
 Tackling Real-Time Signal Processing Applications on Shared Memory Multicore
Architectures Using XPU

Nader Khammassi
§, £

§ Radar & Warfare Systems
Thales Airborne Systems

29200 Brest , France

nader.khammassi@ensta-bretagne.fr

Jean-Christophe Le Lann
£

£
Lab-STICC UMR CNRS 6285

ENSTA-Bretagne
29806 Brest Cedex 9, France

jean-christophe.le_lann@ensta-bretagne.fr

Abstract—General-purpose shared memory multicore
architectures are becoming widely available. They are likely to
stand as attractive alternatives to more specialized processing
architectures such as FPGA and DSP-based platforms to
perform real-time digital signal processing. In this paper, we
show how we can ease parallelism expression on shared
memory multicore architecture through the XPU high-level
programming model and we describe a parallel
implementation of radar signal processing application. This
study case shows how we can improve programmer
productivity through easing parallel programming without
sacrificing performances.

Keywords- Parallel Parallel Programming Model, Skeleton,
Parallel Construct, Patterns, Pipeline Parallelism, Multicore,
Digital Signal Processing, Radar

I. INTRODUCTION

While parallel programming is still a hard task for the
average sequential programmer, the continuous proliferation
of parallel hardware has placed developers under great
pressure to parallelize their applications in order to take
advantage of these platforms [1,2,3,4,5]. Moreover, the use
of specialized parallel processing devices such as FPGA and
DSP may make parallel programming even a harder task
since it requires a deep understanding of the target hardware
architecture in addition to strong parallel programming
knowledge and skills. Such hardware may offer great
performance but at the cost of poor programmability and
consequently low productivity. Recent general-purpose
multicores architectures (GPMA) [2], such as the widely
available x86 architectures, can offer an attractive alternative
to those specialized devices since they can achieve
acceptable performances at the cost of less programming
effort. Particularly, stringent real time requirements for most
digital signal processing applications seem still beyond reach
of today GPMA: these DSP applications require
supplemental dedicated accelerators or even fully dedicated
SoC architectures. However, GPMA show such promises and
it is likely that in a near future, DSP applications could be
modeled appropriately and executed in such GPMA.

Many parallel programming models have been designed
for GPMA. These programming models have different
approaches and provide different trade-off between

productivity and performance [1,19]. Low-level
programming model such as “pthread” may achieve high
performance but suffers from poor programmability. At the
opposite side, many high-level programming models tend to
sacrifice performances to offer good programmability and to
improve consequently programmer productivity. In the
middle, many other high-level programming models make
various productivity-performance tradeoff. Particularly,
structured parallel programming with deterministic patterns
[7,10,11,12,17] is a high-level approach based on a
collection of reusable and recurrent execution patterns, also
known as skeletons, which offers better abstraction and hides
low-level threading details. XPU [1,16] is a C++ framework
which falls in this category and try to develop this approach
toward better productivity and higher performances. In this
paper, we show how we can use XPU to ease parallelism
expression in a radar signal processing application, we show
how we can use its different execution patterns to express
several different types of parallelism at different levels of
granularity. We outline the provided programmability and we
shows the achieved speedup by the parallel version in
comparison with the original sequential version.

II. XPU OVERVIEW

XPU is a task-based library which exploits C++ meta-
programming capabilities [6,8,9] to ease parallelism
expression. C++ Meta-programming techniques exploits the
potential of standard C++ language without any extension
and thus does not introduce any need to any particular tool
other than a standard C++ compiler. Thus, XPU based
programs are simply compiled like any C++ program. XPU
provides a friendly and light weight programming interface
which enable programmer to design parallel applications or
parallelize those which are sequential at the cost of a little
amount of extra-code. XPU is a based on a set of recurrent
parallel execution patterns which specifies execution
configuration of a group of tasks. In order to promote reuse
of sequential legacy code without almost any alteration,
these tasks are designed to encapsulate different pieces of
code including functions, class method or lambda
expression. The XPU's execution patterns handle
transparently many parallel-paradigms-related routines such
as synchronization, communication or task scheduling. An
intelligent run-time system exploits information, extracted
transparently from both hardware system and used execution
patterns (task ordering and task-data dependencies) to

perform dynamically efficient execution on the underlying
architecture through cache-aware and load-balanced task
scheduling. Contrary to many parallel programming models
which introduce new languages, extend existing language or
define compiler annotations and thus require a specialized
compiler, extra-hardware or virtual machines [5,19]... XPU
is a pure software technology entirely based on the
traditional C++ language and requires nothing more than a
standard C++ compiler to be used, and therefore, improves
learning curve steepness and is easily portable to many
systems.

