
Design and Implementation Of A Cache Hierarchy-
Aware Task Scheduling For Parallel Loops On

Multicore Architectures

Nader Khammassi
Lab-STICC UMR CNRS 6285

ENSTA-Bretagne
29806 Brest Cedex 9, France

nader.khammassi@ensta-bretagne.fr

Jean-Christophe Le Lann
Lab-STICC UMR CNRS 6285

ENSTA-Bretagne
29806 Brest Cedex 9, France

jean-christophe.le_lann@ensta-bretagne.fr

Abstract— Effective cache utilization is critical to performance
in chip-multiprocessor systems (CMP). Modern CMP
architectures are based on hierarchical cache topology with
varying private and shared caches configurations at different
levels. Cache-aware scheduling has become a great design
challenge. Many scheduling strategies have been designed to
target specific cache configuration. In this paper we introduce a
cache hierarchy-aware task scheduling (CHATS) algorithm
which adapt to the underlying architecture and its cache
topology. The proposed scheduling policy aims to improve cache
performance by optimizing spatial and temporal data locality
and reducing communication overhead without neglecting load
balancing. CHATS has been implemented in the parallel loop
construct of XPU framework introduced in previous works [1,7].
We compared CHATS to several popular scheduling policies
including dynamic and static scheduling and task-stealing.
Experimental results on synthetic and real workloads shows that
our scheduling policy achieves up to 25% execution speed up
compared to OpenMP, TBB and Cilk++ parallel loop
implementations. We use our parallel loop implementation in two
popular applications from the PARSEC benchmark suite and we
compare it to the provided OpenMP, TBB and PThreads version
on different architectures.

Index Terms—Cache-aware Scheduling, Cache Locality,
Parallel Loops, Multicore, Hierarchical Cache

I. INTRODUCTION

Chip Multiprocessor (CMP) architectures are becoming
widely available on many scales: from personal computers to
embedded systems to high performance supercomputers...
[17,18,19]. CMP cores count is growing continuously and their
cache topologies are becoming increasingly hierarchical and
deeper. Cache-aware scheduling has become a great design
challenge in parallel programming for recent multicore
architectures. Chip Multiprocessor (CMP) may exhibit different
cache topologies with varying numbers of hierarchical shared
and private caches at different levels. An effective task
scheduling policy must take into account cache sharing not only
at the SMT (Simultaneous Multi-Threading), CMP and SMP

(Symetric Multi-Processor) levels but also at the different cache
levels of a same chip.

Task scheduling is critical for execution efficiency especially
in the case of parallel loops which are often a great performance
multiplier. An efficient cache-aware scheduling policy for recent
CMP should take into consideration three major parameters:
spatial and temporal data locality in caches, communication and
load-balancing. Hierarchical cache topology determines
communication latencies between cores at the different levels of
cache and thus, has a direct impact or these three critical
scheduling factors. In this paper, we present a cache hierarchy-
aware task scheduling (CHATS) policy which target to provide
efficient hierarchical cache utilization without neglecting load-
balancing in parallel loop implementation. CHATS consider
spatial and temporal data locality (data reuse and
communication) and load-balancing as the most critical
parameters for delivering high performance and execution
efficiency. We implemented this scheduling algorithm in the
parallel loop construct “parallel_for” of the XPU framework
and we compared it to parallel programming frameworks using
different scheduling techniques. We used both synthetic
workloads and real application from the PARSEC and Intel
RMS Benchmarks [16].

In the next section, we gives an overview of several prior
works on cache-aware scheduling, section 3 give a brief
overview of some cache hierarchies used by modern general-
purpose CMP and how they can be unified by an abstract model.
Section 4 presents the design and implementation our cache-
aware scheduling strategy. This scheduling policy is evaluated
and compared to several popular scheduling strategies through
an experiment using synthetic workloads in section 5. Section 6
shows benchmark results on two real applications:
“Blackscholes” and “Fluid Animate” from the PARSEC
Benchmark in comparison to different parallel prorgamming
models.

