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Abstract: Computer worms have infected millions of computers since 1980s. For an incident handler or a 

forensic investigator, it is important to know whether the worm attack to the network has been initiated 

from multiple different sources or just from one node. In this paper, we study the problem of predicting the 

number of infectious nodes at each step of worm propagation, when the spread of a homogeneous random 

scanning worm happens. Knowledge of the number of infectious nodes might be a help in reconstructing 

the worm attack scene and in identifying the origins of worm propagation.  

In our approach, we assume Susceptible-Infectious-Removed (SIR) model for worm propagation, and 

propose two complementary models, i.e. deterministic Back-to-Origin model and stochastic Back-to-Origin 

Markov model, to investigate the above problem. 

In our Back-to-Origin models, we run the time backwards. We assume that we have prior knowledge of 

worm infection propagation parameters of SIR model. We also assume to have a snapshot in which the 

number of susceptible, infectious and removed nodes is known. 

Our deterministic Back-to-Origin model, is a new SIR model, where we define a susceptibility rate 

parameter. The stochastic Back-to-Origin Markov model is constructed based on the 

Continuous-Time-Markov-Chain. The number of infectious nodes at each time of worm propagation is 

predicted with our stochastic Markov model.  

We applied simulations to study the accuracy of our models. In numerical experiments of our stochastic 

Back-to-Origin Markov model, we investigate the probabilistic number of infectious nodes. Comparing to 

other approaches, the method of this paper requires a little information and a little assumptions, while it 

gives useful results. 

 
Key words: Worm modeling, Back-to-Origin model, infection rate, susceptibility rate, 
Continuous-Time-Markov-Chain. 

 
 

1. Introduction 

Computer worms are malicious programs that self-propagate across networks and compromise 

vulnerable hosts and use them to attack other victims. Due to similar behavior of computer worms and 

infectious diseases, mathematical models of infectious diseases (both deterministic and stochastic) have 

been used to model computer worm propagation [1].  

Although worm propagation models have been studied widely, there are few studies that identify the 

origins of an outbreak or determine the number of initially infectious nodes or pinpoint the number of 

infectious nodes at each time point of worm propagation, given a snapshot in which the number of 

infectious and removed hosts are known. Current methods require many limiting assumptions. Xie et al. [2], 
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developed the Random Moonwalks algorithm to identify the origin of an epidemic and to reconstruct the 

initial flows of worm propagation. Zhu et al. [3] proposed a sample path based approach for detecting a 

single information source in a tree like network under the SIR model. Shah and Zaman [4] formalized the 

notion of rumor centrality and distance centrality for identifying the virus source in tree like and general 

networks under the SI model. In [5], a Minimum Description Length (MDL) principle is employed to identify 

the origin nodes and the propagation path of virus propagation under the SI model. It also determines the 

number of initially infectious nodes. They developed NetSleuth method. 

In this paper, we provide a study of the problem of estimating the size of worm origin and the size of 

infectious nodes at each time point of worm propagation backwards. We assume to have a snapshot in 

which we know the number of susceptible, infectious and removed nodes at an arbitrary time of worm 

propagation under the SIR model. We are interested in the modeling of worm propagation in reverse order.  

Although identifying the epidemic or information source has been studied in [3]-[7], but identifying the 

size of worm origin and the number of infectious nodes backwards in time haven’t been studied yet. 

Finding out the number of initial sources of worm propagation and the number of infectious nodes at each 

time, helps an investigator to guess the number of involved nodes at each time in cybercrime scene, and to 

understand whether one initial node or multiple initial sources might be involved in the attack.  

To achieve the above goals, we develop two models: deterministic Back-to-Origin model and stochastic 

Back-to-Origin Markov model for homogeneous random scanning worms. In stochastic Back-to-Origin 

model, we run time backwards. We assume to have the number of susceptible, infectious and removed 

nodes at a time snapshot. The time evolves in reverse order of worm propagation. To the best of our 

knowledge, we are the first to develop stochastic Back-to-Origin worm propagation model to estimate the 

number of origin infectious nodes. These models may further be used to identify the origin of worm 

propagation and to reconstruct worm propagation path probabilistically. This method is agnostic to 

algorithms that need the complete network flow or network topology. Table 1 gives a comparison of the 

assumptions in our model and the above mentioned methods. 