III. TASK-BASED PARALLEL EXECUTION PATTERNS

XPU provides a set of parallel execution patterns which
enable programmer to express several different type of
parallel programming including task, data and pipeline
parallelism at different granularity level.

A. Task definition

In XPU tasks can be defined from different pieces of
C/C++ code including functions, class methods or lambda
expression. This task design enable the programmer to reuse
sequential legacy code to build a parallel application. Figure
1 shows an example of how we can use a function to define a
task at the cost of a single line of code.

Figure 1. A function can be easily reused to define a task
without altering the original code

Once defined, a set of tasks can be used within and
execution pattern which specify their parallelism.

B. Task parallelism

 Parallelism between tasks can be easily specified using
the “parallel” keywords, as shown in Figure 2. Since some of
these tasks might be sequential due to some consumer-
producer dependencies, the “sequential” keyword in
conjunction with “parallel”, allows the specification of both
parallel and sequential execution in a single task graph.

Figure 2. An example of task graph composed of parallel and
sequential tasks

C. Data Parallelism

1) Parallel loop

Data parallelism refer to a execution configuration where
the same task is performed repetitively for each item of a
large amount of data. The parallel for loop “parallel_for” is a
typical execution pattern which exploit data parallelism to
offer a great parallelism multiplier. Figure 3 shows an
example of a parallel loop construct.

Figure 3. Parallel for loop construct example

2) Vectorization

Vectorization can act as a great performance multiplier by
allowing SIMD (Single Instruction Multiple Data) operation
on a vector of homogeneous data. XPU provides transparent
vectorization through a built-in vectorized type named
“vec4f” and implemented using x86 SSE intrinsics. “vec4f”
allows vectorization of standard float operations as well as
many other functions.

XPU provides others data parallel execution patterns[1]
which are not exposed here since they will not be used on the
target application.

D. Temporal parallelism : Pipeline

Pipeline parallelism [13,14,15] is a recurrent execution
pattern in many applications implying real-time stream
processing such as digital signal processing and video
processing [18,20,21]. The Pipeline construct implement a
consumer-producer relationship between a set of tasks often
referred as “stages”. Parallelism is exploited only of
independent activities while serial execution is enforced on
dependent ones. Figure 4 shows how a pipeline can be
expressed in XPU.

Figure 4. Pipeline parallelism expression in XPU : an example
of four stages image processing pipeline

1 // original function
2 int filter(float * samples, float size, float cutoff);
3
4 int main() {
5 // task definition
6 xpu::task filter_t(filter, data, size, freq);
7 }

1 void main() {
2 task t1(function, data_1), // task definition
3 t2(&o, cls::method, data_2), ...;
4 task_group * program; // task graph
5 program = parallel(sequential(t1, parallel(t3,t4)),
6 sequential(t2, t5));
7 init();
8 program­>run(); // 'data_4' protected automatically
9 clean();
10 }

1 int process(int from, int to, int step, float ** pulses) {
2 for (int i=from; i<to; i+=step) filter(pulses[i]);
3 }
4 void main()
5 {
6 float ** pulses = … ;
7 task process_t(process, 0,0,0, pulses);
8 parallel_for pf(0, pulse_count, 1, &process_t);
10 pf.run();
11 }

1 void sharpen(int i, vector<image> * imgs) // i = frame index
2 { imgs[i]­>sharpen(); }
3
4 void multiply(int i, vector<image> * imgs, image * mask)
5 { imgs[i]­>multiply(mask); }
6
7 int main()
8 {
9 vector<image> frames(size);
10 ...
11 task sharpen_t(sharpen, 0, &frames),
12 blur_t(blur, 0, &frames),
13 multiply_t(multiply, 0, &frames, &mask);
14 task_group * process_image = pipeline(size, sharpen_t,
15 blur_t,
16 contrast_t,
17 multiply_t);
18 process_image­>run(); // frame index “i” will be updated

