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Abstract: This paper evaluates the classification accuracy of personal identification by a classification 

scheme with feature extraction based on joint motions using only two-dimensional information. 

Experimental results show that the feature extraction based on joint motions can achieve moderate 

classification accuracy when feature vectors are constructed from only two-dimensional information in an 

image plane. In addition, the results include interesting knowledge: the classification accuracy is not 

degraded drastically even if a gait is measured from right in front. In the best case, the classification 

accuracy becomes 78.95% in the experiment and it is 75.44% in the worst case. 
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1. Introduction 

The acquisitions of personal properties based on image processing has become a very popular topic 

because these properties are very useful for several applications; they can be used to construct robust 

security systems, to analyze consumer behavior, etc. The most popular visual cue used for this purpose is 

the human face, which has enables prediction of the age, sex, emotion, etc. in recent studies. In addition to 

these applications, face images can be used for identification for passport control and at the entrances of 

secured buildings, where highly accurate classification is required. As described above, face images can 

provide a considerable amount of information with sufficient accuracy to obtain personal properties when 

face image are captured at high resolution. However, it is not practical to predict personal properties by 

only face images if they cannot be captured at sufficient resolution owing to the distance between the 

camera and the target. This situation often occurs in images captured at generic outdoor scenes. 

To solve this problem, different approaches that use the whole part of the human body have been 

proposed because the whole part of the human body can be obtained at moderate resolution, even if the 

cameras are far away from the target persons. A part-based representation [1], a biologically-inspired 

approach [2], and a HOG-based approach [3] are schemes based on this idea, which strongly depend on the 

appearance of the target humans. On the other hand, other schemes that use geometric measurements of 

the entire body have been also proposed. For example, [4] proposed gender prediction based on metrology 

of the entire body and a copula model to improve gender classification has been proposed in [5]. These 

schemes using geometric measurements achieve excellent accuracy but cannot be applied in most 

applications because specialized devices that are not used in actual environments are necessary to obtain 
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geometric measurements. 

In addition to the above schemes using the whole part of the human body, there are other approaches for 

analyzing personal properties; a gait analysis analyzes the human motion caused by walking. Many studies 

on kinematics using a gait analysis are published, and they can be applied to prediction of personal 

properties; for gender prediction, previous studies [6], [7], and [9] have achieved an accuracy of 96%, 94%, 

and 83%, respectively. For personal identification, existing schemes proposed in [7], [8], and [10] show 

82.5%, 72.50%, 87.5% classification accuracy, respectively. The image-based gait analysis in the above 

schemes is very useful for predicting personal properties because higher accuracy has been achieved 

without any specialized sensing devices. To improve the prediction accuracy of this type of schemes, the 

significant features of a gait for prediction should be determined. However, existing schemes tends to 

discuss about how to extract feature vectors from image and not to analyze the upper limit of classification 

accuracy when ideal joint positions are obtained. Therefore, we have shown the classification accuracy for 

gender prediction under ideal condition in [11]. 

The study [11] proposes gender prediction scheme based on joint motions, where a feature vector is 

extracted from three-dimensional coordinates corresponding to a walking period obtained from Microsoft 

Kinect v2 and a final classifier is constructed with the support vector machine. Experimental results using 

actual data obtained from 12 persons show that the proposed scheme can accurately predict gender of a 

target. This scheme is designed considering our basic idea about human’s gait: how to step forward when 

walking must be affected by skeletal structures according to their gender. The difference of skeletal 

structures according to individuals may less than the difference between men and women but the skeletal 

structures must not be the same for all humans. Therefore, we think our proposal [11] may show good 

performance for personal identification. To confirm this idea, this paper evaluates the accuracy of personal 

identification using the feature extraction scheme proposed in [11] with a multiclass classifier. In this 

evaluation, feature extraction using two-dimensional information obtained by projection onto a 

two-dimensional image plane is adopted. This projection simulates an image acquisition process of a 

generic camera, where three-dimensional information cannot remain. 

