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Abstract: Data warehouses are subject oriented, consolidated, integrated, and time variant repository of 

possibly heterogeneous data. A data warehouse is used to response to on-line analytical queries over the 

millions records of data in an acceptable time. Since a data warehouse often has millions of records of data, it 

is an important challenge how we can reduce the time of on-line analytical processing. One of the most 

important issues which address this problem is the view materialization. Each sub-query results an 

intermediate table, called virtual view, which is used to find final result of the analytical query. These virtual 

views often are commonly used to response to several analytical queries. We can materialize such views to 

prevent multiple redundant computations and thus lead to reduction in response time of queries. The 

constraint of storage memory on one hand, and the maintenance cost of materialized views when the source 

data are updated on the other hand, cause that it is impossible to materialize all or even large part of views. 

Therefore, selection of a proper set of views to materialization plays a major role in performance. There are 

many methods of view selection to materialization which uses different techniques and frameworks to select 

optimal set of views to materialization. In this paper, we present a new efficient method to conduct selecting 

proper set of views to materialization using a frequent itemset mining approach. In our algorithm, the set of 

given queries is transformed to a transaction database where a transaction corresponds to a query and items 

of a transaction are the original query’s predicates. Our performance study showed that this algorithm 

outperformed substantially the best former algorithms.  
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1. Introduction 

A data warehouse is a collection of heterogeneous and distributed data which are collected from different 

data source into an integrated framework. Data warehouse, which define as a subject oriented, integrated, 

non-volatile and time variant collection of multiple data, provides an appropriate platform for On-Line 

Analytical Processing (OLAP) [1]. View materialization is a widely used strategy data warehouses to improve 

the analytical query processing performance. Since access to a materialized view is faster than computing 

the view on demand, using materialized view can speed up the analytical query processing in a data 

warehouse. So it will be desirable if we can materialize all the views of a data warehouse. However there are 

two major reasons which make it impossible: first limitation of storage space that causes all materialized 

views cannot be stored. Materialized views consume a large amount of disk space and the available practical 

disk space does not allow materializing all views. Second, maintenance of materialized views in case of 
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updating original base relations will be very expensive because when a base table changes, we should refresh 

all affected materialized views. Therefore we should select part of views to materialize. In order to acquire a 

quick response to analytical queries, selection of the proper set of views to materialize in the data 

warehouse is essential.  

There are several cost metrics associated with the materialized views selection problem that should be 

addressed by proposed view selection methods. A proper view selection algorithm usually should consider 

the query execution frequencies, base relation update frequencies, query access costs, view maintenance 

costs and the system’s storage space constraints as the most important issues related to selected set of 

materialized view.  

Proposed materialized view selection methods often have used a special framework which had considered 

some or all these metrics. There are two main steps in a materialized view selection frameworks: in the first 

step, the method should find the candidate views for materialization. View selection methods usually use a 

Directed Acyclic Graph (DAG) of queries to obtain the candidate views in this step. This DAG represents the 

dependence relation of queries and is used to detect common sub-expressions between different queries. 

The most commonly used DAGs for materialized view selection are: AND/OR view graph, Multiple View 

Processing Plan (MVPP), and data cube lattice. Other identification techniques such as syntactical analysis of 

the workload and query rewriting also can be employed instead of multi queries DAGs which have been used 

by fewer view selection methods. In the second step, the view selection method constructs the set of views to 

materialize under the resource constraints, including storage space constraint and view maintenance cost 

constraint, using a heuristic algorithm. The most well-known algorithms have been proposed in the 

literature to solve the view selection problem, can be classified into four categories: deterministic algorithms, 

randomized algorithms, hybrid algorithms, and constraint programming.  

As the main contributions of this paper, a new view selection method is developed which introduce a novel 

framework based on frequent itemset mining techniques to select the optimal set of views to materialize, 

such that, the sum of materialization cost and maintenance has been minimized. 

The remaining of the paper is organized as follows: In Section 2, we discuss the existing studies related to 

the view selection for materialization methods. We represent our new view selection method and its 

algorithm in Section 3 and conduct experimental study in Section 4. Finally we conclude the study in Section 

5. 