IV. STUDY CASE STUDY : REAL-TIME RADAR SIGNAL
PROCESSING

A. Algorithm overview

The target application is a radar signal processing
algorithm which processes a digitized signal of a phased
array radar system. Data volume grows significantly as
enabled channels count grows. As shown in figure 5, the
algorithm perform its task in eight steps. These steps may be
summarized in three major steps which are:

1- Digital Beam Forming (Green)
2- Doppler Filtering (Blue)
3- Pulse Compression (Red)

Echos are received as periodic bursts. For each burst, the
received signal's samples feeds the signal processing chain
which must perform all required operations before the next
burst is received in order to meet real-time processing.

Figure 5. Overview of a radar signal processing algorithm and
its sequential implementation (arguments have been omitted for brevity)

The first task “RCV” is responsible of data reception
from the radar simulator and introduces thus negligible
workload. The four following blocks: SEL (Selection), COR
(Correlation), INV (Inversion) and CTR (Control) perform a
correlation of the receiver channels and guide digital beam
forming. The MTI (Moving Target Indication) block allows
the discrimination of moving targets against stationary
clutter. DBF (Digital Beam Forming) forms beams using the
processed input channels. Doppler processing is then
performed using these beams by the DOP (Doppler) block
and finally Pulse compression is completed by the last block
PC (Pulse Compression).

The target Radar can be configured to use different
number of input channels. Input data volume as well as
computing load is proportional to the enabled channels
count. While Figure 7 shows the theoretical computing load
of each processing block for one 64 channels-burst, Figure 6
depicts the generated input/output data volume for/by each
processing block by the same configuration.

Figure 6. Input/Output Data volume per burst for each
processing block in a 64 channels configuration

Figure 7. Computing load of each processing block for a 64
channels-burst (Floating-point Operations).

B. Experimental Setup

1) Hardware Setup

In the next sections, we use two different execution
platforms with one and two general-purpose multicore
processors:

• The first platform is an Intel Core i7 Q720 1.6
GHz (Max Turbo Frequency: 2.8 GHz), it contains
4 Physical Cores and 8 Threads and has a 45W
Maximum TDP (Thermal Design Power) as
specified by the constructor[22].

• The second platform is an SMP platform with two
Intel Xeon E5620 2.4 GHz (Max Turbo
Frequency: 2.66 GHz). Each processor has 4
Physical Cores and 8 Threads. Its constructor
declares a maximum TDP of 80W per-processor,
i.e., about 160W for our target platform [23].

2) Software Setup

We consider mainly three radar configurations of 64, 32
and 16 channels. Total processing time must be equal or
lower than 20 ms in the worst case in order to meet real-time
processing requirements without loosing any data. Since
“DOP” and “PC” tasks performs many FFT (Fast Fourrier
Transform) in their processing, we use the free FFTW 3.3
library [24] in the case of the PC task. DOP's FFT is much
smaller and is written by us.

1 // functions implementation
2 void rcv(/* args */) { ... }
3 void sel(/* args */) { ... }
4 void cor(/* args */) { ... }
5 void inv(/* args */) { ... }
6 // ...
7 int main()
8 { // serial processing of each burst
9 while (burst_available) {
10 rcv(/* args */);
11 sel(/* args */);
12 cor(/* args */);
13 inv(/* args */);
14 ctr(/* args */);
15 mti(/* args */);
16 dbf(/* args */);
17 dop(/* args */);
18 pc (/* args */);
19 }
20 }

Serial FFTW is used in the sequential version of PC task
and threaded FFTW is used in the parallel one The GNU
compiler v4.6.3 is used to compile the different version of
the target application. Finally, applications are executed on a
Linux Debian OS with the 3.0 Linux Kernel.

