shows that 
our scheduling  policy  achieves  up  to  25%  execution  speed  up 
compared  to  OpenMP,  TBB  and  Cilk++  parallel  loop 
implementations. We use our parallel loop implementation in two 
popular applications from the PARSEC benchmark suite and we 
compare it to the provided OpenMP, TBB and PThreads version 
on different architectures.

Index Terms—Cache-aware  Scheduling, Cache  Locality, 
Parallel  Loops, Multicore, Hierarchical Cache

I. INTRODUCTION 

Chip  Multiprocessor (CMP)  architectures  are  becoming 
widely available  on  many scales: from personal computers to 
embedded  systems  to  high  performance  supercomputers...
[17,18,19]. CMP cores count is growing continuously and their 
cache  topologies  are  becoming  increasingly  hierarchical  and 
deeper.  Cache-aware  scheduling  has  become  a  great  design 
challenge  in  parallel  programming  for  recent  multicore 
architectures. Chip Multiprocessor (CMP) may exhibit different 
cache topologies with varying numbers of hierarchical shared 
and private caches at different levels. An  effective  task 
scheduling policy must take into account cache sharing not only 
at  the SMT (Simultaneous Multi-Threading),  CMP and SMP 

(Symetric Multi-Processor) levels but also at the different cache 
levels of a same chip.  

Task scheduling is critical for execution efficiency especially 
in the case of parallel loops which are often a great performance 
multiplier. An efficient cache-aware scheduling policy for recent 
CMP should  take  into  consideration  three  major  parameters: 
spatial and temporal data locality in caches, communication and 
load-balancing.  Hierarchical  cache  topology  determines 
communication latencies between cores at the different levels of 
cache  and  thus,  has  a  direct  impact  or  these  three  critical 
scheduling factors. In this paper, we present a cache hierarchy-
aware task scheduling (CHATS) policy which target to provide 
efficient hierarchical cache utilization without neglecting load-
balancing  in  parallel  loop  implementation.  CHATS  consider 
spatial  and  temporal  data  locality  (data  reuse  and 
communication)  and  load-balancing  as  the  most  critical 
parameters  for  delivering  high  performance  and  execution 
efficiency.  We implemented  this  scheduling  algorithm in  the 
parallel  loop construct  “parallel_for”  of  the  XPU framework 
and we compared it to parallel programming frameworks using 
different  scheduling  techniques.  We  used  both  synthetic 
workloads  and  real  application  from the  PARSEC and  Intel 
RMS Benchmarks [16].  

In  the next section, we gives an overview of several  prior 
works  on  cache-aware  scheduling,  section  3  give  a  brief 
overview of some cache hierarchies used by modern general-
purpose CMP and how they can be unified by an abstract model. 
Section 4 presents the design and implementation our cache-
aware scheduling strategy. This scheduling policy is evaluated 
and compared to several popular scheduling strategies through 
an experiment using synthetic workloads in section 5. Section 6 
shows  benchmark  results  on  two  real  applications: 
“Blackscholes”  and  “Fluid  Animate”  from  the  PARSEC 
Benchmark  in  comparison  to  different  parallel  prorgamming 
models.



II. RELATED WORKS

Traditional  scheduling  techniques  such  as  dynamic 
scheduling [8] or task-stealing [9,10,11] make different tradeoffs 
between data locality and load-balancing but does not take into 
consideration  cache  hierarchy  and  communication  latencies. 
Some prior works [20,15,5,14,13] target to design cache-aware 
scheduling policies which  target to improve cache-utilization 
by  focusing  on  one  or  more  cache-related  considerations. 
Processor-cache affinity scheduling [20]  focused on temporal 
data locality and data reuse between threads. Thread clustering 
scheduler [15] detect  sharing patterns between threads online 
using  monitoring  techniques  and  attempts  to  reduce  cache-
coherence  overhead  by  clustering  threads  sharing  same  data 
onto close cores.  CAB [5]  aims to improve task stealing on 
hybrid  SMP-CMP by reducing  memory  footprint  and  cache 
misses, It focus mainly on data sharing at the SMP level and try 
to  reduce  inter-socket  communication.  Constructive  cache 
sharing  [14]  aims  to  reduce  the  memory  footprint  through 
exploiting potential overlap of shared data among co-scheduled 
threads.  CATS [13]  target  to  improve cache  performance by 
considering data reuse, memory footprint and coherency misses.
None of  these prior  works take into consideration the cache 
hierarchy of CMPs. 