This paper is organized as follows. Section 2 explains the feature extraction scheme proposed in [11]. 

Section 3 shows how to construct feature vectors using two-dimensional information and experimental 

results using actual data obtained from twelve humans. Finally, Section 4 concludes this paper. 

2. Feature Extraction Based on Joint Motions 

The origin of the coordinates of the joint positions obtained by the Kinect v2 is the location of the Kinect 

v2 device itself. In order to make the joint positions independent from the distance between the target 

human and the Kinect v2 device, we use relative vector whose start point is the coordinates of joint 0 

described by the following equation:  

𝒒𝑖,𝑡 = 𝒑𝑖,𝑡 − 𝒑0,𝑡  (𝑖 = 1, 2, … , 24) 

                   = (𝑙𝑖,𝑡 − 𝑙0,𝑡 , 𝑚𝑖,𝑡 − 𝑚0,𝑡 , 𝑛𝑖,𝑡 − 𝑛0,𝑡)                            (1) 

=  𝑙′ 𝑖,𝑡 , 𝑚′
𝑖,𝑡 , 𝑛′

𝑖,𝑡             

 

where 𝑙′𝑖,𝑡 , 𝑚′𝑖,𝑡 , and 𝑛′𝑖,𝑡  are the x-, y-, and z-components of the vector 𝒒𝒊,𝒕, respectively. This coordinate 

transformation enables feature extraction that is not affected by the distance between the target human 

and the Kinect v2 device. Here, we would like to construct feature vectors by concatenating the obtained 

coordinates of the joint positions in the time series order. In order to create a feature vector that only 

includes the coordinates corresponding to one period of motion of a target human, a feature vector 𝒇𝒊 for 

joint 𝑖 should be constructed by the following equation:  
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𝒇𝑖 =  𝑙′ 𝑖,0, 𝑚′
𝑖,0, 𝑛′

𝑖,0, 𝑙′ 𝑖,1, 𝑚′
𝑖,1, 𝑛′

𝑖,1, …                             (2) 

 

In the rest of this paper, the following notation where 𝒒𝒊,𝒕 is used instead of 𝑙′𝑖,𝑡 , 𝑚′𝑖,𝑡 , 𝑛′𝑖,𝑡  is used to 

represent the same equation as Eq.2: 

 

𝒇𝑖 =  𝒒𝑖,0, 𝒒𝑖,1, 𝒒𝑖,2, …                                                                              (3) 

 

Here, this notation does not mean that 𝒇𝒊 has 𝒒𝒊,𝒕 as components. Note that this notation indicates that 

𝒇𝒊 is constructed by concatenating the components of 𝒒𝒊,𝒕 as in Eq.2.  

For normalization, the following two operations are applied to a raw feature vector obtained by the 

above processes. One is a process that expands the walking period of a signal to make it constant for 

different persons and the other is a process that inserts sample points for the expanded signal to make the 

number of sample points for the signal corresponding to the walking period constant. In this normalization, 

the position of a new sample 𝒒  can be computed by the following equation: 

𝒒 =
1

𝑑𝑙+𝑑𝑟
 𝑑𝑟 ∙ 𝒒𝒍 + 𝑑𝑙 ∙ 𝒒𝒓                                                                         (4) 

where 𝒒𝒍 and 𝒒𝒓 are the nearest samples on left and right sides, respectively. 𝑑𝑙  and 𝑑𝑟  represent the 

distances along the axis of the time direction from a new sample 𝒒  to samples 𝒒𝒍 and 𝒒𝒓, respectively. As 

shown in the equation, new sample points are generated by linear interpolation using the two nearest 

sample points of the extended signal. 

