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Abstract—General-purpose  shared  memory  multicore 
architectures are becoming widely available. They are likely to 
stand as attractive alternatives to more specialized processing 
architectures  such  as  FPGA  and  DSP-based  platforms  to 
perform real-time digital signal processing. In this paper, we 
show  how  we  can  ease  parallelism  expression  on  shared 
memory  multicore  architecture  through  the  XPU  high-level 
programming  model  and  we  describe  a  parallel 
implementation  of  radar  signal  processing  application.  This 
study  case  shows  how  we  can  improve  programmer 
productivity  through  easing  parallel  programming  without 
sacrificing performances.
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I.  INTRODUCTION

While parallel  programming is still  a  hard task for  the 
average sequential programmer, the continuous proliferation 
of  parallel  hardware  has  placed  developers  under  great 
pressure  to  parallelize  their  applications  in  order  to  take 
advantage of these platforms [1,2,3,4,5]. Moreover, the use 
of specialized parallel processing devices such as FPGA and 
DSP  may make parallel  programming even a harder task 
since it requires a deep understanding of the target hardware 
architecture  in  addition  to  strong  parallel  programming 
knowledge  and  skills.  Such  hardware  may  offer  great 
performance but  at  the  cost  of  poor  programmability and 
consequently  low  productivity.  Recent  general-purpose 
multicores  architectures  (GPMA)  [2],  such  as  the  widely 
available x86 architectures, can offer an attractive alternative 
to  those  specialized  devices  since  they  can  achieve 
acceptable  performances  at  the  cost  of  less  programming 
effort. Particularly, stringent real time requirements for most 
digital signal processing applications seem still beyond reach 
of  today  GPMA:  these  DSP  applications  require 
supplemental dedicated accelerators or even fully dedicated 
SoC architectures. However, GPMA show such promises and 
it is likely that in a near future, DSP applications could be 
modeled appropriately and executed in such GPMA. 

Many parallel programming models have been designed 
for  GPMA.  These  programming  models  have  different 
approaches  and  provide  different  trade-off  between 

productivity  and  performance  [1,19].  Low-level 
programming model  such  as  “pthread”  may achieve  high 
performance but suffers from poor programmability. At the 
opposite side, many high-level programming models tend to 
sacrifice performances to offer good programmability and to 
improve  consequently  programmer  productivity.  In  the 
middle,  many other  high-level  programming models  make 
various  productivity-performance  tradeoff.  Particularly, 
structured parallel programming with deterministic patterns 
[7,10,11,12,17]  is  a  high-level  approach  based  on  a 
collection of reusable and recurrent execution patterns, also 
known as skeletons, which offers better abstraction and hides 
low-level threading details. XPU [1,16] is a C++ framework 
which falls in this category and try to develop this approach 
toward better productivity and higher performances. In this 
paper,  we show how we can use XPU to ease parallelism 
expression in a radar signal processing application, we show 
how we can use its different execution patterns to express 
several  different  types of parallelism at  different levels  of 
granularity. We outline the provided programmability and we 
shows  the  achieved  speedup  by  the  parallel  version  in 
comparison with the original sequential version.

II. XPU OVERVIEW

XPU is a task-based library which exploits C++ meta-
programming  capabilities  [6,8,9]  to  ease  parallelism 
expression. C++ Meta-programming techniques exploits the 
potential  of standard C++ language without any extension 
and thus does not introduce any need to any particular tool 
other  than  a  standard  C++  compiler.  Thus,  XPU  based 
programs are simply compiled like any C++ program.  XPU 
provides a friendly and light weight programming interface 
which enable programmer to  design parallel applications or 
parallelize  those which are sequential at the cost of a little 
amount of extra-code. XPU is  a based on a set of recurrent 
parallel execution patterns  which  specifies  execution 
configuration of a group of tasks. In order to promote reuse 
of  sequential  legacy  code  without  almost  any  alteration, 
these tasks are designed to encapsulate different  pieces  of 
code  including  functions,  class  method  or  lambda 
expression.  The  XPU's   execution  patterns  handle 
transparently many parallel-paradigms-related routines such 
as  synchronization, communication or task scheduling. An 
intelligent  run-time  system exploits  information,  extracted 
transparently from both hardware system and used execution 
patterns  (task  ordering  and  task-data  dependencies)  to 