III. OVERVIEW OF CMP ARCHITECTURES

Multicore processor employs a cache structure to simulate a 
fast common memory. This  cache  structure  may  display 
different cache sharing degrees at different levels. It is mainly 
composed of hierarchical private and shared caches.  Figure 1 
shows a set of CMP architectures from different vendors with 
varying  cache  configurations. For example, while the Intel 
Nehalem architecture associates a private L1 cache for each 
core, a private L2 cache and a shared L3 cache between all 
cores, Intel Dunnington architecture is uniformly hierarchical: a 
private L1 cache is associated to each core, an L2 cache is 
shared between each 2 cores and finally an common L3 cache 
is shared between all cores. The Sun UltraSPARC T2 Processor 
uses a private L1 cache for each core and a shared L2 caches 
between all cores. 

Fig. 1.  Intel Dunnington

Fig. 2.  Intel “Hapertown”

Fig. 3.  Intel “Nehalem”

Cache level count and cache sharing degrees at each level are 
key information for our scheduling policy. The variation of 
sharing degree at different levels force programmer to make 
explicit and architecture-specific program optimization in order 
to get efficient execution. In  order to be provide an efficient 
execution  on  various  possible  underlying  architectures  with 
different cache topology,  a  cache-aware scheduling algorithm 
should  be  dynamically  adaptable  to  the  target  architecture. 
Consequently, such scheduling algorithm should have a detailed 
description of the cache topology of the underlying CMP. This 
description can be established through  dynamic exploration of 
the target platform at the initialization of the run-time system. 
Modern  operating  systems  provide  means  to  obtains  cache 
hierarchy details at high level either through system files such as 
in the Linux OS or through native API such as Windows [21].

Variation of the cache level count and cache sharing degrees 
raise the need to unify them under a single abstract description. 
The Unified Multicore Architecture Model (UMAM) [22] that 
can  be used to provide a unified description for different CMP 
architectures.  Memory  hierarchy  including  cache  levels  and 
main shared memory can be described using UMAM as shown 
in Tab 1 which gives an example of three different platforms. 
The two first columns gives the cache-levels and cores count, 
the next columns gives the count of cores sharing Li caches or 

Mi memory (i ∈ 1..n, n: Memory hierarchy levels count). 



Architecture Parameters

Cache 
Levels

Cores L1 L2 L3 M4

Nehalem 
Core i7 Q920M

4 8 2 2 8 8

Nehalem 
2 x Xeon E5620

4 8 2 2 8 16

Dunnington
Xeon X7460

3 6 1 2 6 6

TABLE I.  DESCRITION OF CACHE AND MEMORY HIERARCHY  OF SOME 
CMP ARCHITECTURES IN UMAM

IV. CACHE HIERARCHY-AWARE TASK SCHEDULING

The design and implementation of CHATS rely a several 
basic building blocks which allows partitioning of the main 
work of a parallel loop into a set a little works which can be 
executed concurrently by several threads. We start by defining 
the components of our run-time system.

A. Runtime System

The run-time system is based on a worker (thread) pool able 
to execute tasks. Each worker have a FIFO (First-In-First-Out) 
work (task) queue. A scheduler can submit tasks to the workers 
through this work-queue. A worker remains idle until a task is 
pushed into its work queue so it wake up and execute its task. 
Submitting a task follows a one-to-one communication scheme 
between the main thread holding the scheduler and each worker 
to reduce communication overhead. Figure 4 gives and 
overview of the run-time system.