II. RELATED WORKS

Traditional scheduling techniques such as dynamic
scheduling [8] or task-stealing [9,10,11] make different tradeoffs
between data locality and load-balancing but does not take into
consideration cache hierarchy and communication latencies.
Some prior works [20,15,5,14,13] target to design cache-aware
scheduling policies which target to improve cache-utilization
by focusing on one or more cache-related considerations.
Processor-cache affinity scheduling [20] focused on temporal
data locality and data reuse between threads. Thread clustering
scheduler [15] detect sharing patterns between threads online
using monitoring techniques and attempts to reduce cache-
coherence overhead by clustering threads sharing same data
onto close cores. CAB [5] aims to improve task stealing on
hybrid SMP-CMP by reducing memory footprint and cache
misses, It focus mainly on data sharing at the SMP level and try
to reduce inter-socket communication. Constructive cache
sharing [14] aims to reduce the memory footprint through
exploiting potential overlap of shared data among co-scheduled
threads. CATS [13] target to improve cache performance by
considering data reuse, memory footprint and coherency misses.
None of these prior works take into consideration the cache
hierarchy of CMPs.

III. OVERVIEW OF CMP ARCHITECTURES

Multicore processor employs a cache structure to simulate a
fast common memory. This cache structure may display
different cache sharing degrees at different levels. It is mainly
composed of hierarchical private and shared caches. Figure 1
shows a set of CMP architectures from different vendors with
varying cache configurations. For example, while the Intel
Nehalem architecture associates a private L1 cache for each
core, a private L2 cache and a shared L3 cache between all
cores, Intel Dunnington architecture is uniformly hierarchical: a
private L1 cache is associated to each core, an L2 cache is
shared between each 2 cores and finally an common L3 cache
is shared between all cores. The Sun UltraSPARC T2 Processor
uses a private L1 cache for each core and a shared L2 caches
between all cores.

Fig. 1. Intel Dunnington

Fig. 2. Intel “Hapertown”

Fig. 3. Intel “Nehalem”

Cache level count and cache sharing degrees at each level are
key information for our scheduling policy. The variation of
sharing degree at different levels force programmer to make
explicit and architecture-specific program optimization in order
to get efficient execution. In order to be provide an efficient
execution on various possible underlying architectures with
different cache topology, a cache-aware scheduling algorithm
should be dynamically adaptable to the target architecture.
Consequently, such scheduling algorithm should have a detailed
description of the cache topology of the underlying CMP. This
description can be established through dynamic exploration of
the target platform at the initialization of the run-time system.
Modern operating systems provide means to obtains cache
hierarchy details at high level either through system files such as
in the Linux OS or through native API such as Windows [21].

Variation of the cache level count and cache sharing degrees
raise the need to unify them under a single abstract description.
The Unified Multicore Architecture Model (UMAM) [22] that
can be used to provide a unified description for different CMP
architectures. Memory hierarchy including cache levels and
main shared memory can be described using UMAM as shown
in Tab 1 which gives an example of three different platforms.
The two first columns gives the cache-levels and cores count,
the next columns gives the count of cores sharing Li caches or

Mi memory (i ∈ 1..n, n: Memory hierarchy levels count).

Architecture Parameters

Cache
Levels

Cores L1 L2 L3 M4

Nehalem
Core i7 Q920M

4 8 2 2 8 8

Nehalem
2 x Xeon E5620

4 8 2 2 8 16

Dunnington
Xeon X7460

3 6 1 2 6 6

TABLE I. DESCRITION OF CACHE AND MEMORY HIERARCHY OF SOME
CMP ARCHITECTURES IN UMAM

IV. CACHE HIERARCHY-AWARE TASK SCHEDULING

The design and implementation of CHATS rely a several
basic building blocks which allows partitioning of the main
work of a parallel loop into a set a little works which can be
executed concurrently by several threads. We start by defining
the components of our run-time system.

A. Runtime System

The run-time system is based on a worker (thread) pool able
to execute tasks. Each worker have a FIFO (First-In-First-Out)
work (task) queue. A scheduler can submit tasks to the workers
through this work-queue. A worker remains idle until a task is
pushed into its work queue so it wake up and execute its task.
Submitting a task follows a one-to-one communication scheme
between the main thread holding the scheduler and each worker
to reduce communication overhead. Figure 4 gives and
overview of the run-time system.

Fig. 4. Worker Pool-Based Run-Time System With Private Work-Queue

B. Work Unit

A work unit is a task which should be executed on a range of
iteration then a range of shared iterations. In XPU
“parallel_for” loop, a work unit is composed of:

− Range : Specify a range of iterations to process (min,
max, progression step)

− Shared Range : As “Range”, it specify a range of
iteration, however, it allows “stealing” of iterations by
concurrent threads.

− Task : The code which will process each iteration of a
given range and/or shared range(s).