In the proposed scheme, this normalization is applied to all joints represented by 𝒒𝒊,𝒕 (𝑖 = 1, … , 24) to 

obtain a feature vector corresponding to each joint 𝑖. Therefore, the normalization in the proposed scheme 

can be represented by the following equation: 

𝒒 𝑖,𝑡 =
1

𝑑𝑙+𝑑𝑟
 𝑑𝑟 ∙ 𝒒

𝑖, 𝑡×
𝑁old
𝑁new

 
+ 𝑑𝑙 ∙ 𝒒

𝑖, 𝑡×
𝑁old
𝑁new

 +1
                        (5) 

where 𝑁old  and 𝑁new  are the numbers of samples before and after normalization, respectively. 𝑑𝑙  and 

𝑑𝑟  are computed by the following equations:  

 

𝑑l = 𝑡 ×  
𝑁old

𝑁new
−  

𝑁old

𝑁new
           (6) 

𝑑𝑟 = 𝑡 ×   
𝑁old

𝑁new
 + 1 −

𝑁old

𝑁new
         (7) 

 

Finally, a feature vector based on three-dimensional information is obtained by the following equation 

using 𝒒 𝒊,𝒕 obtained by the above operations: 

𝒇𝟑𝑫 =  𝒒 1,0, 𝒒 2,0, … , 𝒒 24,0, 𝒒 1,1, 𝒒 2,1, … , 𝒒 24,𝑁old
                       (8) 

 

where 𝑁old = 𝑁new − 1, and this notation indicates that the vector 𝒇𝟑𝑫 is constructed by concatenating 

the components of 𝒒𝒊,𝒕 as in Eq.2.  

After this feature extraction, the classifier is constructed by a linear support vector machine with 𝒇𝟑𝑫. 

Training and classification using actual data are detailed in the following section. 

3. Classification Accuracy for Personal Identification Using Two-Dimensional 
Information 
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Kinect can obtain three-dimensional information but a generic camera cannot. To evaluate the 

classification performance by the feature extraction scheme proposed in [11] when a generic camera that 

can only obtain two-dimensional information is used, it is necessary to measure the classification 

performance when feature vectors are constructed with only two-dimensional information. To simulate this 

condition, the three-dimensional coordinates are converted to the two-dimensional coordinates on an 

image plane considering image acquisition of a camera. In the rest of this section explains coordinate 

transformation from a three-dimensional space to a two-dimensional image plane, feature extraction using 

two-dimensional information, how to obtain actual data for evaluation, and classification accuracy. 

3.1. Coordinate Transformation to 2D Planes Simulating A Generic Camera 

Three-dimensional information obtained by the Kinect v2 is the coordinates as shown in Fig. 3. However, 

such information about three-dimensional locations cannot be obtained by a generic camera: it can only 

acquire the two-dimensional coordinates in an image plane. To obtain two-dimensional information that a 

generic camera can obtain, we apply coordinate transformation for the three-dimensional coordinates 

obtained from the Kinect v2 simulating image acquisition from a generic camera. In the field of image 

processing, a pinhole camera model and a perspective projection model are often adopted to model 

geometrical relations between a target object and an image on a plane of projection. In some cases, even 

lens models are used to represent such relations more accurately. These models can represent such 

geometrical relations strictly but needs several parameters such as the focal length, the distance between a 

camera and a target, etc. In this paper, such models are not adopted because the aim of this experiment is to 

evaluate the classification accuracy when depth information is removed that cannot be obtained from a 

generic camera. Therefore, the coordinate transformation described below is adopted. 

The coordinate transformation used in this evaluation can be depicted by Figs. 1 and 2. Fig. 1 shows a 

bird’s-eye view of a three-dimensional space and Fig. 2 is a view from the direction of the y-axis. As shown 

in Fig. 2, when a target is captured from a direction defined by 𝜃, an image corresponding to the target can 

be obtained by a orthogonal projection onto an image plane: the angle between the image plane and the 

x-axis is 𝜃. The two-dimensional coordinates obtained by the orthogonal projection is computed by the 

following equations:  

where (𝑣, 𝑤) means the two-dimensional coordinates in an image plane. 