Fig. 4.  Worker Pool-Based Run-Time System With Private Work-Queue

B.    Work Unit

A work unit is a task which should be executed on a range of 
iteration then a range of shared iterations. In XPU 
“parallel_for” loop, a work unit is composed of:

− Range : Specify a range of iterations to process (min, 
max, progression step)

− Shared Range : As “Range”, it specify a range of 
iteration, however, it allows “stealing” of iterations by 
concurrent threads.

− Task : The code which will process each iteration of a 
given range and/or shared range(s).

C. Data Partitioning

Data partitioning is a primordial step in parallelization of a 
loop. In our case we use basic a quasi-fair partitioning 
algorithm which decompose a “Range” into N “Range” and M 
“Shared Range”. The algorithm ensure that the generated 
partitions are quasi-equals.

D. Parallel For Loop : Data Partitionning and Cache 
Topology

Let's consider a “for loop“ F defined by : i=0..n by 1

F corresponds to a “Range” which can be partitioned into N 
“Range”  and M “Shared Range”. Determining M and N 
depends directly on the underlying architecture:

N = Workers count ~ Cores count
M = Number of shared caches at all levels (consecutive 

cache levels shared by the same cores are considered as one)
 P = N+M : Total partition count

Let's consider a Nehalem Intel Core i7 Q720 with 8 
Hardware Threads and 4 Physical Cores (Fig.3). Data 
partitioning is described in Figure 5, so P is equal to 13 in this 
case. Green ranges are private “Range”  so a worker doesn't 
share them with other workers. Orange box correspond to 
“Shared Ranges”  which are shared among two co-scheduled 
SMT workers (threads) sharing L1/L2 caches. Finally, red box 
is a “Shared Range”  from which all workers can steal 
iterations, it corresponds to the L3 cache.

Fig. 5.  CHATS Data Partitioning on an 8 Hardware Threads Intel Nehalem 
Processor



Fig. 6.  CHATS Data Partitioning on an on hybrid SMT-CMP-SMP platform with 16 Hardware threads  (2 x Intel  Xeon E5620 at 2.4 GHz)

Figure 6 shows the data partitioning scheme for an SMP 
platform containing two Intel Nehalem Processors having eight 
hardware threads (4 Physical cores with Hyper-Threading 
enabled).

E. Workload Scheduling

Once data partitioned into “Ranges” and “Shared Ranges”, 
we can submit works to our workers running on the different 
cores. Submitted work will specify a Task, a Range and one 
ore more Shared Ranges. If we take the partitioning pattern of 
the Figure 5. “Worker 0“ running on “Core 0” will get a work 
containing:

- One “Range” : [0 .. n/p[
- Two “Shared Ranges” : [ 2n/p .. 3n/p[ and [ 12n/p .. n[ 

Analogously, the other workers will gets their three ranges of 
iterations.

F. Execution Semantics

“Worker 0” will execute the task code on each iteration of its 
private range without any communication with the other 
threads. Once finished, it will try to steal iterations from the 
shared ranges if available. Iteration stealing requires 
communication (locking) between threads working on the same 
shared range. This communication overhead is reduced by the 
fact that threads communicates through shared caches. So, the 
communication introduced buy concurrent accesses to “Shared 
Range” [12n/p .. n[ is more costly than the one introduced by 
concurrent accesses to [2n/p .. 3n/p[ . However, we note that 
low level caches-associated “Shared Range”  are fewer thant 
those associated to high level caches   (1 associated to L3 and 4 
associated to L1/L2).

We outline that “Shared Ranges”  aims to provide good 
load-balancing at the lower possible cost in term of 

communication overhead : when worker finish their work on 
private works, they does not remain idle, instead, they steal 
works from shared ranges or more precisely the “closed” shared 
range to their high level caches.