As shown in Table 1, our method does not require any prior knowledge about network topology. Our 

approach requires less storage space and less limiting assumptions in comparison with other proposed 

approaches in [3], [6]-[8] as it doesn’t deploy network topology and network flows. Our method does not 

make any assumptions about the initial condition of nodes in forward model. 

In this paper, we first develop a deterministic Back-to-Origin model. For this model, we define 

susceptibility rate. In this model, we determine the number of susceptible, infectious and removed nodes 

backwards in time. Second, we propose a stochastic Back-to-Origin Markov model. The Back-to-Origin 

process has Markov property, because the state of the system at past has no influence on the future, if 

present is specified. We assume to have the number of susceptible, infectious and removed nodes at an 

arbitrary snapshot of Back-to-Origin model. Here, we reformulate the above deterministic Back-to-Origin 

model based on the Continuous-Time-Markov-Chain and estimate the number of infectious nodes at each 

time of worm propagation backwards in time. 

Experiments on our deterministic Back-to-Origin model indicated that infection rate and susceptibility 

rate are almost equal when the time difference is small. We reliably predict the correct number of infectious 

nodes at each time point with our stochastic Back-to-Origin Markov model. 

The remainder of this paper is structured as follows. Section 2 presents prior works in worm propagation 

modeling. In Section 3, deterministic Back-to-Origin model is proposed. Section 3.2 uses simulations to 

verify this model. Section 4 provides our continuous time Back-to-Origin worm model. Section 4.2 uses 

numerical simulations to verify this model. Section 5 concludes the paper and points out future research 

directions in worm origin identification. 
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2. Related Works and Preliminaries 

Computer worms probe vulnerable hosts by different target discovery techniques. Worms are classified 

by their target discovery techniques to two classes: scan-based worms and topology-based worms [9]. 

Scan-based worms employ two target discovery techniques: random-scanning and localized-scanning. In 

random-scanning, worms seek targets randomly or through an ordered block, i.e. uniform scanning, hit-list 

scanning and routable scanning. In localized scanning, worms compromise IP addresses that are closer. 

They are classified to local preference scanning and local preference sequential scanning. 
 

Table 1. Our Stochastic Back-to-Origin Markov Model 
   Assumption   
Name 

Epidemic 
Models 

Snapshot information Infection network 
topology 

Knowledge 
of networks 

Infection 
rate 

Number of 
Originators 

Objectives 
 

Back-to-Origin 
model (our 
approach) 

SIR Number of Infectious, 
Removed and 

Susceptible nodes 

N.A. N.A. Employed Any 
Number 

No. of initial 
infectious 

Random 
Moonwalks [3] 

N.A. The whole 
communication 

network at all times 

Tree networks Employed  N.A. Single 
Origin 

The origin 
itself 

Sample Path-Based 
Approach [7] 

SIR Infective nodes at a 
snapshot 

Tree networks Neighborin
g nodes 

N.A. Single 
Origin 

The origin 
itself 

Rumor centrality 
and distance 
centrality [6] 

SI Infection network Regular Trees, 
General Trees and 
general graphs 

Employed N.A. Single 
Origin 

The origin 
itself 

NetSleuth [5] SI Infective nodes General graphs Employed N.A. Any 
Number 

The initial 
infectious 

 

The first complete mathematical model for the spread of infectious diseases was the deterministic 

general epidemic model, proposed by Kermack and Mckendrick [10]. In epidemiology study for internet 

worms, hosts have three states: Susceptible (denoted by S), Infectious (denoted by I), and Removed 

(denoted by R). A node is infected, if it is infectious or removed. This model is called SIR model [1], [11], as 

is defined by the following set of differential equations: 

