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Abstract: This article proposes a new pedestrian model that precisely simulates the avoidance behavior so 

as to realize the pedestrians' walking action. For the design of the facility, the simulation is used as a means 

for predicting and analyzing the movement of pedestrians. However, most of the simulators focus on the flow 

of pedestrian but do not consider the movement of each pedestrian. As a result, conventional simulators are 

useful to simulate the phenomenon of macro level movement of pedestrian but are not useful to simulate the 

micro-level simulation. Therefore, we aim to implement the pedestrian flow simulator that enables us to 

observe each pedestrian behavior by using the Multi-Agent System. Research on pedestrian model began in 

the 1970s, but all models cannot simulate the behavior of the pedestrian individual well. Social Force Model, 

which is one of the typical pedestrian models, reproduces the behavior using the equation of motion by 

considering the mass point pedestrian. Accordingly, this model is effective in high-density state. By contrast, 

there is several problems in low-density state: the avoidance speed and trajectory. Hence, we propose a new 

model by introducing the concept of sub-goal and new force in order to solve this problem. Furthermore, the 

evaluation experiment shows that proposal model improves these problems.  
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1. Introduction 

The purpose of this study is to propose and verify a simulation model that faithfully reproduces pedestrian 

avoidance behavior with a view to implementing a simulator that embodies various characteristics of real 

pedestrians.  

Although pedestrian models have been studied since the 1970s, none of them can be said to adequately 

reproduce the behavior of individual pedestrians. Existing models of the behavior of individual pedestrians 

include cellular automaton models and virtual force models. A typical example of a cellular automaton model 

is the ASPF model developed by Toshiyuki Kaneda [1]. This model reproduces crowding phenomena at 

scramble intersections and commercial facilities by describing behavior based on 21 action rules. However, 

since this model considers a partitioned space, it limits the range of movements that can be expressed and is 

unable to reproduce the finer movements 

of pedestrians. On the other hand, models that assume virtual forces include Helbing et al.'s Social Force 

Model (hereinafter abbreviated as SFM) [2]. This model treats pedestrians as point masses and uses 

equations of motion to represent their behavior, allowing it to reproduce the characteristics of pedestrian 

groups in high-density conditions [3]. However, the individual pedestrians in this model are unable to avoid 

obstacles that are placed in their path, and when they do start to avoid objects, their distance from these 
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objects is less than what is observed in practice. The paths they follow after avoiding an object are also 

unnatural. Another problem is that pedestrians are unable to avoid one other under certain conditions when 

their paths cross. 

Therefore, in this article we propose a new model to resolve the issues of SFM. In Section 2 we describe 

SFM and its issues, and then in Section 3 we propose our new model. In Section 4, we describe a simulator 

that implements this method, and we present the results of evaluation tests performed using this simulator. 

These results are discussed in Section 5. 

2. Pedestrian Models 

 Previous Studies of Pedestrian Models 

The pedestrian models that have been proposed so far can be divided into micro-models that reproduce 

the behavior of individual pedestrians, and macro-models that aim to reproduce the overall flow of 

pedestrians. A variety of methods have been proposed for both model types. The leading pedestrian models 

are as follows: 

1. Network model (macro-model): The environment between a pedestrian's current location and 
destination is visualized in the form of a lattice-shaped pathway network, where rules that embodying 
the behavior of pedestrians are consulted in order to model their choice of path. Since a characteristic 
of this model is that the pedestrians have to move on the pathway network, it is not possible to 
reproduce detailed pedestrian movements. 

2. Fluid model (macro-model): The flow of pedestrians is treated as a continuous fluid, and the flow of 
traffic is represented using equations of motion and continuity. The characteristics of this model mean 
that it is unable to reproduce the movements of individual pedestrians but can reproduce the overall 
behavior of traffic flow. 

3. Cellular automaton model (micro-model): In this model, a space is represented by a number of cells. 
The movements at the next step are determined by consulting rules of movement based on the state of 
the surrounding cells. This model is easy to implement because the rules are simple, but it seems to 
produce results that are unnatural at the level of detailed human actions, so it cannot really be said to 
accurately reflect reality. 

4. Virtual force model (micro-model): This model represents pedestrians as being acted upon by 
virtual forces like electricity or magnetism. In this model, the path selections and other behaviors of 
pedestrians are not a reflection of their intentions, but their movements can be reproduced by 
considering the forces acting on pedestrians and obstacles. 

 

 Social Force Model (SFM) 

The social force model (SFM) belongs to category (4) in 2.1 and was proposed by Helbing et al. [2]. It has 

been shown that this model can reproduce situations with a high density of pedestrians [3]}. An overview of 

SFM is presented here. 

2.2.1. The three virtual forces of SFM 

A pedestrian is regarded as a point mass m. The movements of pedestrians are determined by solving the 

following motion equation (1) for each point mass to reproduce their accelerations and positions for the next 

step. 

 

𝑚
𝑑𝑣

𝑑𝑡
= 𝐹                                     (1) 

 
Furthermore, each point mass is assumed to be acted on by three forces. 