G. XPU: Implementation and programming Interface

The modified the default scheduler of XPU [7] to implement 
CHATS. Parallel for loop can be easily implemented using 
XPU. Figure 7 shows how to express data parallelism through a 
parallel for loop.

Fig. 7.  An example of parallel for loop implementation using XPU

V. PERFORMANCE EVALUATION 

We compare our CHATS implementation to several popular 
programming models implementing static scheduling, dynamic 
scheduling and task stealing which we present briefly:

1) Static scheduling

Static scheduling is the most straightforward  scheduling 
technique: data is statically partitioned into N equal or pseudo-
equal chunks, these chunks are then processed respectively by 
N parallel threads. This scheduling scheme avoid 
communication between threads, offer good data reuse when 
the parallel loop is executed several time. However, this method 

1  int process(int from, int to, int step, image* images) {
2    for (int i=from; i<to; i+=step)  ...
3  }
4  void main()
5  {
6    image * images = … ; 
7    task process_t(process, 0,0,0, images);
8    task_group * pf;
9    pf = new parallel_for(0, image_count, 1, &process_t);
10   pf­>run(); 
11 }



may result in load unbalancing, especially in the case of heavy 
workload, since faster threads remains idle, waiting for other 
threads until  finishing their work.

2) Dynamic scheduling 

Dynamic scheduling provide better load balancing since 
threads does not remains idle as long as chunks are available in 
the common work queue. Unfortunately, while improving 
workload distribution, this technique may introduces a costly 
communication between threads accessing concurrently to the 
common work queue (Many-To-Many Communication). This 
may results into ineffective uses of processor caches. Also, this 
technique provide poor data reuse since a same chunks may be 
processed by different threads on different cores when the 
parallel loop is executed multiple time. Bad data reuse may 
amplify consequently cache-miss rate.

3) Task-stealing

Task-stealing is a popular scheduling algorithm which is 
introduced in Cilk [10]. Task-stealing attempts to combines 
advantages of the two previous scheduling policies by making 
another trade-off  between efficient cache utilization and load-
balancing, In task stealing, each thread (worker) has a task pool 
in which its tasks are stored. Whenever a worker finishes its 
current task, the worker try to get another task from its task 
pool. If there's no more work (its task pool is empty), the 
worker select randomly a “victim” worker and try to steal a task 
from its task pool. If succeeded, it execute the stolen task, 
otherwise, it try to steal a task from another randomly-chosen 
worker [5]. Task-stealing performs good load-balancing since 
no thread (worker) remains idle as long as there is available 
“works”, i.e. ,available tasks in the task pools of workers. 
However, task-stealing may introduce significant 
communication overhead since “victim”  threads are chosen 
randomly without considering cache-hierarchy or 
communication latencies. Deep cache hierarchies introduce 
non-uniform communications between cores, consequently, the 
choice of  the “victim” thread becomes critical for performance: 
stealing a task from a “close” thread (sharing high-level cache 
with the stealer) is much cheaper than stealing a task from a 
“far” thread (running on a core which does not share any cache 
with the stealer).

B. Experiment : Parallel For On Synthetic Workloads

In order to evaluate the performances of our approach we 
designed an experiment which aims to evaluate cache 
utilization efficiency and global performance of a configurable 
target application. We generate  a  synthetic work load witch 
allow us to control unit workload and global workload and 
simulate  data reuse. Thus, in order to achieve efficient 
execution, a scheduling strategy should provides good spatial 
and temporal data locality and an efficient load balancing. 

The used unit workload is a sequential function performing a 
“quicksort” on a small vector. We control the unit workload by 
varying the size of this small vector. So, our input data is a set of 
small vector, our program perform a “quicksort” in each of these 
small  vector.  “quicksort”  sort  a  vector  performing  multiple 
compare and swap so intensive intensive read/write accesses to 
data. This make it good candidate to evaluate efficient cache 
utilization.