C. Serial Execution

The initial basic C++ implementation of our processing
chain is fully serial. Figure 8 shows the execution time of the
entire serial processing chain for different workloads (16, 32
and 64 Channels-Burst) and depicts the spent execution time
by each processing block of our algorithm. As expected, the
application's execution-time is dominated by DBF, PC and
COR tasks. Parallelization should target particularly these
blocks in order to reduce the over-all execution time. This
basic sequential implementation takes about 7 seconds to
process a 64 channels-burst with a fixed beam count on an
SMP platform with two Intel Xeon E5620 at 2.4 GHz. So, it
runs 350 times slower than the required real-time processing
time (20 ms). We outline that the digital beam forming task
“DBF” generates the same beam count disregarding the input
channels count. This explains the near-constant execution
time of the two last blocks “DOP” and “PC” which have a
constant workload in all configurations.

D. Parallelization Methodology

In order to parallelize our application we follow a simple
parallelization methodology which we detailed in previous
work [1]. This parallelization technique pass through three
main steps which are:

• Decomposing our application into a set of tasks
• Specifying the parallelism of these tasks.
• If possible, parallelizing each of these tasks: each

task may be decomposed into finer grain tasks to
express finer grain parallelism.

• Finally, instruction-level parallelism (SIMD) may
be expressed using vectorized types or concurrent
GPU vectors .

Figure 9 gives an overview of our parallelization
methodology. We outline that XPU allows hierarchical
expression of several types of parallelism including task
parallelism, data and temporal parallelism at different level
of granularity at both thread level and instruction level.

Figure 8. Execution time of the initial serial implementation
for 16,32 and 64 Channels-Burst on 2 x Intel Xeon E5620 2.4 GHz (16

Threads / 8 Cores).

Figure 9. Overview of the XPU Parallelization Methodology

E. Task Parallelism Extraction

A first look to the algorithm enables us to distinguish
clearly an inherent parallelism between the MTI (Moving
Target Indication) and the four following blocks: SEL
(Selection), COR (Correlation), INV (Inversion) and CTR
(Control). Exposed task parallelism in our study case is
relatively weak since the five targeted tasks are not much
time-consuming. Consequently, expected speedup is
relatively low but nevertheless important. We note that task
parallelism may be much more available and effective in
other study cases.

Assuming we have a function which represents each of
these processing blocks, an XPU task is defined for each of
these serial functions through a single line of code. Once task
defined, their trivial execution configuration, described in
Figure 5, can be expressed at the cost of another single line
of code as shown in Figure 10.

Since MTI and SEL accesses to a common input (the
burst) respectively in write and read mode, XPU run-time
will transform both of them into critical sections in order to
protect the burst data from conflictual concurrent accesses
(also known as “race condition”) to ensure a safe and
coherent execution. This may annihilate parallelism in our
case, so, we choose to duplicate input data to preserve
parallel execution of MTI and the other four concurrent
blocks.

Figure 10. Expression of both parallel and sequential execution
of the different tasks using XPU

As expected, parallelization of the sequential processing
tasks does not provide a significant speedup since MTI, SEL,

1 void main() {
2 // task definition
3 task rcv_t(&rcv, burst_count),
4 mti_t(&mti, args), ...;
5 task_group * burst_processing; // task graph
6 burst_processing =
7 sequential(rcv_t,
8 parallel(sequential(sel_t,cor_t,inv_t,ctr_t),mti_t),
9 dbf, dop, pc);
10 while (burst_available)
11 burst_processing­>run(); // parallel processing of each burst
12 }

COR, INV and CTR are not time-consuming in comparison
with DBF and PC. Nevertheless, this unavoidable
parallelization step reduces slightly the over-all execution
time as shown in figure 11. The gained execution time grows
proportionally to the input data size. In order to make this
task-parallelism speedup significant, COR,DBF and PC
execution times must be significantly reduced to be as closer
as possible to the MTI execution time.

Figure 11. Execution time of both the sequential version and the
task-parallel version for 8,16,32 and 64 Channels-Burst on 2 x Intel Xeon

E5620 2.4 GHz

In the next sections, we try to parallelize each block at
thread and instruction level through XPU data parallel
execution patterns.

F. Data Parallelism

As we stated earlier, this algorithm processes
simultaneously all data (signal's samples) received from
several channel of the phased array radar system. Many
blocks of the algorithm performs the same operation on each
channel. This can be exploited to implement data parallelism
in each of these stages at instruction-level by using the
vectorization capabilities of XPU and at thread-level through
replacing sequential loops by parallel ones using the
“parallel_for” execution pattern available in XPU. COR,
DBF and PC should be particularly targeted by this
parallelization.