1. Attraction towards the destination: In general, a pedestrian will take the shortest route to a 
destination. To represent this movement, Equation (2) represents the forces acting on a pedestrian in 
terms of the direction vector (e⃗ ) from the current location to the destination, the pedestrian's ideal 
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walking speed (V), and the pedestrian's current walking speed (v⃗ ). Here, τ is a characteristic parameter 
of the pedestrian. A smaller value of τ means that the force acting towards the destination is larger, and 
a smaller value of τ means that the other forces acting on the pedestrian have larger effects, thus 
making the pedestrian more susceptible to effects from the environment.  

 

𝐹𝑔 =
Ve⃗ (t) − v⃗ (t)

τ
                                                                     (2) 

 

 
Fig. 1. Force acting towards the destination. 

 

2. Repulsion from obstacles: Pedestrians have to avoid obstacles. They are not only subjected to 
physical forces when they come into contact with obstacles, but they also feel psychological pressure 
from obstacles when they approach within a certain distance. The force that expresses this 
characteristic is represented by Equation (3) using a vector (r ) from the pedestrian to the obstacle, and 
parameters U and R, which are inherent to the obstacle. The U parameter is the maximum value of an 
obstacle's effect on pedestrians, and the R parameter expresses the range of this obstacle's influence. 

 

𝑓𝑂 = −
𝑟 

||𝑟 ||
𝑈𝑒−||𝑟 ||/𝑅                                   (3) 

                              
3. Repulsion from other pedestrians: Pedestrians also have to avoid bumping into other people. As 

with obstacles, a pedestrian feels psychological pressure when approaching close to another person 
and will thus act to maintain a certain distance. Therefore, the forces whereby a pedestrian avoids 
another person are expressed by two equations (4) and (5) using the direction vector (𝑟 ) from the 
pedestrian to the other person and the direction vector (𝑒 ) from the current location to the destination. 
Here, 𝑣  represents the other person's walking speed, and 𝑣 Δt represents the distance moved by the 
other person in one step. 

 

𝑓𝑆 = −
r⃗ 

||r⃗ ||Ae−b/σ                                  (4) 

 

2𝑏 = √| |r + ||r − vΔte⃗ ||)
2
− (v⃗ Δt)

2
                            (5) 

 

 
Fig. 2. Obstacle avoidance forces. 

 

2.2.2. Settings field of view 

In SFM, the magnitudes of repulsive forces are adjusted by setting the model's field of view. Specifically, the 

effects of repulsive forces received from obstacles or other people that are outside the model's field of view 

are mitigated using a coefficient c (0<c<1). Here, φ represents the pedestrian's field of view angle, and θ 

represents the angle between the direction of travel and the direction of the obstacle. 
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                                  (6) 

 Verification of SFM of Avoidance Action 

In general, pedestrian avoidance actions involve the selection of both a path and a speed. In some situations, 

it is conceivable that only one of these may be selected, while in other situations both may be used. Previous 

studies of avoidance action with a focus on path selection include those of Tatebe et al. [4] and Yoda et al. [5]. 

 

 
Fig. 3. Adjustment of repulsive force according to _eld of view. 

 

 
Fig. 4. Avoidance by path selection. 

 

Tatebe et al. studied how pedestrians avoid stationary obstacles, and reported that, based on their 

measurements, the distance to an obstacle at which a pedestrian starts to take evasive action is related to the 

obstacle's size and direction. They concluded that the average distance was 7.34 m for an obstacle of about 

the same size as a human. Yoda et al. performed tests of how pedestrians avoid people who are walking the 

other way and reported that a pedestrian's speed during an avoidance maneuver remains constant 

irrespective of the avoidance path. They also reported that the average distance of two pedestrians passing 

each other is 0.7 - 1.3 m. On the other hand, there have hardly been any studies of avoidance actions involving 

changes of speed. Yamamoto et al. [6] measured the movement of pedestrians on intersecting paths while 

being aware of other people and reported the results of measuring the characteristics of this behavior. They 
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reported that when a pedestrian decelerates to avoid another person, the speed decreases sharply to 0.8 m/s 

at 1.2 s after the situation shown in Fig. 5, the distance between them decreases to 1.5 m as shown in Fig. 6, 

and then after 0.9 s the pedestrian accelerates back to the original speed. The SFM avoidance behavior was 

verified based on this data. 

 

 
Fig. 5. Avoidance by speed selection (at start deceleration). 

 

 
Fig. 6. Avoidance by speed selection (at the end of deceleration). 