perform dynamically efficient  execution on the underlying 
architecture  through  cache-aware  and  load-balanced  task 
scheduling. Contrary to many parallel programming models 
which introduce new languages, extend existing language or 
define compiler annotations and thus require a specialized 
compiler, extra-hardware or virtual machines [5,19]... XPU 
is a pure software technology entirely based on the 
traditional C++ language and requires nothing more than a 
standard C++ compiler to be used, and therefore,  improves 
learning curve steepness and is easily portable to many 
systems. 

III. TASK-BASED PARALLEL EXECUTION PATTERNS

XPU provides a set of parallel execution patterns which 
enable  programmer  to  express  several  different  type  of 
parallel  programming  including  task,  data  and  pipeline 
parallelism at different granularity level.

A. Task definition

In  XPU tasks  can  be  defined  from different  pieces  of 
C/C++ code including functions,  class  methods or lambda 
expression. This task design enable the programmer to reuse 
sequential legacy code to build a parallel application. Figure 
1 shows an example of how we can use a function to define a 
task at the cost of a single line of code.

Figure 1. A function can be easily reused to define a task 
without altering the original code

Once  defined,  a  set  of  tasks  can  be  used  within  and 
execution pattern which specify their parallelism.

B. Task parallelism

 Parallelism between tasks can be easily specified using 
the “parallel” keywords, as shown in Figure 2. Since some of 
these  tasks  might  be   sequential  due  to  some  consumer-
producer  dependencies,  the  “sequential”  keyword  in 
conjunction with “parallel”, allows the specification of both 
parallel and sequential execution in a single task graph.

Figure 2. An example of task graph composed of parallel and 
sequential tasks

C. Data Parallelism

1) Parallel loop

Data parallelism refer to a execution configuration where 
the same task is performed repetitively for each item of a 
large amount of data. The parallel for loop “parallel_for” is a 
typical  execution pattern which exploit  data parallelism to 
offer  a  great  parallelism  multiplier.  Figure  3  shows  an 
example of a parallel loop construct.

Figure 3. Parallel for loop construct example

2) Vectorization

Vectorization can act as a great performance multiplier by 
allowing SIMD (Single Instruction Multiple Data) operation 
on a vector of homogeneous data. XPU provides transparent 
vectorization  through  a  built-in  vectorized  type  named 
“vec4f” and implemented using x86 SSE intrinsics. “vec4f” 
allows vectorization of standard float operations as well as 
many other functions.

XPU provides others data parallel  execution patterns[1] 
which are not exposed here since they will not be used on the 
target application.

D. Temporal parallelism : Pipeline

Pipeline parallelism [13,14,15] is  a  recurrent  execution 
pattern  in  many  applications  implying   real-time  stream 
processing  such  as  digital  signal  processing  and  video 
processing [18,20,21].  The Pipeline construct  implement a 
consumer-producer relationship between a set of tasks often 
referred  as  “stages”.  Parallelism  is  exploited  only  of 
independent activities while serial execution is enforced on 
dependent  ones.  Figure  4  shows  how  a  pipeline  can  be 
expressed in XPU. 