C. Data Partitioning

Data partitioning is a primordial step in parallelization of a
loop. In our case we use basic a quasi-fair partitioning
algorithm which decompose a “Range” into N “Range” and M
“Shared Range”. The algorithm ensure that the generated
partitions are quasi-equals.

D. Parallel For Loop : Data Partitionning and Cache
Topology

Let's consider a “for loop“ F defined by : i=0..n by 1

F corresponds to a “Range” which can be partitioned into N
“Range” and M “Shared Range”. Determining M and N
depends directly on the underlying architecture:

N = Workers count ~ Cores count
M = Number of shared caches at all levels (consecutive

cache levels shared by the same cores are considered as one)
 P = N+M : Total partition count

Let's consider a Nehalem Intel Core i7 Q720 with 8
Hardware Threads and 4 Physical Cores (Fig.3). Data
partitioning is described in Figure 5, so P is equal to 13 in this
case. Green ranges are private “Range” so a worker doesn't
share them with other workers. Orange box correspond to
“Shared Ranges” which are shared among two co-scheduled
SMT workers (threads) sharing L1/L2 caches. Finally, red box
is a “Shared Range” from which all workers can steal
iterations, it corresponds to the L3 cache.

Fig. 5. CHATS Data Partitioning on an 8 Hardware Threads Intel Nehalem
Processor

Fig. 6. CHATS Data Partitioning on an on hybrid SMT-CMP-SMP platform with 16 Hardware threads (2 x Intel Xeon E5620 at 2.4 GHz)

Figure 6 shows the data partitioning scheme for an SMP
platform containing two Intel Nehalem Processors having eight
hardware threads (4 Physical cores with Hyper-Threading
enabled).

E. Workload Scheduling

Once data partitioned into “Ranges” and “Shared Ranges”,
we can submit works to our workers running on the different
cores. Submitted work will specify a Task, a Range and one
ore more Shared Ranges. If we take the partitioning pattern of
the Figure 5. “Worker 0“ running on “Core 0” will get a work
containing:

- One “Range” : [0 .. n/p[
- Two “Shared Ranges” : [2n/p .. 3n/p[and [12n/p .. n[

Analogously, the other workers will gets their three ranges of
iterations.

F. Execution Semantics

“Worker 0” will execute the task code on each iteration of its
private range without any communication with the other
threads. Once finished, it will try to steal iterations from the
shared ranges if available. Iteration stealing requires
communication (locking) between threads working on the same
shared range. This communication overhead is reduced by the
fact that threads communicates through shared caches. So, the
communication introduced buy concurrent accesses to “Shared
Range” [12n/p .. n[is more costly than the one introduced by
concurrent accesses to [2n/p .. 3n/p[. However, we note that
low level caches-associated “Shared Range” are fewer thant
those associated to high level caches (1 associated to L3 and 4
associated to L1/L2).

We outline that “Shared Ranges” aims to provide good
load-balancing at the lower possible cost in term of

communication overhead : when worker finish their work on
private works, they does not remain idle, instead, they steal
works from shared ranges or more precisely the “closed” shared
range to their high level caches.

G. XPU: Implementation and programming Interface

The modified the default scheduler of XPU [7] to implement
CHATS. Parallel for loop can be easily implemented using
XPU. Figure 7 shows how to express data parallelism through a
parallel for loop.

Fig. 7. An example of parallel for loop implementation using XPU

V. PERFORMANCE EVALUATION

We compare our CHATS implementation to several popular
programming models implementing static scheduling, dynamic
scheduling and task stealing which we present briefly:

1) Static scheduling

Static scheduling is the most straightforward scheduling
technique: data is statically partitioned into N equal or pseudo-
equal chunks, these chunks are then processed respectively by
N parallel threads. This scheduling scheme avoid
communication between threads, offer good data reuse when
the parallel loop is executed several time. However, this method

1 int process(int from, int to, int step, image* images) {
2 for (int i=from; i<to; i+=step) ...
3 }
4 void main()
5 {
6 image * images = … ;
7 task process_t(process, 0,0,0, images);
8 task_group * pf;
9 pf = new parallel_for(0, image_count, 1, &process_t);
10 pf­>run();
11 }

may result in load unbalancing, especially in the case of heavy
workload, since faster threads remains idle, waiting for other
threads until finishing their work.