( )
( ) ( )

( )
( ) ( ) ( )

( )
( )

dS t
I t S t

dt

dI t
I t S t I t

dt

dR t
I t

dt



 



 

 



                                 (1) 

  is the infection rate. It is the proportion of <infectious, susceptible> pairs that change the state of 

susceptible nodes to infectious state [1]. In other words, one infectious node infects ( )S t susceptible 

nodes at each time step (dt ), and the number of infective nodes increases as the proportion (  ) of 

contacts between infective and susceptible nodes at each time point: ( ) ( )I t S t . 

3. Deterministic Back-to-Origin Model 

3.1. The Model 

In general epidemic model, susceptible population becomes infectious with rate   and hosts are 

removed from infectious population with rate   and these hosts will stay in removed state forever. Now 

we form our Back-to-Origin model or worm-origination model. In this model, time runs backwards. As time 

progresses, removed hosts become infectious with rate B  and infectious hosts become susceptible with 
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rate 
B

 . In order to determine the number of final infectious nodes in this model, (these are initial 

infectious hosts in worm propagation model), prior knowledge of the number of initial infectious and 

removed nodes is necessary (these are final infectious and removed nodes in SIR model). 

Fig. 1 shows the simulation of SIR epidemic model. In this model, time flows forward. Simulation 

parameters are as follows: 0.9, 0.1, 100N    , where N is the total number of nodes. T is the 

equilibrium time. The playing-time duration of the simulation is 100 seconds. Once the worm propagation 

reaches equilibrium for the first time, the number of susceptible, infectious and removed nodes doesn't 

change with time, 0
dS dI dR

dt dt dt
   . 

Let us flip the diagram of Fig. 1 around its vertical axis (Fig. 2) and form a reflected diagram. Now we 

shift the reflected diagram (Fig. 2) horizontally, and add a constant to the time axis of it. This constant is 

time to equilibrium (In this example, 70T  ). The resulting diagram is our deterministic Back-to-Origin 

model, (Fig. 3), where  denotes the time running backwards in Back-to-Origin model and satisfies 

equation (2): 

,t T                     dt d                             (2) 

Consider B  and B  in Back-to-Origin model. We call B a s susceptibility rate and B as 

revive-ability rate. B  is the rate by which effective <infective, susceptible> pairs convert the infective to 

susceptible at each time unit. It is defined in equation (3). 

# of infectives that become susceptible by one susceptible

infected space
B                    (3) 

R removed nodes become infectious with rate B . At each time unit of our Back-to-Origin model, B  

removed nodes become infectious. Comparing 1 and Fig. 3, it is interesting to note that the number of 

susceptible nodes contaminated at time t in SIR diagram, is equal to the number of infectious nodes 

converted to susceptible at time   in Back-to-Origin diagram, and we have the following simple equation 

(4). 

( ) ( )

t T

dS t dS

dt d 



  

                                    (4) 

In SIR model, as the epidemic progresses in time t , the I  value increases and the value of S  

decreases, . In Back-to-Origin model, the progress of time   increases the S  value and decreases the 

value of I . 

In SIR epidemic model, each infective node contacts with susceptible nodes and these connections are 

selected with rate  . In our Back-to-Origin model, we assume that each susceptible node contacts 

infective nodes and restores them to susceptible with rate
B

 . Thus, ( )B I t  infective nodes become 

susceptible at each time by one susceptible node. Hence, the total number of susceptible nodes increases by 

the number of infective nodes that become susceptible, and ( ) ( )B I S   counts the result of restoration by 

susceptible nodes. We define our Back-to-Origin model by the following set of differential equations: 
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
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


 



  

  
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                            (5) 

dS

dt
 gives the slope of ( )S t  at time t and dS

dt
 gives the slope of ( )S   at time  . We consider time t

in SIR model and the corresponding time   in Back-to-Origin model. The slope of the curves in both 

models at corresponding times have equal absolute values. In this way, Back-to-Origin model is playing 

worm propagation model in reverse at corresponding times (t and  ).  