Figure 4. Pipeline parallelism expression in XPU : an example 
of four stages image processing pipeline

1  // original function
2  int filter(float * samples, float size, float cutoff);
3  
4  int main() {
5  // task definition 
6  xpu::task filter_t(filter, data, size, freq);
7 }

1 void main() {
2  task t1(function, data_1),      // task definition
3       t2(&o, cls::method, data_2), ...;
4  task_group * program; // task graph
5  program = parallel(sequential(t1, parallel(t3,t4)), 
6                     sequential(t2, t5));
7  init();
8  program­>run(); // 'data_4' protected automatically
9  clean();
10 }

 

1  int process(int from, int to, int step, float ** pulses) {
2    for (int i=from; i<to; i+=step)  filter(pulses[i]);
3  }
4  void main()
5  {
6    float ** pulses = … ; 
7    task process_t(process, 0,0,0, pulses);
8    parallel_for pf(0, pulse_count, 1, &process_t);
10   pf.run(); 
11 }

1 void sharpen(int i, vector<image> * imgs) // i = frame index
2 { imgs[i]­>sharpen(); }
3 
4 void multiply(int i, vector<image> * imgs, image * mask)
5 { imgs[i]­>multiply(mask); }
6
7 int main()
8 {
9   vector<image> frames(size); 
10  ... 
11  task sharpen_t(sharpen, 0, &frames), 
12       blur_t(blur, 0, &frames),
13       multiply_t(multiply, 0, &frames, &mask);
14 task_group * process_image = pipeline(size, sharpen_t, 
15                                              blur_t, 
16                                              contrast_t, 
17                                              multiply_t); 
18  process_image­>run(); // frame index “i” will be updated 



IV. STUDY CASE STUDY : REAL-TIME RADAR SIGNAL 
PROCESSING 

A. Algorithm overview

The  target  application  is  a  radar  signal  processing 
algorithm which  processes  a  digitized  signal  of  a  phased 
array  radar  system.  Data  volume  grows  significantly  as 
enabled  channels  count  grows.  As  shown in figure  5,  the 
algorithm perform its task in eight steps. These steps may be 
summarized in three major steps which are:

1- Digital Beam Forming (Green)
2- Doppler Filtering         (  Blue )
3- Pulse Compression      (  Red  )

Echos are received as periodic bursts. For each burst, the 
received signal's samples feeds the signal processing chain 
which must perform all required operations before the next 
burst is received in order to meet real-time processing.

Figure 5. Overview of a radar signal processing algorithm and 
its sequential implementation (arguments have been omitted for brevity)

The  first  task  “RCV” is  responsible  of  data  reception 
from  the  radar  simulator  and  introduces  thus  negligible 
workload. The four following blocks: SEL (Selection), COR 
(Correlation), INV (Inversion) and CTR (Control) perform a 
correlation of the receiver channels and guide digital beam 
forming. The MTI (Moving Target Indication) block allows 
the  discrimination  of  moving  targets  against  stationary 
clutter. DBF (Digital Beam Forming) forms beams using the 
processed   input  channels.  Doppler  processing  is  then 
performed using these beams by the DOP (Doppler) block 
and finally Pulse compression is completed by the last block 
PC (Pulse Compression). 

The  target  Radar  can  be  configured  to  use  different 
number  of  input  channels.  Input  data  volume  as  well  as 
computing  load  is  proportional  to  the  enabled  channels 
count. While Figure 7 shows the theoretical computing load 
of each processing block for one 64 channels-burst, Figure 6 
depicts the generated input/output data volume for/by each 
processing block by the same configuration.

Figure 6. Input/Output Data volume per burst for each 
processing block  in a 64 channels configuration

Figure 7. Computing load of each processing block for a 64 
channels-burst (Floating-point Operations).

B. Experimental Setup

1) Hardware Setup

In  the  next  sections,  we  use  two  different  execution 
platforms  with  one  and  two  general-purpose  multicore 
processors:

• The first  platform is  an  Intel  Core i7  Q720 1.6 
GHz (Max Turbo Frequency: 2.8 GHz), it contains 
4  Physical  Cores  and  8  Threads  and  has  a  45W 
Maximum  TDP  (Thermal  Design  Power)  as 
specified by the constructor[22].