In this experiment we try to evaluate the  efficiency of our 
scheduling policy  CHATS  to: static scheduling, dynamic 
scheduling and task stealing. We run our synthetic workloads on 
an hybrid SMT-CMP-SMP platform with 16 Hardware threads 
(2 x Intel Xeon E5620 at 2.4 GHz) and we measure average 
execution time for different workload as well as cache-misses 
for each of the scheduling policies.

C. Results

As shown in Figure 8, results shows that XPU processes the 
heaviest  workload  about  20%  faster  than  the  second  fastest 
candidate. We notes also that XPU become more efficient as the 
workload is bigger. 

Figure 9 shows that XPU generate a low cache-miss rate in 
comparison  to  the  other  candidate.  XPU  cache-miss  rate 
remains close to the static scheduling based candidate.  Static 
scheduling is known to offer very good data locality and doesn't 
introduces communication overhead.

Fig. 8.  Average processing time of different workload size.

Fig. 9.  Cache-miss rate for different problem size



VI. APPLICATIONS

In order to evaluate performances of our scheduling policy, 
we  use  our  parallel  loop  implementation  to  parallelize  two 
popular applications from the PARSEC benchmark suite [16] 
which are also a part of the Intel RMS benchmark. The first 
application is the Blackscholes options pricing application and 
the second one is the fluid animation application. 

For each application, the benchmark includes a serial version 
and  several  parallel  versions  using  different  parallel 
programming models including POSIX Threads [6], OpenMP 
[8]  and  Threading  Building  Blocks  [12].  We  use  the  serial 
version  to  build  our  parallel  applications  using  the  XPU 
framework [7]. More precisely, we use the “parallel_for” pattern 
to parallelize the main loop of both applications at thread level. 
We modified  the  default  scheduler  to  implement  our  cache-
aware scheduling algorithm.

The  Blackscholes  application  exhibits  massive  parallelism 
thanks  to  its  main  parallel  loop  which  process  options  with 
almost  no  communication  between  threads.  The  Fluid 
Animation  workload  processes  large  amount  of  particles 
through a parallel loop but suffer from significant inter-thread 
communication overhead.

A. Blackscholes 

We parallelize the “Black-Scholes” workload at thread level 
using the XPU's "parallel_for" construct running on top of the 
cache hierarchy-aware scheduler. At the instruction level,  we 
use  the  vectorization  capability provided  by XPU through  a 
built-in vectorized type (vec4f) implemented in top of SSE to 
support  SIMD.  We  used  the  sequential  code  of  the 
“blackscholes” application as provided in PARSEC Benchmark 
Suite. The main processing loop is parallelized at the cost of 3 
lines  of  extra-code.  Vectorization  is  introduced  simply  by 
replacing regular  float  type  by the XPU's  "vec4f"  vectorized 
type. We compare the performance achieved by our application 
to the five parallel versions provided in the same benchmark 
suite:  OpenMP,  TBB,  Pthreads,  OpenMP/SSE  and  POSIX 
Threads/SSE. We use the Intel C++ Compiler v12.0.5 and we 
executed our benchmark on different multicore platforms.

Fig. 10 and 11 shows the measured execution time for each 
parallel  version.  The  XPU-based  application  provides  higher 
performance than  the  other  versions  and  execute  up  to  25% 
faster than POSIX Thread/SSE one. It takes advantage of the 
ability of the scheduler to provide both load-balancing, efficient 
cache  utilization  and  low  communication  overhead  to 
outperform the POSIX Thread version which use basic static 
scheduling  achieving  good  cache  utilization  but  poor  load-
balancing.  The  impact  of  this  poor  load-balancing  issue 
becomes more visible as workload grows.

B. Fluid Animation

The fluid animation application is parallelized the same way 
as the Blackscholes one. Fig. 7 and 8 shows the measured 
execution time on two different platforms. The first one is an 
SMT-CMP processor which displays two cache level sharing. 
The second one is an hybrid SMT-CMP-SMP platform 
containing two Intel Nehalem  processors and exhibiting  three 
levels cache sharing.