 
𝑣 = 𝑥 cos 𝜃 − 𝑧 sin 𝜃

𝑤 = 𝑦
                                                                                 (9) 

3.2. How to Create Feature Vectors Using 2D Information 

When using the coordinate transformation described above, feature extraction using two-dimensional 

information can be executed by the following operations:  

1. coordinate transformation from the three-dimensional to the two-dimensional coordinates,  

2. computation of relative vector whose center is the pelvis, 

3. normalization, and  

4. generation of a two-dimensional feature vector f2D. 

Actually, considering implementation cost for this experiment, feature extraction is performed by the 

following order: 

1. computation of relative vector whose center is the pelvis, 

2. normalization, 

3. coordinate transformation from the three-dimensional to the two-dimensional coordinates, and 

4. generation of a two-dimensional feature vector 𝒇𝟐𝑫. 

5. The latter operations can be accepted: the classification accuracy is not affected by the order of these 
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operations and they are equivalent mathematically.  

The obtained feature vector 𝒇𝟐𝑫 described by the following equation is obtained: 

𝒇𝟐𝑫 =  𝑣1,0, 𝑤1,0, 𝑣, 𝑤2,0, … , 𝑣24,Nold
, 𝑤24,Nold

  

(10) 

where 𝑣𝑖,𝑗  and 𝑤𝑖,𝑗  are obtained by projecting a three-dimensional feature 𝒒 𝒊,𝒕 onto a two-dimensional 

plane corresponding to the exposure angle. 

              
Fig. 1. A bird’s-eye view of a three-dimensional space.      Fig. 2. A view from the direction of the y-axis. 

3.3. Acquisition of Actual Data for Evaluation 

An overview of the experimental environment is shown in Fig. 3. In this experiment, target humans walk 

along the z-axis, as depicted in Fig. 3, without any restriction on clothes and shoes. Six male and six female 

humans in their twenties participated in the experiment. After this experiment, we can obtain 

three-dimensional position of 25 joints for a target human by Microsoft Kinect v2. The training and testing 

samples consists of three-dimensional coordinates corresponding to a walking period extracted manually 

as shown in Fig. 4. After unreliable data are removed from these samples based on reliability provided by 

the Kinect v2 device, the number of samples including both training and testing samples become 231.  

3.4. Accuracy of Personal Identification 

The experimental results using actual data with a multiclass classifier constructed by liblinear [12] are 

shown in the Tables from 1 to 6. In these confusion matrices, the column and the row of the table show 

predicted and actual labels, respectively. Here, Table 1 shows the classification accuracy using 

three-dimensional information directly: this is measured as a reference. Tables 2, 3, 4, 5, and 6 are the 

classification accuracy when the exposure angles are 0, 45, -45, 90, and -90, respectively. The average 

classification accuracy are 76.32%, 78.95%, 75.44%, 77.19%, and 77.19%, respectively: the average 

accuracy is calculated by dividing the number of correctly detected samples by the number of whole 

samples. 

These results show that the average classification accuracy is the moderate value even when feature 

extraction uses only two-dimensional information. The average accuracy using two-dimensional 

information becomes nearly same as the accuracy by feature extraction with three-dimensional information. 

In the case of feature extraction using two-dimensional information, the accuracy depends on the exposure 

angle: -45 is the worst and 0 is the second worst. However, the accuracy is not degraded drastically in these 

cases. This results indicate that joint motions include enough information to discriminate individuals even if 
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the motion is captured from right in front, though it seems difficult to achieve accurate classification by gait 

in the condition. 

The average accuracy is moderate but the all of target cannot be classified accurately: the accuracy 

becomes 100% in the best case but it is only 45.45% in the worst case. The average accuracy can be 

improved to 91.03% that is better than other existing schemes if targets A, F, and K are removed from this 

experiments. By the results, the feature extraction scheme based on joint motions are capable to classify 

individual persons. To make the scheme more practical, it is indispensable to improve the scheme to deal 

with some targets that are not suitable for the scheme. 
 