• The second platform is an SMP platform with two 
Intel  Xeon   E5620  2.4  GHz  (Max  Turbo 
Frequency:  2.66  GHz).  Each  processor  has  4 
Physical  Cores  and  8  Threads.  Its  constructor 
declares  a  maximum TDP of  80W per-processor, 
i.e., about 160W for our target platform [23].

2) Software Setup

We consider mainly three radar configurations of 64, 32 
and  16  channels.  Total  processing  time  must  be  equal  or 
lower than 20 ms in the worst case in order to meet real-time 
processing  requirements  without  loosing  any  data.  Since 
“DOP” and “PC” tasks performs many FFT (Fast Fourrier 
Transform) in their processing, we use the free FFTW 3.3 
library [24] in the case of the PC task. DOP's FFT is much 
smaller and is written by us. 

1 // functions implementation
2 void rcv(/* args */) { ... } 
3 void sel(/* args */) { ... } 
4 void cor(/* args */) { ... } 
5 void inv(/* args */) { ... }
6 // ...
7 int main()
8 { // serial processing of each burst
9   while (burst_available) {
10    rcv(/* args */);
11    sel(/* args */); 
12    cor(/* args */); 
13    inv(/* args */); 
14    ctr(/* args */);  
15    mti(/* args */);     
16    dbf(/* args */);       
17    dop(/* args */);        
18    pc (/* args */);
19  }
20 }



Serial FFTW is used in the sequential version of PC task 
and threaded FFTW is used in the parallel  one The GNU 
compiler v4.6.3 is used to compile the different version of 
the target application. Finally, applications are executed on a 
Linux Debian OS with the 3.0 Linux Kernel. 

C. Serial Execution

The initial basic C++ implementation of our processing 
chain is fully serial. Figure 8 shows the execution time of the 
entire serial processing chain for different workloads (16, 32 
and 64 Channels-Burst) and depicts the spent execution time 
by each processing block of our algorithm. As expected, the 
application's execution-time is dominated by DBF, PC and 
COR tasks.  Parallelization  should  target  particularly these 
blocks in order to reduce the over-all execution time. This 
basic  sequential  implementation  takes  about  7  seconds  to 
process a 64 channels-burst with a fixed beam count on an 
SMP platform with two Intel Xeon E5620 at 2.4 GHz. So, it 
runs 350 times slower than the required real-time processing 
time (20 ms). We outline that the digital beam forming task 
“DBF” generates the same beam count disregarding the input 
channels  count.  This  explains  the  near-constant  execution 
time of the two last blocks “DOP” and “PC” which have a 
constant workload in all configurations.

D. Parallelization Methodology

In order to parallelize our application we follow a  simple 
parallelization methodology which we detailed in previous 
work [1]. This parallelization technique pass through three 
main steps which are: 

• Decomposing our application into a set of tasks
• Specifying the parallelism of these tasks.
• If possible, parallelizing each of these tasks: each 

task may be decomposed into finer grain tasks to 
express finer grain parallelism.

• Finally,  instruction-level  parallelism  (SIMD)  may 
be expressed using vectorized types or concurrent 
GPU vectors .

Figure  9  gives  an  overview  of  our  parallelization 
methodology.  We  outline  that  XPU  allows  hierarchical 
expression  of  several  types  of  parallelism  including  task 
parallelism, data  and temporal parallelism at different level 
of granularity at both thread level and instruction level.

Figure 8. Execution time of the initial serial implementation 
for 16,32 and 64 Channels-Burst on 2 x Intel Xeon E5620 2.4 GHz (16 

Threads / 8 Cores). 

Figure 9. Overview of the XPU Parallelization Methodology

E. Task Parallelism Extraction

A first  look to  the  algorithm enables  us  to  distinguish 
clearly an  inherent  parallelism between the  MTI (Moving 
Target  Indication)  and  the  four  following  blocks:  SEL 
(Selection),  COR (Correlation),  INV (Inversion)  and  CTR 
(Control).  Exposed  task  parallelism  in  our  study case  is 
relatively weak since the five targeted tasks are not much 
time-consuming.  Consequently,  expected  speedup  is 
relatively low but nevertheless important. We note that task 
parallelism may be  much more  available  and  effective  in 
other study cases. 