1) Vectorization

Vectorization can be implemented by replacing regular
simple precision float by the “xpu::vec4f” built-in type
which translates transparently simple operations on floating-
point into SIMD operations on four floats simultaneously.
This instruction-level parallelism is implemented on top of
x86 SSE streaming intrinsics and may be extended in future
works to support other SIMD extensions such as AVX or
Altivec. We note that data should be aligned in memory to
make vectorization efficient. This can be performed through
the XPU's aligned allocator which is compatible with
standard C++ STL containers.

Vectorization has been used in MTI, COR, DBF and PC
tasks. Figure 12 shows that instruction-level parallelism can
be a great parallelism multiplier for data parallel tasks such
as MTI and COR where the same operation is performed on
large vectors of samples. We note that SIMD impact vary

depending on the workload size implying both data size and
computing load: the vectorized COR code performs 10 times
faster than the original sequential code while the vectorized
MTI code achieve only about 20% execution speedup.

Figure 12. Thread-level and Instruction-level parallelization
effect on execution-times of MTI and COR for 64 Channels-Burst on 2 x

Intel Xeon E5620 2.4 GHz

2) Parallel loop

Instruction-level parallelism offers limited scalability
since SIMD may take advantage of processor frequency
increasing but cannot benefit from processor count
increasing without thread-level parallelism. Parallel loop
implements data parallelism at thread-level and provides
good scalability on multicore architectures. We use XPU's
“parallel_for” execution pattern in conjunction with
vectorization to parallelize several tasks. The XPU's
“parallel_for” construct adapts dynamically to the underlying
architecture to exploit all available processors.

Figure 13 shows an example of parallel for
implementation to perform simultaneously several FFT on
several pulses (pulse: a set of samples). The “parallel_for”
construct has been used to parallelize MTI, COR, DBF, DOP
and PC tasks. The vectorized code has been reused in the
parallel loops. Figure 12 depicts a significant speedup in
comparison with the initial serial version: the parallelized
COR version runs about 48 times faster than the original
sequential version and 5 times faster than the vectorized
version on the bi-processor 16 Threads SMP platform.

Figure 13. A simplified example of parallel for loop use in the
PC task.

1 int fft(int from, int to, int step, float ** pulses)
2 {
3 for (int i=from; i<to; i+=step)
4 cplx_fft(pulses[i]);
5 }
6
7 void pc(float ** pulses, int pulse_count)
8 {
9 task fft_t(fft, 0,0,0, pulses);
10 parallel_for p(0, pulse_count, 1, &fft_t);
11 p.run();
12 }

3) Performances

As shown in Figure 14, after parallelizing the most time-
consuming blocks of our processing chain at thread and
instruction-level, the over-all processing time of a 64
channels-burst on the dual Intel Xeon E5620 platform
dropped from 6.9 seconds (initial sequential version) to
0.045 second (in the worst case) for the parallel version as
depicted Figure 15. The 64 channels configuration does not
satisfies the real-time requirement (20 ms in the worst case).
However, we are able to process input data in real-time in the
32,16 and 8 channels configurations on the same platform.

With a maximum TDP of 160 Watts, the first platform
may not be embeddable due to potential energetic
constraints. Thus, a platform based on one Core i7 Q720
with a maximum TDP of 45 Watts may be more suitable. We
executed our application on this platform. Figure 15 shows
that our application run twice as slow as on the SMP
platform. Consequently the 32 channels configuration does
not allow real-time processing on that platform. However,
real-time processing can be performed in the 8 and 16
channels configurations.

As shown in figure 14 and 15, the current application
displays a good scalability. We believe that real-time
processing in all our four configurations may be achieved on
faster platforms with more processing cores and higher clock
frequency.

Figure 14. Execution time achieved by the parallelized version
for 8,16,32 and 64 channels-burst on 2 x Intel Xeon E5620 2.4 GHz

Figure 15. Execution time achieved by the parallelized version
for 8,16,32 and 64 Channels-burst on an Intel Core i7 Q720 1.6 GHz

Figure 16. Overview of the final program architecture and code
(details of the code have been omitted for clarity).