    
Fig. 3. Experimental environment.        Fig. 4. Manual extraction of one walking period. 

 

Table 1. Confusion Matrix (3D Information)  

 

Table 2. Confusion Matrix (𝜃 = 0) 

 A B C D E F G H I J K L 

A 9 0 0 0 0 0 0 1 0 0 0 0 

B 0 8 0 0 0 0 0 0 0 0 0 0 

C 1 0 6 0 2 1 0 1 0 0 0 0 

D 0 2 0 12 0 0 0 0 0 0 0 0 

E 0 0 0 0 10 0 2 0 0 0 0 0 

F 2 0 0 0 0 7 0 0 0 0 0 0 

G 0 0 0 0 0 0 4 0 0 0 1 0 

H 3 2 0 0 0 0 0 4 0 0 4 0 

I 0 0 0 0 0 0 0 0 8 0 0 0 

J 0 0 0 0 0 0 0 0 0 5 0 0 

K 3 0 0 0 0 0 0 0 0 0 6 0 

L 0 0 0 0 0 0 0 0 0 3 0 8 

Accuracy (%) 52.94 80 100 100 83.33 87.5 66.67 87.5 100 62.5 54.54 100 

 A B C D E F G H I J K L 

A 9 0 0 0 0 0 0 0 0 0 0 0 

B 0 8 0 0 0 0 0 0 0 0 0 0 

C 1 0 6 0 2 1 0 0 0 0 0 0 

D 0 0 0 12 0 0 0 0 0 0 0 0 

E 0 0 0 0 10 0 2 0 0 0 0 0 

F 1 0 0 0 0 5 0 1 0 0 2 0 

G 0 0 0 0 0 0 4 0 0 0 1 0 

H 3 2 0 0 0 2 0 7 0 0 3 0 

I 0 0 0 0 0 0 0 0 8 0 0 0 

J 0 0 0 0 0 0 0 0 0 5 0 0 

K 3 0 0 0 0 0 0 0 0 0 5 0 

L 0 0 0 0 0 0 0 0 0 3 0 8 

Accuracy (%) 52.94 80 100 100 83.33 62.5 66.67 87.5 100 62.5 45.45 100 
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Table 3. Confusion Matrix (𝜃 = 45) 

 

Table 4. Confusion Matrix (𝜃 = −45) 

 A B C D E F G H I J K L 

A 9 0 0 0 0 0 1 0 0 0 0 0 

B 0 7 0 0 0 0 0 0 0 0 0 0 

C 0 1 5 0 2 0 1 0 0 0 0 0 

D 0 0 0 12 0 0 1 0 0 0 0 0 

E 0 0 1 0 10 0 0 0 0 0 1 0 

F 2 0 0 0 0 6 0 0 0 0 0 0 

G 0 0 0 0 0 0 3 0 0 0 0 0 

H 4 2 0 0 0 2 0 8 0 0 4 0 

I 0 0 0 0 0 0 0 0 8 0 1 0 

J 2 0 0 0 0 0 0 0 0 5 0 0 

K 0 0 0 0 0 0 0 0 0 0 5 0 

L 0 0 0 0 0 0 0 0 0 3 0 8 

Accuracy (%) 52.94 70 83.33 100 83.33 75.0 50 100 100 62.5 45.45 100 

 
 

Table 5. Confusion Matrix (𝜃 = 90) 