Assuming we have a function which represents each of 
these processing blocks, an XPU task is defined for each of 
these serial functions through a single line of code. Once task 
defined,  their  trivial  execution  configuration,  described  in 
Figure 5, can be expressed at the cost of another single line 
of code as shown in Figure 10. 

Since  MTI and  SEL accesses  to  a  common input  (the 
burst) respectively in write and read mode, XPU run-time 
will transform both of them into critical sections in order to 
protect  the burst data from conflictual  concurrent accesses 
(also  known  as  “race  condition”)  to  ensure  a  safe  and 
coherent execution. This may annihilate parallelism in our 
case,  so,  we  choose  to  duplicate  input  data  to  preserve 
parallel  execution  of  MTI  and  the  other  four  concurrent 
blocks.

Figure 10. Expression of both parallel and sequential execution 
of the different tasks using XPU

As expected, parallelization of the sequential processing 
tasks does not provide a significant speedup since MTI, SEL, 

1 void main() {
2  // task definition
3  task rcv_t(&rcv, burst_count),
4       mti_t(&mti, args), ...;
5  task_group * burst_processing; // task graph
6  burst_processing = 
7     sequential(rcv_t,
8                parallel(sequential(sel_t,cor_t,inv_t,ctr_t),mti_t),
9                dbf, dop, pc);
10 while (burst_available)  
11  burst_processing­>run(); // parallel processing of each burst
12 }

 



COR, INV and CTR are not time-consuming in comparison 
with  DBF  and  PC.  Nevertheless,  this  unavoidable 
parallelization  step  reduces  slightly the  over-all  execution 
time as shown in figure 11. The gained execution time grows 
proportionally to the input data size. In order to make this 
task-parallelism  speedup  significant,  COR,DBF  and  PC 
execution times must be significantly reduced to be as closer 
as possible to the MTI execution time.

Figure 11. Execution time of both the sequential version and the 
task-parallel version for 8,16,32 and 64 Channels-Burst on 2 x Intel Xeon 

E5620 2.4 GHz

In the next sections, we try to parallelize each block at 
thread  and  instruction  level  through  XPU  data  parallel 
execution patterns.

F. Data Parallelism

As  we  stated  earlier,  this  algorithm  processes 
simultaneously  all  data  (signal's  samples)  received  from 
several  channel  of  the  phased  array  radar  system.  Many 
blocks of the algorithm performs the same operation on each 
channel. This can be exploited to implement data parallelism 
in  each  of  these  stages  at  instruction-level  by  using  the 
vectorization capabilities of XPU and at thread-level through 
replacing  sequential  loops  by  parallel  ones  using  the 
“parallel_for”  execution  pattern  available  in  XPU.  COR, 
DBF  and  PC  should  be  particularly  targeted  by  this 
parallelization.

1) Vectorization

Vectorization can  be  implemented  by replacing regular 
simple  precision  float  by  the   “xpu::vec4f”  built-in  type 
which translates transparently simple operations on floating-
point  into SIMD operations on four floats  simultaneously. 
This instruction-level parallelism is implemented on top of 
x86 SSE streaming intrinsics and may be extended in future 
works to support  other  SIMD extensions such as AVX or 
Altivec. We note that data should be aligned in memory to 
make vectorization efficient. This can be performed through 
the  XPU's  aligned  allocator  which  is  compatible  with 
standard C++ STL containers.

Vectorization has been used in MTI, COR, DBF and PC 
tasks. Figure 12 shows that instruction-level parallelism can 
be a great parallelism multiplier for data parallel tasks such 
as MTI and COR where the same operation is performed on 
large vectors of samples.  We note that SIMD impact vary 

depending on the workload size implying both data size and 
computing load: the vectorized COR code performs 10 times 
faster than the original sequential code while the vectorized 
MTI code achieve only about 20% execution speedup.