Fig. 10.  Execution time of the “Blackscholes” application for different 
problem size on hybrid SMT-CMP Nehalem Processor with 8 Hardware 

threads (Intel Core i7 Q720)

Fig. 11.  Execution time of the “Blackscholes” application for different 
problem size on hybrid SMT-CMP-SMP platform with 16 Hardware 

threads  (2 x Intel Xeon E5620 at 2.4 GHz)

The parallel “fluidanimate”  program introduces significant 
communication between threads making spatial and temporal 
data locality in caches critical for achieving high performances. 
This gives an advantage to static scheduling techniques but 
doesn't reduces the impact of efficient load-balancing.

 



Fig. 12.  Execution time of the “Fluid Animation” application for different 
problem sizes on hybrid SMT-CMP Nehalem Processor with 8 Hardware 

threads (Intel Core i7 Q720)

Fig. 13.  Execution time of the “Fluid Animation” application for different 
problem sizes on hybrid SMT-CMP-SMP platform with 16 Hardware 

threads  (2 x Intel Xeon E5620 at 2.4 GHz)

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a cache-hierarchy aware 
scheduling which aims to provide efficient cache utilization 
without neglecting load-balancing. We described the CHATS 
scheduling policy and how it can improve spatial and temporal 
data locality in hierarchical caches. We shown how we can 
provide good load-balancing without generating significant 
communication overhead. Our experimental results on synthetic 
workloads outlined the high cache-misses rate introduced by 
some traditional scheduling policies implying arbitrary threads 
communications such as task-stealing or dynamic scheduling. 
These experiments demonstrated also that channelizing inter-
thread communications through hierarchical sharing groups 
which communicates through shared caches reduces 
significantly this communication overhead and generates much 
lower cache-miss rate. Our implementation of CHATS 
algorithm in the XPU scheduler and its use on popular real 
applications from the PARSEC benchmark confirms our 
experimental results on synthetic workload and shows high 
performances in comparison to many others popular parallel 
programming models implementing different scheduling 

policies such OpenMP, POSIX Threads or Threading Building 
Blocks.

CHATS has been designed to adapt dynamically to the 
underlying CMP architecture by exploring its cache-topology at 
run-time. At the moment of writing this paper, dynamic cache 
topology exploration and CHATS scheduler have been 
developed separately. These two pieces will be put together to 
make CHATS adapt dynamically to various multicore 
architectures.

We can conclude that CHATS scheduling strategy may be 
good alternative to traditional scheduling techniques especially 
in the cases where spatial and temporal data locality in 
processor caches are critical for execution efficiency.

REFERENCES

[1] N. Khammassi, J.C. Le Lann, J.P. Diguet and A. Skrzyniarz, “MHPM: 
Multi-Scale Hybrid Programming Model: A Flexible Parallelization 
Methodology”, HPCC '12 Proceedings of the 2012 IEEE 14th 
International Conference on High Performance Computing and 
Communication, 71-80, Liverpool UK, June 2012

[2] G. Blake, R. G. Dreslinski and T. Mudge, “A Survey of Multicore 
Processors”, IEEE Signal Processing , vol. 26, n. 6, pp. 26-37 November 
2009

[3] L. J. Karam, I. Alkamal, Alan Gatherer, G. A. Frantz, D. V. Anderson 
and B. L. Evans, “Trends in Multicore DSP platforms”,  IEEE Signal 
Processing , vol. 26, n. 6, pp 38-49, November 2009

[4] W. Wolf, “Multiprocessor System-on-Chip Technology”,   IEEE Signal 
Processing vol. 26, n. 6, November 2009

[5] Q. Chen, Z. Huang and M. Guo, “CAB: Cache Aware Bi-tier 
Task Stealing in Multi-socket Multi-core Architecture”, 
International Conference on Parallel Processing (ICPP), 2011 

[6] D. Butenhof, Programming with POSIX Threads. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1997.