Figure 17. Execution configuration of three-stages-pipeline
processing three consecutive bursts

As we have seen, data parallelism can offer significant
execution speedup especially when coupled with task
parallelism. However, available parallelism may be limited
by producer-consumer dependencies between tasks. In this
case, temporal parallelism (a.k.a. pipeline parallelism) can be
a very useful parallelism multiplier.

G. Pipeline Parallelism

At the opposite or serial execution pattern where all tasks
are executed sequentially, pipeline exploits the available
parallelism by executing simultaneously all its processing
stages and serializing only the dependent activities. This
allows potential throughput improvement especially in the
case of applications involving real-time continuous stream
processing such as in our case.

In our application, a single burst must be processed by the
different tasks in the specified order to preserve data
coherency: these tasks are acting as a consumer-producer
chain. However, multiple independent bursts can be
processed simultaneously by different processing stages
without violating the producer-consumer dependencies as
shown in Figure 17.

We use the “pipeline” execution pattern of XPU to
implement a pipeline execution configuration. As illustrated
in Figure 16, we regroup our tasks into three processing
stages:

• Stage 1 holds MTI, SEL, COR, INV and CTR
tasks. We note that the “parallel” construct specifies

parallelism between MTI and the other four tasks
which are executed sequentially. In addition, we use
two “parallel_for” loops in MTI and COR in
conjunction with vectorization.

• Stage 2 contains the parallel version of DBF : a
“parallel_for” loop enables parallel processing of
different channels.

• Stage 3 is composed of DOP and PC tasks. Both of
them uses “parallel_for” loops to process
simultaneously several beams.

This task regrouping pattern aims to load-balance the
pipeline stages. A FIFO (First In First Out) queue ensure data
transfer between different stages. The FIFO sizes are limited
by the available memory and may have a non-negligible
impact on the achieved performances.

Figure 17 illustrates how the three stages of the pipeline
can process simultaneously three different bursts without
violating producer-consumer dependencies. The different
stages may be executed differently depending on the
workload of each stage however stage’s ordering is
preserved for each received burst.

As shown in Figure 18, pipeline parallelism allows real-
time processing in all our four configurations on the 8
threads platform (Intel Core i7 Q720). By observing the load
of the different processor's cores when executing the
application as well as the achieved execution times, we can
conclude that the pipeline-based version exploits the
computing resources more efficiently than the previous
parallel version.

Figure 18. Worst and best execution time of the parallel version
with pipeline parallelism version execution for 8,16,32 and 64 Channels-

Burst on the Intel Core i7 Q720 1.6 GHz (8 Threads)

V. CONCLUSION

As we have seen previously, we parallelized our target
application progressively by expressing several parallelism
types at different granularity levels starting from coarse grain
tasks to finer grain ones. Use of both task, temporal and data
parallelism allowed us to extract a significant amount of
parallelism and to achieve high performance and good

scalability. We outline the programmability of the XPU
framework which enables programmer to easily express
several types of parallelism at all levels of granularity at the
cost of a little amount of parallelism related extra-code and
in the same time, by enabling him to reuse most of the legacy
sequential code without significant alteration. This
programmability can improve significantly programmer's
productivity.

By easing parallelism expression on general purpose
multicore architectures such as the x86 architecture, many
real-time digital signal processing applications are likely to
be implemented efficiently on such architectures making
them an attractive alternative to expensive specialized
processing architectures such as FPGA and DSP based
platforms.

REFERENCES

[1] N. Khammassi, J.C. Le Lann, J.P. Diguet and A. Skrzyniarz,
“MHPM: Multi-Scale Hybrid Programming Model: A Flexible
Parallelization Methodology”, HPCC '12 Proceedings of the 2012
IEEE 14th International Conference on High Performance Computing
and Communication, 71-80, Liverpool UK, June 2012

[2] G. Blake, R. G. Dreslinski and T. Mudge, “A Survey of Multicore
Processors”, IEEE Signal Processing , vol. 26, n. 6, pp. 26-37
November 2009

[3] L. J. Karam, I. Alkamal, Alan Gatherer, G. A. Frantz, D. V. Anderson
and B. L. Evans, “Trends in Multicore DSP platforms”, IEEE Signal
Processing , vol. 26, n. 6, pp 38-49, November 2009