2. Related Works 

The Multiple View Processing Plan (MVPP) is a directed acyclic graph which presents the processing plan 

of a set of analytical queries. The MVPP based algorithms are one of the important attempts to address the 

view selection problem in data warehouses. A heuristic algorithm has been developed based on MVPP in [2], 

which find a solution based on individual optimal query plans. A new approach for materialized view 

selection based on candidate selection and enumeration techniques is presented in [3] that selects 

materialized views and indexes by searching over the reduced space of candidate materialized views at a 

fraction of enumeration cost. Use of evolutionary algorithms is another approach to materialized view 

selection based on multiple global processing plans of queries. Zhang et al. presented an evolutionary 

algorithm and combined with heuristic algorithm to preserve gains of both methods and attain better 

performance than them [4]. View Relevance Driven Selection (VRDS) algorithm has been developed to 

minimize total processing cost including query processing and view maintenance cost by selecting best 

views for materialization [5]. This algorithm performed better than greedy algorithms, which are focused 

mainly on updates, and MVPP based heuristic algorithms, which are concentrated only on materialized view 

features. 
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A general AND-OR view graph was considered in [6] and some greedy polynomial-time heuristics for 

selecting materialized views to optimize total query response time under a disk space constraint were 

represented. Another view selection under disk space constraint has been presented in [7] which is used A* 

algorithm to find optimal solution when the disk space is low. ASVMRT (Algorithm for Selection of Views to 

Materialize using Reduced Table) used the clustering methods to reduce tables in the data warehouse based 

on attribute-values density and considered the combination of reduced tables as materialized views instead 

of a combination of the original tables [8]. Faster computation time, reduced storage space, and better 

performance than former algorithms were reported advantages of this algorithm, however maintenance of 

reduced table was not considered in the work. Also in [9], a framework for materialized view selection has 

been proposed that exploits clustering to determine clusters of similar queries. This strategy shares the 

storage space between indexes and views.  

Reference [10] proposed a two phase optimization method which was a combination of simulated 

annealing and iterative improvement, with the use of MVPP and addressed the tradeoff between 

performance and view maintenance. Another using of simulated annealing for materialized view selection 

has been proposed in [11] in which a parallel simulated annealing algorithm selecting views from an input 

MVPP. Although the combination of parallel simulated annealing and MVPP has been resulted in increasing 

the quality of obtained set of materialized views and improving the query processing time and decreasing 

view maintenance cost, it trapped to local minimum in some cases.  

Since the frequency of access to a view is not constant over the processing time, the performance of static 

view selection methods can be deteriorated. Dynamic view selection methods attempted to overcome this 

problem. EMVSDIA (Efficient Materialized View Selection Dynamic Improvement Algorithm) is a two step 

algorithm that has been discussed in [12]. This algorithm dynamically adjusted the set of selected views in 

case of the reduction of efficiency, by substituting views which own large query probability. Another dynamic 

approach to view selection has been proposed in [13] which have determined the existing materialized 

views that are affected by adding new queries rather than all existing resources and so have re-optimized 

MVPP and have improve the total query processing cost of it. Also a two-phase optimization algorithm have 

been proposed in [13] which have reduced the sum of query processing costs and materialized view 

maintenance costs. 

Reference [14] has used merging of incoming query as the global common sub-expressions of the 

previous merging to avoid a huge search space which some combination would not be considered. Since the 

global optimization is not acquired in this method, they rewrote some queries by using common 

sub-expression among queries to gain more optimal query processing cost.  

 Recently, a novel approach has been represented to deal with materialized view selection problem. 

Frequent pattern mining techniques have been used to address this problem [15]-[17]. One of the important 

problems in data mining is discovering frequent patterns from transaction databases, where each transaction 

has a set of items. Extraction of frequent patterns plays an essential role in numerous applications. Since 

several efficient methods have been proposed recently for frequent pattern mining [18]-[20], using this 

approach could be a proper solution to overcome the materialized view selection problem. 

3. View Selection Method 

In this section, we represent our materialized view selection method which is constructed based on 

frequent itemset mining techniques. First we describe how we can model the materialized view selection 

problem as the input for frequent itemset mining environment and extracting the proper set of selecting 

views corresponding to extracted frequent itemsets. Then we represent our MVFI algorithm.  

3.1. Mining Technique for Materialized View Selection 
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Frequent itemset mining is a type of pattern mining which operates on transactional databases’ log and 

extracts the itemsets which their frequency aren’t less than a user defined minimum support threshold, called 

minsup. We can use frequent itemset mining to determine the most common sub-expression in queries of a 

data warehouse and so address one of the most important factors of selecting materialized views i.e. query 

execution frequencies. In this subsection, we first represent a model to map the query processing space of a 

data warehouse to a transaction database. Then we explain how we can mine the frequent itemsets of this 

transaction database, and how these extracted frequent itemset help us to determine more frequently used 

views of the corresponding data warehouse which should be select to materialize. Note that, there are other 

important issues related to selected set of materialized view such as original base relation update 

frequencies and view maintenance costs which effect on the view selection process which can be considered 

as future works.  