 

   

Fig. 1. Simple SIR epidemic 

diagram,         

Fig. 2. Reflecting SIR diagram in 

front of y axis. 

Fig. 3. Shifting the diagram of Fig. 

2, T units. Our Back-to-Origin 

model. 
 

Given the equations (4) and (5), we describe the relationship between  and 
B

 as follows: 

(1 ( ) )(1 ( ) )
B

t T
I t h S t h h






  
 


  

                             (6) 

where h is close to zero. As h  is very small, 
B

  is very close to  , but it is a negative value. 

From equation (6), we conclude that 
B

  is dependent on time. Because h  is close to zero, 

denominator of equation (6) is almost equal to one and thus 
B

  and   are almost equal. Therefore 

susceptibility rate and infection rate are very close values. This result is quite natural, since the rate at 

which susceptible hosts become infectious at each time unit is almost equal to the rate at which infectious 

nodes become susceptible at corresponding time of our Back-to-Origin model. 

3.2. Simulation 

We ran simulation experiments for homogeneous random scanning worms and simulated the 

propagation of a random scanning worm in VC++. We chose different values for infection and removed 

rates in each experiment. Simulations were run for 800 seconds, and each second is divided to 

DIVIDE_SECOND units. Here, SIR model has been adopted and verified for the propagation of computer 

worms, and we are only playing the film backwards. Here we report on experimental investigations of 

worm propagation. A susceptible host became infectious only by contacting with an infectious host with 

rate   (infection rate). Infectious host’s state turns to removed state with rate   (removal rate). We 

increased the number of initially infectious hosts from 1 to NUM ( NUM is the number of initial 

Time Backwards 
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susceptible hosts). Parameters used for our experiments are shown in Table 2. Here, we try to give an 

example to show that our model is correct. We use a numerical simulation to assess the correctness of our 

model. We try only 50 nodes to demonstrate its correctness and to avoid unnecessary complications. 

Counting the number of susceptible, infectious and removed nodes at each time step of worm 

propagation, we find differences between susceptible populations in two consecutive time steps. Let S

denote the difference between the number of susceptible nodes. We used equations (7) and (8) to estimate

  and 
B

 . 

( ) ( )

S
t

S t I t



                                        (7) 

( )

( ) ( )
B

S

S I




 


                                      (8) 

In this experiments, we used time steps 
DIVIDE SECOND

1
t     . Comparing   and 

B
  at different 

time steps of each simulation run, shows that time steps with smaller S values, causes smaller 

differences between  and 
B

 , because equation (5) holds when t approaches 0. We show average values 

of   and 
B

  in our experiments in Table 2. With higher scan rate values (i.e. scan_rate=5 ), the 

difference between   and 
B  increases, because equation (6) holds when t  approaches 0. 

 

Table 2. Parameter Values in Our Experiments 

scan_rate    t    B  

5 2 0.2 0.652165 0.868412 
0.5 0.2 0.1 0.223914 0.367704 
3 0.8 0.3 0.196648 0.221768 

 

4. Stochastic Back-to-Origin Markov Model 

4.1. The Model 

Consider our deterministic Back-to-Origin worm model with parameters , , , Bi s r  , where s  is the 

number of susceptible nodes, i  is the number of infective nodes and r  is the number of removed nodes 

at current time. 
B

  is the susceptibility rate. Define stochastic processes ( )I t  and ( )R t , the number of 

infective and removed nodes at time t . The process ( , ) {( ( ), ( )); 0}i r I t R t t   is a Markov process, 

because the state of the system at next time is only dependent on the current state of the system and not 

dependent on the previous state of the system. We consider Continuous-Time-Markov-Chain (CTMC) with 

the state ( ( ), ( )) ( , )I t R t i r . Then the transition rates at the state ( , )i r  in Back-to-Origin Markov model 

can be described as follows: 

A removed node becomes infectious, so the transition rate to the state ( 1, 1)i r   is given by: 

,i r B i                                        (9) 

An infectious node can be vulnerable with rate 
B

 . The transition rate to the state ( 1, )i r  is given by: 

, ( )i r B i N i r                                   (10) 
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The transition diagram is shown in Fig. 4. 
 