[4] W. Wolf, “Multiprocessor System-on-Chip Technology”, IEEE
Signal Processing vol. 26, n. 6, November 2009

[5] H.Park, H. Oh and S. Ha “Multiprocessor SoC Design Methods and
Tools”, IEEE Signal Processing vol. 26, n. 6, November 2009

[6] H. Singh, “Introspective C++”, Thesis, Virginia Polytechnic Institute,
2004H. Singh, “Introspective C++”, Thesis, Virginia Polytechnic
Institute, 2004

[7] M. D. McCool, "Structured Parallel Programming with Deterministic
Patterns", HotPar'10 Proceedings of the 2nd USENIX conference on
Hot topics in parallelism, 2010

[8] IJ. Koskinen, “Meta-programming in C++”, March 9, 2004

[9] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A
Language for Streaming Applications. In CC ’02. Springer- Verlag.

[10] M. Aldinucci and M. Danelutto, “Skeleton-based parallel
programming: Functional and parallel semantics in a single shot”,
Comput. Lang. Syst. Struct., 33(3-4). 2007, pp. 179-192

[11] M. Cole, “ Algorithmic Skeletons: structured management of parallel
computations”, Pitman/MIT Press, 1989

[12] M. Cole, “Bringing Skeleton out of the closet: a pragmatic manifesto
for skeletal parallel programming”, Parallel Computing , 30(3), pp.
389-406, March 2004

[13] E. C. Reed, N. Chen and R. E. Johnson, “Expressing pipeline
parallelism using TBB constructs: a case study on what works and
what doesn't”, Proceeding SPLASH '11 Workshops Proceedings of
the compilation of the co-located workshops on DSM'11, TMC'11,
AGERE!'11, AOOPES'11, NEAT'11, & VMIL'11 Pages 133-138,
2001

[14] S. Macdonald, D. Szafron and J. Schaeffer,“Rethinking the pipeline
as object–oriented states with transformations”, 9th International
Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS’2004) at IPDPS, 2004

[15] C. Deloatch, “Pipeline Parallelsim”

[16] XPU Framework, “http://www.xpu-project.net/”

[17] Horacio González-Vélez and Mario Leyton "A survey of algorithmic
skeleton frameworks: high-level structured parallel programming

enablers" Software: Practice and Experience Volume 40, Issue 12,
pages 1135-1160, November/December 2010.

[18] D. Lin, X. Huang, Q. Nguyen, J. Blackburn, C. Rodrigues, T. Huang,
M. N. Do, S. J. Patel and W. W. Hwu, “The Parallelization Of Video
Processing”, IEEE Signal Processing , vol. 26, n. 6, pp 38-49,
November 2009

[19] Hahn Kim and Robert Bond, “Multicore Software Technologies”,
IEEE Signal Processing, vol. 26, no. 6, pp. 80-89

[20] S. T. Klein and Y. Wiseman, “Parallel Huffman Decoding”,
Proceeding DCC '00 Proceedings of the Conference on Data
Compression IEEE Computer Society Washington, DC, USA 2000

[21] J. Kepner and J. Lebak, “Software technologies for high-performance
parallel signal processing”, Lincoln Lab. J., vol. 14, no. 2, pp. 181-
198, 2003

[22] “Intel Core i7-720QM”, http://ark.intel.com/products/43122/

[23] “Intel Xeon E5620”, http://ark.intel.com/products/47925/

[24] “FFTW Library”, http://www.fftw.org/

	I. Introduction
	II. XPU Overview
	III. Task-Based Parallel Execution Patterns
	A. Task definition
	B. Task parallelism
	C. Data Parallelism
	1) Parallel loop
	2) Vectorization

	D. Temporal parallelism : Pipeline

	IV. Study Case study : real-time Radar Signal Processing
	A. Algorithm overview
	B. Experimental Setup
	1) Hardware Setup
	2) Software Setup

	C. Serial Execution
	D. Parallelization Methodology
	E. Task Parallelism Extraction
	F. Data Parallelism
	1) Vectorization
	2) Parallel loop
	3) Performances

	G. Pipeline Parallelism

	V. Conclusion