Let Q={Q1, Q2, …, Qn} be the set of queries of the data warehouse which are operating on a set of relation, 

called R={R1, R2, …, Rm}. We want to select a proper set M of views to materialized from the set of all possible 

views, called V={V1, V2, …, Vk}, where the amount of required storage space of view Vi is shown by Si, for each 

1≤i≤k. Given the storage space S, the sum of the required space of selecting views should not be larger than S. 

Suppose A={A1, …, Ab} be the set of the all dimensions which are used in the relations of data warehouse such 

that each relation Ri(1≤i≤m) include a number of dimensions. It is obvious that each query Qj(1≤j≤n) are working 

on some relations and are selecting some dimension of those tables. On the other hand, we can optimize each of 

our query using equation ))(())(()( 2121 2121
RRRR PPPP   

, in which, R1 and R2 are two base 

relations, and P1 and P2 are the predicates on relations’ individual attributes respectively.  Therefore, we can 

transform all of our queries to a normal form in which, all the “select” operators directly operates on based 

relations, and the “join” operators work on the select’s results. The set of all predicates on the relation Ri (1≤i≤m) 

can be displayed as Pi={P(i, 1), P(i, 2), …,p(i, mi)}, in which, P(i, j) means the jth predicate of relation Ri, and mi is 

the number of predicates on the relation Ri in all queries of Q. For illustration, consider an example in which we 

have a data warehouse with 3 relations R1(A1, A2, A3, A4, M1) and R2(A4, A5, A6, M2, M3) and R3(A6, A7, A8, A9, 

M4), where “Ai”s are relations’ dimensions and “Mi”s are relations’ measurements.  

If a query includes several relations which are joined together and several predicates which are operates 

on the join result, then the normalized form of query includes several sub-queries, each of which include on 

relation and some predicates on that relation such that joining of these sub-queries constructs the main 

normalized query. Fig. 1 shows an example query on our sample relations and optimized of the query. 

 

 
Fig. 1. An example of optimizing a query. 

 

Since several queries may be answered by a data warehouse, we can extract all sub-queries on each 

individual relation and construct set Pi corresponding to relation Ri. Now, or framework is ready to operating 

Journal of Computers

143 Volume 11, Number 2, March 2016



  

frequent itemset mining techniques. 

Consider an example in which there are five predicates on relation Ri, namely, P(i, 1), P(i, 2), P(i, 3), P(i, 4), 

and P(i, 5). It is obvious that different combinations of these predicate may be used in different sub-queries 

which can contain one, two, three, four, or all of these five predicates. The search space of the predicates of 

relation Ri has been demonstrated in Fig. 2. This a horizontal search tree for frequent itemset mining.  

Using the apriori principle, we can prune this search tree based on an appropriate minsup. Our minsup 

can be determined based on the accessible storage space and the average required space of sub-queries 

(views). Based on apriori principle, a super pattern of an infrequent pattern is not frequent. Hence, if a node 

of tree is not frequent, then that node and all children will be pruned. For example, infrequency of node {P(i, 

1), P(i, 3)} of the search tree of Fig. 2 means that the number of queries which use sub-query [Select * From 

Ri Where P(i,1) and P(i,3)], is not enough (is not equal or more than minsup) to convince us to materialize 

corresponding view of this sub-query. Therefore, we do not need to continue investigating nodes P(i, 1), P(i, 

3), P(i,4)}, {P(i, 1), P(i, 3), P(i, 5)}, and {P(i, 1), P(i, 3), P(i, 4), P(i, 5)}. 

Similarly, an individual search tree can be constructed corresponding to each of relations of the set R. Our 

frequent itemset mining method extracts the more frequently accessed views using a two phase mining 

approach. In the first phase, the access frequency of relations is determined and normalized as a number 

between 0 and 1. For example, suppose that there are four relations in a data warehouse, where relation R1 is 

accessed 27 times by queries (e. g. 3 different queries each of them executed 9 times) and relations R2, R3, 

and R4 are accessed 31, 19, and 28 times, respectively. The number of all access to relations is 

27+31+19+28=105 and the normalized access frequencies to relations are 27/105, 31/105, 19/105, and 

28/105 respectively. In the second phase, we construct the search tree of the predicates of each relation and 

mine it with its individual minsup, which is calculated by multiplying the general minsup and the relation’s 

normalized access frequency.  
 

 

Fig. 2. The horizontal tree for frequent itemset mining. 