Figure 12. Thread-level and Instruction-level parallelization 
effect on execution-times of MTI and COR for 64 Channels-Burst on 2 x 

Intel Xeon E5620 2.4 GHz

2) Parallel loop

Instruction-level  parallelism  offers  limited  scalability 
since  SIMD  may  take  advantage  of  processor  frequency 
increasing  but  cannot  benefit  from  processor  count 
increasing  without  thread-level  parallelism.  Parallel  loop 
implements  data  parallelism  at  thread-level  and  provides 
good scalability on multicore architectures.  We use XPU's 
“parallel_for”  execution  pattern  in  conjunction  with 
vectorization  to  parallelize  several  tasks.  The  XPU's 
“parallel_for” construct adapts dynamically to the underlying 
architecture to exploit all available processors.

Figure  13  shows  an  example  of  parallel  for 
implementation to  perform simultaneously several  FFT on 
several pulses (pulse: a set of samples). The “parallel_for” 
construct has been used to parallelize MTI, COR, DBF, DOP 
and PC tasks. The vectorized code has been reused in the 
parallel  loops.  Figure  12  depicts  a  significant  speedup  in 
comparison with the  initial  serial  version:  the  parallelized 
COR version runs  about  48 times faster  than  the original 
sequential  version  and  5  times  faster  than  the  vectorized 
version on the bi-processor 16 Threads SMP platform.

Figure 13. A simplified example of parallel for loop use in the 
PC task.

1  int fft(int from, int to, int step, float ** pulses) 
2  {
3    for (int i=from; i<to; i+=step)  
4                  cplx_fft(pulses[i]);
5  }
6  
7  void pc(float ** pulses, int pulse_count)
8  {
9    task fft_t(fft, 0,0,0, pulses);
10    parallel_for p(0, pulse_count, 1, &fft_t);
11   p.run(); 
12 }



3) Performances 

As shown in Figure 14, after parallelizing the most time-
consuming  blocks  of  our  processing  chain  at  thread  and 
instruction-level,  the  over-all  processing  time  of  a  64 
channels-burst  on  the  dual  Intel  Xeon  E5620  platform 
dropped  from  6.9  seconds  (initial  sequential  version)  to 
0.045 second (in the worst case) for the parallel version as 
depicted Figure 15. The 64 channels configuration does not 
satisfies the real-time requirement (20 ms in the worst case). 
However, we are able to process input data in real-time in the 
32,16 and 8 channels configurations on the same platform. 

With a maximum TDP of 160 Watts, the first platform 
may  not  be  embeddable  due  to  potential  energetic 
constraints.  Thus,  a  platform based  on one  Core i7  Q720 
with a maximum TDP of 45 Watts may be more suitable. We 
executed our application on this platform. Figure 15 shows 
that  our  application  run  twice  as  slow  as  on  the  SMP 
platform. Consequently the 32 channels configuration does 
not allow real-time processing on that  platform. However, 
real-time  processing  can  be  performed  in  the  8  and  16 
channels configurations. 

As shown in figure 14 and 15,  the current  application 
displays  a  good  scalability.  We  believe  that  real-time 
processing in all our four configurations may be achieved on 
faster platforms with more processing cores and higher clock 
frequency.

Figure 14.  Execution time achieved by the parallelized version 
for 8,16,32 and 64 channels-burst on 2 x Intel Xeon E5620 2.4 GHz

Figure 15. Execution time achieved  by the parallelized version 
for 8,16,32 and 64 Channels-burst on an Intel Core i7 Q720 1.6 GHz 

Figure 16. Overview of the final program architecture and code 
(details of the code have been omitted for clarity).

Figure 17. Execution configuration of three-stages-pipeline 
processing three consecutive bursts

As we have seen, data parallelism can offer significant 
execution  speedup  especially  when  coupled  with  task 
parallelism. However, available parallelism may be limited 
by producer-consumer dependencies between tasks. In this 
case, temporal parallelism (a.k.a. pipeline parallelism) can be 
a very useful parallelism multiplier. 