 A B C D E F G H I J K L 

A 9 0 0 0 0 0 1 0 0 0 1 0 

B 0 7 0 0 0 0 0 0 0 2 0 0 

C 0 1 6 0 1 0 1 0 0 0 0 0 

D 1 2 0 12 0 1 0 0 0 0 0 0 

E 0 0 0 0 11 0 0 0 0 0 0 0 

F 1 0 0 0 0 6 0 1 0 0 0 0 

G 0 0 0 0 0 0 4 0 0 0 0 0 

H 6 0 0 0 0 1 0 7 0 0 2 0 

I 0 0 0 0 0 0 0 0 8 0 2 0 

J 0 0 0 0 0 0 0 0 0 4 0 0 

K 0 0 0 0 0 0 0 0 0 0 6 0 

L 0 0 0 0 0 0 0 0 0 2 0 8 

Accuracy (%) 52.94 70 100 100 91.66 75.0 66.67 87.5 100 50 54.54 100 

 
 

Table 6. Confusion Matrix (𝜃 = −90) 

 A B C D E F G H I J K L 

A 9 0 0 0 0 0 1 0 0 0 1 0 

B 0 7 0 0 0 0 0 0 0 2 0 0 

C 0 1 6 0 1 0 1 0 0 0 0 0 

D 1 2 0 12 0 1 0 0 0 0 0 0 

E 0 0 0 0 11 0 0 0 0 0 0 0 

 A B C D E F G H I J K L 

A 9 0 0 0 0 0 0 0 0 0 1 0 

B 0 8 0 0 0 0 0 0 0 3 0 0 

C 0 0 6 0 1 0 2 0 0 0 0 0 

D 0 1 0 12 0 1 0 0 0 0 0 0 

E 0 0 0 0 11 0 0 0 0 0 0 0 

F 1 0 0 0 0 6 0 0 0 0 0 0 

G 0 0 0 0 0 0 4 0 0 0 0 0 

H 7 1 0 0 0 1 0 8 0 0 3 0 

I 0 0 0 0 0 0 0 0 8 0 1 0 

J 0 0 0 0 0 0 0 0 0 4 0 0 

K 0 0 0 0 0 0 0 0 0 0 6 0 

L 0 0 0 0 0 0 0 0 0 1 0 8 

Accuracy (%) 52.94 80 100 100 91.66 75.0 66.67 87.5 100 50 54.54 100 
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F 1 0 0 0 0 6 0 1 0 0 0 0 

G 6 0 0 0 0 0 4 0 0 0 0 0 

H 0 0 0 0 0 1 0 7 0 0 2 0 

I 0 0 0 0 0 0 0 0 8 0 2 0 

J 0 0 0 0 0 0 0 0 0 4 0 0 

K 0 0 0 0 0 0 0 0 0 0 6 0 

L 0 0 0 0 0 0 0 0 0 2 0 8 

Accuracy (%) 52.94 70 100 100 91.66 75.0 66.67 87.5 100 50 54.54 100 

 

4. Conclusion 

To obtain personal properties from gait becomes popular and some researches begin to try personal 

identification by gait. A primary approach for a gait analysis aims to construct a feature space from input 

images suitable for discrimination and to improve classification accuracy using machine learning schemes 

with the feature extraction. However, there are few researches show what is the most significant for a gait 

analysis considering a skeletal structure that might strongly relate to human’s gait. Considering this 

background, we made a hypothesis that joint motions might be different owing to skeletal structures and 

confirmed the hypothesis by evaluating classification performance of personal identification with feature 

extraction based on joint motions using actual data. In this evaluation, two-dimensional coordinates are 

generated from three-dimensional coordinates obtained from the Kinect v2 to simulate image acquisition of 

a generic camera. Experimental results show that the feature extraction based on joint motions can achieve 

moderate classification accuracy when feature vectors are constructed from only two-dimensional 

information in an image plane. In addition, the results include interesting knowledge: the classification 

accuracy is not degraded even if gait is measured from right in front. The average classification accuracy by 

the scheme was 78.95% but the proposed scheme can perfectly classify several targets in the best case. 

These results indicate that the proposed scheme can be improved when it is modified to treat some targets 

that are not currently suitable for the scheme. We will try to improve the classification accuracy for these 

targets in the future. 
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