2) Dynamic scheduling

Dynamic scheduling provide better load balancing since
threads does not remains idle as long as chunks are available in
the common work queue. Unfortunately, while improving
workload distribution, this technique may introduces a costly
communication between threads accessing concurrently to the
common work queue (Many-To-Many Communication). This
may results into ineffective uses of processor caches. Also, this
technique provide poor data reuse since a same chunks may be
processed by different threads on different cores when the
parallel loop is executed multiple time. Bad data reuse may
amplify consequently cache-miss rate.

3) Task-stealing

Task-stealing is a popular scheduling algorithm which is
introduced in Cilk [10]. Task-stealing attempts to combines
advantages of the two previous scheduling policies by making
another trade-off between efficient cache utilization and load-
balancing, In task stealing, each thread (worker) has a task pool
in which its tasks are stored. Whenever a worker finishes its
current task, the worker try to get another task from its task
pool. If there's no more work (its task pool is empty), the
worker select randomly a “victim” worker and try to steal a task
from its task pool. If succeeded, it execute the stolen task,
otherwise, it try to steal a task from another randomly-chosen
worker [5]. Task-stealing performs good load-balancing since
no thread (worker) remains idle as long as there is available
“works”, i.e. ,available tasks in the task pools of workers.
However, task-stealing may introduce significant
communication overhead since “victim” threads are chosen
randomly without considering cache-hierarchy or
communication latencies. Deep cache hierarchies introduce
non-uniform communications between cores, consequently, the
choice of the “victim” thread becomes critical for performance:
stealing a task from a “close” thread (sharing high-level cache
with the stealer) is much cheaper than stealing a task from a
“far” thread (running on a core which does not share any cache
with the stealer).

B. Experiment : Parallel For On Synthetic Workloads

In order to evaluate the performances of our approach we
designed an experiment which aims to evaluate cache
utilization efficiency and global performance of a configurable
target application. We generate a synthetic work load witch
allow us to control unit workload and global workload and
simulate data reuse. Thus, in order to achieve efficient
execution, a scheduling strategy should provides good spatial
and temporal data locality and an efficient load balancing.

The used unit workload is a sequential function performing a
“quicksort” on a small vector. We control the unit workload by
varying the size of this small vector. So, our input data is a set of
small vector, our program perform a “quicksort” in each of these
small vector. “quicksort” sort a vector performing multiple
compare and swap so intensive intensive read/write accesses to
data. This make it good candidate to evaluate efficient cache
utilization.

In this experiment we try to evaluate the efficiency of our
scheduling policy CHATS to: static scheduling, dynamic
scheduling and task stealing. We run our synthetic workloads on
an hybrid SMT-CMP-SMP platform with 16 Hardware threads
(2 x Intel Xeon E5620 at 2.4 GHz) and we measure average
execution time for different workload as well as cache-misses
for each of the scheduling policies.

C. Results

As shown in Figure 8, results shows that XPU processes the
heaviest workload about 20% faster than the second fastest
candidate. We notes also that XPU become more efficient as the
workload is bigger.

Figure 9 shows that XPU generate a low cache-miss rate in
comparison to the other candidate. XPU cache-miss rate
remains close to the static scheduling based candidate. Static
scheduling is known to offer very good data locality and doesn't
introduces communication overhead.

Fig. 8. Average processing time of different workload size.

Fig. 9. Cache-miss rate for different problem size

VI. APPLICATIONS

In order to evaluate performances of our scheduling policy,
we use our parallel loop implementation to parallelize two
popular applications from the PARSEC benchmark suite [16]
which are also a part of the Intel RMS benchmark. The first
application is the Blackscholes options pricing application and
the second one is the fluid animation application.

For each application, the benchmark includes a serial version
and several parallel versions using different parallel
programming models including POSIX Threads [6], OpenMP
[8] and Threading Building Blocks [12]. We use the serial
version to build our parallel applications using the XPU
framework [7]. More precisely, we use the “parallel_for” pattern
to parallelize the main loop of both applications at thread level.
We modified the default scheduler to implement our cache-
aware scheduling algorithm.

The Blackscholes application exhibits massive parallelism
thanks to its main parallel loop which process options with
almost no communication between threads. The Fluid
Animation workload processes large amount of particles
through a parallel loop but suffer from significant inter-thread
communication overhead.