G. Pipeline Parallelism

At the opposite or serial execution pattern where all tasks 
are  executed  sequentially,  pipeline  exploits  the  available 
parallelism  by executing  simultaneously all  its  processing 
stages  and  serializing  only  the  dependent  activities.  This 
allows potential  throughput  improvement  especially in  the 
case of  applications involving real-time continuous stream 
processing such as in our case.

In our application, a single burst must be processed by the 
different  tasks  in  the  specified  order  to  preserve  data 
coherency:  these  tasks  are  acting  as  a  consumer-producer 
chain.  However,   multiple  independent  bursts  can  be 
processed  simultaneously  by   different  processing  stages 
without  violating  the  producer-consumer  dependencies  as 
shown in Figure 17.

We  use  the  “pipeline”  execution  pattern  of  XPU  to 
implement a pipeline execution configuration. As illustrated 
in  Figure  16,  we  regroup  our  tasks  into  three  processing 
stages:

• Stage  1 holds  MTI,  SEL,  COR,  INV  and  CTR 
tasks. We note that the “parallel” construct specifies 



parallelism between MTI and the other four tasks 
which are executed sequentially. In addition, we use 
two  “parallel_for”  loops  in  MTI  and  COR  in 
conjunction with vectorization.

• Stage 2 contains  the parallel  version of  DBF :  a 
“parallel_for”  loop  enables  parallel  processing  of 
different channels.

• Stage 3 is composed of DOP and PC tasks. Both of 
them  uses  “parallel_for”  loops  to  process 
simultaneously several beams.

This  task  regrouping  pattern  aims  to  load-balance  the 
pipeline stages. A FIFO (First In First Out) queue ensure data 
transfer between different stages. The FIFO sizes are limited 
by the  available  memory  and  may have  a  non-negligible 
impact on the achieved performances.

Figure 17 illustrates how the three stages of the pipeline 
can  process  simultaneously  three  different  bursts  without 
violating  producer-consumer  dependencies.  The  different 
stages  may  be  executed  differently  depending  on  the 
workload  of  each  stage  however  stage’s  ordering  is 
preserved for each received burst. 

As shown in Figure 18, pipeline parallelism allows real-
time  processing  in  all  our  four  configurations  on  the  8 
threads platform (Intel Core i7 Q720). By observing the load 
of  the  different  processor's  cores  when  executing  the 
application as well as the achieved execution times, we can 
conclude  that  the  pipeline-based  version  exploits  the 
computing  resources  more  efficiently  than  the  previous 
parallel version.

Figure 18. Worst and best execution time of the parallel version 
with pipeline parallelism version execution for 8,16,32 and 64 Channels-

Burst on the Intel Core i7 Q720 1.6 GHz (8 Threads)

V. CONCLUSION

As we have seen previously,  we parallelized our target 
application progressively by expressing several  parallelism 
types at different granularity levels starting from coarse grain 
tasks to finer grain ones. Use of both task, temporal and data 
parallelism  allowed  us  to  extract  a  significant  amount  of 
parallelism  and  to  achieve  high  performance  and  good 

scalability.  We  outline  the  programmability  of  the  XPU 
framework  which  enables  programmer  to  easily  express 
several types of parallelism at all levels of granularity at the 
cost of a little amount of parallelism related extra-code and 
in the same time, by enabling him to reuse most of the legacy 
sequential  code  without  significant  alteration.  This 
programmability  can  improve  significantly  programmer's 
productivity. 

By  easing  parallelism  expression  on  general  purpose 
multicore architectures such as the x86 architecture,  many 
real-time digital signal processing applications are likely to 
be  implemented  efficiently  on  such  architectures  making 
them  an  attractive  alternative  to  expensive  specialized 
processing  architectures  such  as  FPGA  and  DSP  based 
platforms.
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