 

3.2. Algorithm 

In this section, we represent the algorithm of our Materialized Views selection based on Frequent Itemset 

mining (MVFI) and describe its operation. We first have pruned the set of candidate views (set of predicates) 

and exclude the predicates which the result of operating them on their corresponding relation is larger than 

the available storage space (S). Therefore the input set P for the first call of MVFI includes only predicates 

which their corresponding views will be fit in the system’s storage space.     
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Fig. 3 shows the Materialized Views selection based on Frequent Itemset mining (MVFI) algorithm. 

Input parameters of this algorithm include R, the set of all relations of data warehouse, m, the number of 

members of R which is the number of data warehouse’s relations, AF, an array containing normalized access 

frequencies of relations of R, P, a set with m members each of which is a set of predicates related to 

corresponding member of R, and minsup, the minimum support threshold to extract frequent patterns.  

For each relation of R, the MVFI algorithm calculates the corresponding minsup and call the procedure 

MaterializedViewMining to extract the most frequently used views which are related to that relation and its 

predicates considering the systems storage space and added the extracted view set V, which is the initial set 

of candidate materialized views. Since for each relation of R, MVFI extracts its frequently used views 

assuming use of all storage space, a final selection procedure is required to select best candidate views of all 

relations. ViewSelection is the procedure which does this operation and eliminates not qualified views from 

V. The Refined V is the final solution. Fig. 4 shows the MaterializedViewMining algorithm. 

MaterializedViewMining is a recursive algorithm which is mine the candidate views search tree. This 

algorithm is constructed from two main parts. In the first part (in the main if block of algorithm), the 

algorithm check if selected views of V exceeding limitation of space. In the second part, the view is inserted 

to output set. Then, the node is expanded and its children are created and each child is called recursively. 
 

 

Fig. 3. MVFI algorithm. 
 

 

Fig. 4. Materialized view mining algorithm. 
 

4. Experimental Results 

In this section, we study the performance of the proposed algorithm. All our experiments were performed 
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on a computer with a 2 GHz core i3 CPU, 4 GB RAM and 500 GB hard disk. All the reported runtime include 

both computation time and IO time. ARMMVVM [16] is the most recent materialized view selection 

algorithm and has already shown its better performance than other materialized view selection algorithms. 

So we only compared our algorithms with ARMMVVM algorithm. In [16], a new parameter GAIN MEASURE 

(GM) has been introduced to measure the gain from work load to the resultant queries.  

The gain measure of a view is computed as the sum of the saving in query cost for each view over 

answering from the base view. If a set D of views is chosen for materialization, the gain of D is the sum of the 

gain of all views in D. If D is a set of views that have already been selected for materialization, the gain of 

views is concerned with how materializing a view s improves the cost of computing other views, including it. 

Let C(s) be the cost of computing another view from s. C(s) is the number of records in s. The gain of s with 

respect to the D, G(s, D), is defined as follows: 

1) For each view s≤t, G(s) defined as G(s)= C(r)-C(t) when r is the least cost view in D such that s ≤r and 

C(t)<C(r). When C(t)≥C(r), then G(s) will be 0.    

2) G(s, D)= ∑S<r G(s)  

Precisely, for each view s that is a descendant of t, if computing s from s is cheaper that computing s from 

any other view in the set D, then pre computing t gains s.   

Using Gain Measure two approaches MVFI and ARMMVVM are compared and results are presented in Fig. 

5. We also use the data warehouse of [16] which has five dimension tables and one fact table, for this compare. 

Fig. 5 shows the result of running two algorithms MVFI and ARMMVVM on this data warehouse.  
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Fig. 5. The result of running algorithms on the data warehouse. 

 

Fig. 5 shows the comparison between the MVFI algorithm and ARMMVVM using the gain measure. It is 

found by experiments that the gain using the MVFI is more than ARMMVVM algorithm.  

5. Conclusion 

Data warehouses need to answer many managerial level, complex, and analytical queries which require 

advanced computing techniques and time consuming processes. Since the response time of such queries 

should be acceptable, intermediate or final result of some of these queries should be stored as materialized 

views. Storage space constraint and materialized views maintenance costs make it impossible to materialize 

all views of data warehouse. Therefore, we should select the optimal set of views which their materialization 

causes the most speed up in query response and the less cost to maintenance. Hence, the selection of views 

to materialize is one of the most important issues in designing and developing a data warehouse.  One of the 

major problems in materialized view selection is to determine query execution frequencies. The most 

common sub-expressions of queries makes the most frequently used views which should be materialized. A 

useful and appropriate way to address this problem is using frequent itemset mining approaches. In this 

paper, we presented a novel frequent itemset mining-based method to conduct materialized view selection 
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in data warehouses. Our experimental result showed that our algorithm achieved very appropriate 

efficiencies on various input datasets.  
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