A. Blackscholes

We parallelize the “Black-Scholes” workload at thread level
using the XPU's "parallel_for" construct running on top of the
cache hierarchy-aware scheduler. At the instruction level, we
use the vectorization capability provided by XPU through a
built-in vectorized type (vec4f) implemented in top of SSE to
support SIMD. We used the sequential code of the
“blackscholes” application as provided in PARSEC Benchmark
Suite. The main processing loop is parallelized at the cost of 3
lines of extra-code. Vectorization is introduced simply by
replacing regular float type by the XPU's "vec4f" vectorized
type. We compare the performance achieved by our application
to the five parallel versions provided in the same benchmark
suite: OpenMP, TBB, Pthreads, OpenMP/SSE and POSIX
Threads/SSE. We use the Intel C++ Compiler v12.0.5 and we
executed our benchmark on different multicore platforms.

Fig. 10 and 11 shows the measured execution time for each
parallel version. The XPU-based application provides higher
performance than the other versions and execute up to 25%
faster than POSIX Thread/SSE one. It takes advantage of the
ability of the scheduler to provide both load-balancing, efficient
cache utilization and low communication overhead to
outperform the POSIX Thread version which use basic static
scheduling achieving good cache utilization but poor load-
balancing. The impact of this poor load-balancing issue
becomes more visible as workload grows.

B. Fluid Animation

The fluid animation application is parallelized the same way
as the Blackscholes one. Fig. 7 and 8 shows the measured
execution time on two different platforms. The first one is an
SMT-CMP processor which displays two cache level sharing.
The second one is an hybrid SMT-CMP-SMP platform
containing two Intel Nehalem processors and exhibiting three
levels cache sharing.

Fig. 10. Execution time of the “Blackscholes” application for different
problem size on hybrid SMT-CMP Nehalem Processor with 8 Hardware

threads (Intel Core i7 Q720)

Fig. 11. Execution time of the “Blackscholes” application for different
problem size on hybrid SMT-CMP-SMP platform with 16 Hardware

threads (2 x Intel Xeon E5620 at 2.4 GHz)

The parallel “fluidanimate” program introduces significant
communication between threads making spatial and temporal
data locality in caches critical for achieving high performances.
This gives an advantage to static scheduling techniques but
doesn't reduces the impact of efficient load-balancing.

Fig. 12. Execution time of the “Fluid Animation” application for different
problem sizes on hybrid SMT-CMP Nehalem Processor with 8 Hardware

threads (Intel Core i7 Q720)

Fig. 13. Execution time of the “Fluid Animation” application for different
problem sizes on hybrid SMT-CMP-SMP platform with 16 Hardware

threads (2 x Intel Xeon E5620 at 2.4 GHz)

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a cache-hierarchy aware
scheduling which aims to provide efficient cache utilization
without neglecting load-balancing. We described the CHATS
scheduling policy and how it can improve spatial and temporal
data locality in hierarchical caches. We shown how we can
provide good load-balancing without generating significant
communication overhead. Our experimental results on synthetic
workloads outlined the high cache-misses rate introduced by
some traditional scheduling policies implying arbitrary threads
communications such as task-stealing or dynamic scheduling.
These experiments demonstrated also that channelizing inter-
thread communications through hierarchical sharing groups
which communicates through shared caches reduces
significantly this communication overhead and generates much
lower cache-miss rate. Our implementation of CHATS
algorithm in the XPU scheduler and its use on popular real
applications from the PARSEC benchmark confirms our
experimental results on synthetic workload and shows high
performances in comparison to many others popular parallel
programming models implementing different scheduling

policies such OpenMP, POSIX Threads or Threading Building
Blocks.

CHATS has been designed to adapt dynamically to the
underlying CMP architecture by exploring its cache-topology at
run-time. At the moment of writing this paper, dynamic cache
topology exploration and CHATS scheduler have been
developed separately. These two pieces will be put together to
make CHATS adapt dynamically to various multicore
architectures.

We can conclude that CHATS scheduling strategy may be
good alternative to traditional scheduling techniques especially
in the cases where spatial and temporal data locality in
processor caches are critical for execution efficiency.