[7] XPU Framework, “http://www.xpu-project.net/”

[8] E. Ayguade,́ N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. 
Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang, "The 
design of openmp tasks," IEEE Transactions on Parallel and 
Distributed Systems, vol. 20, no. 3, pp. 404-418, 2009. 

[9] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, 
and T. Wen, "Solving large, irregular graph problems using 
adaptive work-stealing," in 37th International Conference on 
Parallel Processing, pp. 536-545, IEEE, 2008. 

[10] M. Frigo, C. E. Leiserson, and K. H. Randall, "The 
implementation of the Cilk-5 multithreaded language," in 
Proceedings of the ACM SIGPLAN '98 Conference on 
Programming Language Design and Implementation, (Montreal, 
Quebec, Canada), pp. 212-223, ACM, June 1998. 

[11] C. Leiserson, "The Cilk++ concurrency platform," in 
Proceedings of the 46th Annual Design Automation Conference, 
pp. 522-527, ACM, 2009. 

[12] J. Reinders, Intel threading building blocks. O'Reilly, 2007. 

[13] T. F. Yang, C. H. Lin and C. L. Yang, “Cache-Aware Task 
Scheduling on Multi-Core Architecture”, International 
Symposium on VLSI Design Automation and Test (VLSI-DAT), 
2010 



[14] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, 
G. E. Blelloch, B. Falsas, L. Fix, N. Hardavellas, T. C. Mowry, 
and C. Wilkerson., “Scheduling threads for constructive cache 
sharing on CMPs”, In Proceedings of the 19th Annual 
Symposium on Parallel Algorithms and Architectures, pages 
105–115. ACM, 2007. 

[15] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: Sharing-
aware scheduling on smp-cmp-smt multiprocessors”, In 
Proceedings of the 2nd SIGOPS/EuroSys European Conference 
on Computer Systems, pages 47–58. ACM, 2007. 

[16] C. Bienia, S. Kumar, J. P. Singh and K. Li,  “The PARSEC Benchmark 
Suite: Characterization and Architectural Implications”, Proceedings of 
the 17th International Conference on Parallel Architectures and 
Compilation Techniques, October 2008.

[17] G. Blake, R. G. Dreslinski and T. Mudge, “A Survey of Multicore 
Processors”, IEEE Signal Processing , vol. 26, n. 6, pp. 26-37 November 
2009

[18] L. J. Karam, I. Alkamal, Alan Gatherer, G. A. Frantz, D. V. Anderson 
and B. L. Evans, “Trends in Multicore DSP platforms”,  IEEE Signal 
Processing , vol. 26, n. 6, pp 38-49, November 2009

[19] W. Wolf, “Multiprocessor System-on-Chip Technology”,   IEEE Signal 
Processing vol. 26, n. 6, November 2009

[20] M. S. Squillante and  E. D. Lazowska, “Using processor-cache affinity 
information in shared-memory multiprocessor scheduling”, IEEE 
Transactions on Parallel and Distributed Systems, Vol 4, pp.131-143 

[21] Processor information, “http://msdn.microsoft.com/en-
us/library/windows/desktop/ms683194%28v=vs.85%29.aspx”

[22] J. E. Savage, M. Zubair, “A unified model for multicore architectures”, 
IFMT '08 Proceedings of the 1st International Forum on Next-generation 
multicore/manycore Technologies


	I. Introduction
	II. Related Works
	III. Overview Of CMP Architectures
	IV. Cache Hierarchy-aware Task Scheduling
	A. Runtime System
	B. Work Unit
	C. Data Partitioning
	D. Parallel For Loop : Data Partitionning and Cache Topology
	E. Workload Scheduling
	F. Execution Semantics
	G. XPU: Implementation and programming Interface

	V. Performance Evaluation
	1) Static scheduling
	2) Dynamic scheduling
	3) Task-stealing
	B. Experiment : Parallel For On Synthetic Workloads
	C. Results

	VI. Applications
	A. Blackscholes
	B. Fluid Animation

	VII. Conclusion and Future Works
	References