 
Fig. 4. Transition diagram for Stochastic Back-to-Origin Markov model. 

 

 
(a) 

 
Fig. 5. Probability distribution of the number of infective nodes at time t, (a) Experiment 1, (b) 

Experiment 2, (c) Experiment 3. 

 
 

Consider the probability, 

, Pr{ ( ) , ( ) }i rP I t i R t r    

, ( )i rP t is the probability that i nodes are infectious and r nodes are removed at time t . Using 

Equations (9) , (10), we obtain the following difference-differential equation: 

                (11) 
 

where, 
, , ,i r i r i r    . 

, 1, 1, 1, 1 1, 1 , ,( ) ( ) ( ) ( )i r i r i r i r i r i r i r

d
P t P t P t P t

dt
         
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Marginal distribution of 
, ( )i rP t averaging over r provides the probability distribution of ( )iP t , the 

probability that i nodes are infectious at time t . 

We calculated marginal distribution of 
, ( )i rP t averaging over r , applying equation (13). 

, ,

1, 1, 1

,

( ) ( )
( 1)( 1) ( ) ( 1) ( )

                                ( ( )) ( )

i r i r

B i r B i r

B B i r

P t t P t
i N i r P t i P t

t

N i r iP t

 

 

  

  
      



   

            (12) 

, 1, 1 1

, ,

( ) ( ( 1)( 1) ( ) ( 1) ( )

                    ( ( )) ( )) ( )

i r B i r B i r

B B i r i r

P t t i N i r P t i P t

N i r iP t t P t

 

 

          

     
                 (13) 

We provide a Matlab program to calculate differential equation (13) and marginal probability 

distribution of 

( )iP t as a function of time at time step t . For illustrative purposes, we chose different parameter 

values for , , , ,B Bi r t   . Table 3 lists the model parameters and their initial values. The plots (see Fig. 5) 

show the probability of the number of infective nodes at each time point. 

 

Table 3. Parameter Values in Our Experiments for Stochastic Back-to-Origin Markov Model 
#Experiment  N  t  

B  
B  _inf _init ected nodes  _ _init susc nodes  

1 50 0.1 0.06 0.5 2 1 
2 50 0.1 0.1 0.05 1 1 
3 50 0.1 0.6 0.05 1 1 

 

5. Concluding Remarks and Future Works 

In this paper, we studied predicting the number of infectious nodes, at different time of spreading a 

homogeneous random scanning worm. We developed two models: deterministic Back-to-Origin model and 

stochastic Back-to-Origin Markov model. Assuming the SIR model and using a snapshot in which we know 

the number of susceptible, infectious and removed nodes, we derive probability distributions to estimate 

the number of infectious nodes. These models help in quantifying the relationship between worm infection 

rate, the final size of epidemic and initial size of the infected population based on probability. To our 

knowledge, our Back-to-Origin models are the first of their kind presented in open literature. Compared 

with other methods that identify the origin or the number of initial nodes, our method requires to store less 

information about nodes and network and has less limiting assumptions. Other mentioned methods need to 

store network topology or network flows. Our method needs a snapshot in which we know the number of 

infectious and removed nodes and it needs to know the infection and removed parameters.  

We demonstrated through simulations that these models can be highly effective in estimating the size of 

worm origins. Experiment and analysis show that infection rate and susceptibility rate are almost equal 

parameters. Experiments show that our stochastic model predict the number of infectious nodes. These 

models does not need any prior knowledge about network topology. An open problem is how to identify 

the origin of worm propagation and to reconstruct worm propagation path with the help of the derived 

probability distribution, while assuming some practically collectable data. 
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