REFERENCES

[1] N. Khammassi, J.C. Le Lann, J.P. Diguet and A. Skrzyniarz, “MHPM:
Multi-Scale Hybrid Programming Model: A Flexible Parallelization
Methodology”, HPCC '12 Proceedings of the 2012 IEEE 14th
International Conference on High Performance Computing and
Communication, 71-80, Liverpool UK, June 2012

[2] G. Blake, R. G. Dreslinski and T. Mudge, “A Survey of Multicore
Processors”, IEEE Signal Processing , vol. 26, n. 6, pp. 26-37 November
2009

[3] L. J. Karam, I. Alkamal, Alan Gatherer, G. A. Frantz, D. V. Anderson
and B. L. Evans, “Trends in Multicore DSP platforms”, IEEE Signal
Processing , vol. 26, n. 6, pp 38-49, November 2009

[4] W. Wolf, “Multiprocessor System-on-Chip Technology”, IEEE Signal
Processing vol. 26, n. 6, November 2009

[5] Q. Chen, Z. Huang and M. Guo, “CAB: Cache Aware Bi-tier
Task Stealing in Multi-socket Multi-core Architecture”,
International Conference on Parallel Processing (ICPP), 2011

[6] D. Butenhof, Programming with POSIX Threads. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1997.

[7] XPU Framework, “http://www.xpu-project.net/”

[8] E. Ayguade,́ N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.
Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang, "The
design of openmp tasks," IEEE Transactions on Parallel and
Distributed Systems, vol. 20, no. 3, pp. 404-418, 2009.

[9] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat,
and T. Wen, "Solving large, irregular graph problems using
adaptive work-stealing," in 37th International Conference on
Parallel Processing, pp. 536-545, IEEE, 2008.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall, "The
implementation of the Cilk-5 multithreaded language," in
Proceedings of the ACM SIGPLAN '98 Conference on
Programming Language Design and Implementation, (Montreal,
Quebec, Canada), pp. 212-223, ACM, June 1998.

[11] C. Leiserson, "The Cilk++ concurrency platform," in
Proceedings of the 46th Annual Design Automation Conference,
pp. 522-527, ACM, 2009.

[12] J. Reinders, Intel threading building blocks. O'Reilly, 2007.

[13] T. F. Yang, C. H. Lin and C. L. Yang, “Cache-Aware Task
Scheduling on Multi-Core Architecture”, International
Symposium on VLSI Design Automation and Test (VLSI-DAT),
2010

[14] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsas, L. Fix, N. Hardavellas, T. C. Mowry,
and C. Wilkerson., “Scheduling threads for constructive cache
sharing on CMPs”, In Proceedings of the 19th Annual
Symposium on Parallel Algorithms and Architectures, pages
105–115. ACM, 2007.

[15] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: Sharing-
aware scheduling on smp-cmp-smt multiprocessors”, In
Proceedings of the 2nd SIGOPS/EuroSys European Conference
on Computer Systems, pages 47–58. ACM, 2007.

[16] C. Bienia, S. Kumar, J. P. Singh and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications”, Proceedings of
the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[17] G. Blake, R. G. Dreslinski and T. Mudge, “A Survey of Multicore
Processors”, IEEE Signal Processing , vol. 26, n. 6, pp. 26-37 November
2009

[18] L. J. Karam, I. Alkamal, Alan Gatherer, G. A. Frantz, D. V. Anderson
and B. L. Evans, “Trends in Multicore DSP platforms”, IEEE Signal
Processing , vol. 26, n. 6, pp 38-49, November 2009

[19] W. Wolf, “Multiprocessor System-on-Chip Technology”, IEEE Signal
Processing vol. 26, n. 6, November 2009

[20] M. S. Squillante and E. D. Lazowska, “Using processor-cache affinity
information in shared-memory multiprocessor scheduling”, IEEE
Transactions on Parallel and Distributed Systems, Vol 4, pp.131-143

[21] Processor information, “http://msdn.microsoft.com/en-
us/library/windows/desktop/ms683194%28v=vs.85%29.aspx”

[22] J. E. Savage, M. Zubair, “A unified model for multicore architectures”,
IFMT '08 Proceedings of the 1st International Forum on Next-generation
multicore/manycore Technologies

	I. Introduction
	II. Related Works
	III. Overview Of CMP Architectures
	IV. Cache Hierarchy-aware Task Scheduling
	A. Runtime System
	B. Work Unit
	C. Data Partitioning
	D. Parallel For Loop : Data Partitionning and Cache Topology
	E. Workload Scheduling
	F. Execution Semantics
	G. XPU: Implementation and programming Interface

	V. Performance Evaluation
	1) Static scheduling
	2) Dynamic scheduling
	3) Task-stealing
	B. Experiment : Parallel For On Synthetic Workloads
	C. Results

	VI. Applications
	A. Blackscholes
	B. Fluid Animation

	VII. Conclusion and Future Works
	References