 

2.3.1. Avoidance of obstacles 

A walking simulation is performed in a planar region 20 m long and 4 m wide, with a pedestrian situated 

at the lower end and the destination at the upper end. An obstacle with a diameter of 0.2 m is placed at the 

center of the planar region, and the pedestrian's changes of speed and avoidance path when passing this 

obstacle are verified. To verify the avoidance path, the pedestrian's initial speed and target speed are assumed 

to be v0 = 1.35m/s and v = 1.35m/s, respectively. The pedestrian's initial position was chosen so as to simulate 

two scenarios: 
 

(a) avoiding an obstacle on the walking path (x=0), and 
(b) avoiding an obstacle close to the walking path (x=0.3) 

 

Also, changes of speed were verified by setting the initial speed to v0 = 0 m/s or v0 = 1.35 m/s at the starting 

position in case (b). Fig. 7. shows the positional relationship between the obstacle and the pedestrian, and 

the external forces acting between them. With reference to the study by Helbing et al., the pedestrian 

parameters were set to m = 60 and τ = 0.1, and the obstacle parameters were set to U = 10 and R = 0.2. The 

simulated walking path and speed changes of the pedestrian are shown in Fig. 8 and 9, respectively. 
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Fig. 7. Positional relationship and external forces between obstacle and pedestrian. 

 

 
Fig. 8. Avoidance paths. 

 

 
Fig. 9. Speed variation. 

 

As Fig. 8 shows, the pedestrian was unable to avoid the obstacle in case (a) and became stuck. This is 

because at the starting position, as shown in Fig. 7, the force Fo acting on the pedestrian from the obstacle is 

collinear with the force Fg from the pedestrian's destination, so there is no external force acting in the x 

direction. On the other hand, Fig. 8 also shows that it was possible to avoid the obstacle at x = 0 in case (b). 

However, the pedestrian's distance from the obstacle at the start of avoidance was just 0.38m, which is much 
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smaller than the value of 7.34 m reported in the literature. Furthermore, the pedestrian's distance from the 

obstacle during avoidance was 0.17 m, which is again unrepresentative of the reported figure of 0.7 - 1.3 m. 

Focusing on the avoidance path, the maximum value of the x coordinate reaches x = 0.74 m at y = 2.1 m after 

passing the obstacle, so it is inferred that the avoidance action continues even after the obstacle has been 

passed. Looking at the changes of speed in Fig. 9, it can be seen that the speed during avoidance decreases by 

17% regardless of the initial speed, which conflicts with earlier studies in which the speed remained constant 

during avoidance. 

As the above results show, it is not possible to avoid the obstacle in case (a), while in case (b) although 

some improvement can be expected by adjusting the parameters, the start of the avoidance action is too late, 

the avoidance path is unnatural, and the change of speed is too large. 

2.3.2. Avoidance of people on interesting paths 

Pedestrians were placed at the left and bottom of a planar area, and their respective destinations were set 

at the right and top of the area so as to make their walking paths intersect. We then verified the speed 

variations of their avoidance actions under these conditions. Fig. 10 shows the positional relationships and 

external forces during the verification experiment. The pedestrians were given an initial speed of v0 = 1.35m/s 

and a target speed of v = 0m/s, and the parameters governing the repulsive force between the pedestrians 

were set to either: 

(a) the values used by Helbing et al. (A = 2.1, σ = 0.3), or 
(b) values that produced a stronger repulsive force (A = 18, σ = 8). 

With the other parameters set to m = 60 and τ = 0.1, the simulated walking path results were as shown in 

Fig. 11. 

 

 
Fig. 10. Experimental conditions. 

 

 
Fig. 11. Experimental results. 
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 Some Issues of SFM 

From the results of these verification experiments, we can say that the model has the following issues: 

1. Avoiding obstacles: 

⚫ Pedestrians cannot avoid objects that are on their walking path. 

⚫ Obstacle avoidance does not start until the pedestrian is close to the obstacle. 

⚫ Pedestrians move too close to obstacles that they are avoiding. 

⚫ The obstacle avoidance distance reaches a maximum after the obstacle has been avoided. 

⚫ The pedestrian's speed decreases when avoiding obstacles 

2. Avoiding other pedestrians: 

⚫ Under certain conditions, other pedestrians cannot be avoided. 

⚫ Both pedestrians move in the same way. 

A major factor behind the issues with obstacle avoidance is the fact that it is expressed solely in terms of a 

repulsive force from the obstacle. Consequently, depending on the directions of the repulsive force and Fg, the 

pedestrian can slow down and may even get stuck. Also, the fact that the maximum avoidance distance occurs 

after the obstacle has been avoided is thought to result from the effects of acceleration due to the model being 

based on equations of motion. Similarly, when two pedestrians try to avoid each other, they both behave in 

the same way because their actions are based solely on the repulsive force from the other pedestrian. 

3. Proposed Method  

 Introducing the Concept of “Sub-goal” 

Based on the SFM verification experiments discussed in Section 2, it can be inferred that repulsive forces 

alone are not sufficient for implementing avoidance action. To solve this issue, we propose a model that sets 

new sub-goals in order to avoid obstacles. A sub-goal is a point through which the pedestrian should pass in 

order to reach the destination. A pedestrian model that uses sub-goals was previously proposed by 

Yanagisawa et al. [7]. In their model, a sub-goal is set when there is an obstacle in the pedestrian's path, so 

that the obstacle can be avoided. However, this model is inadequate in that it cannot be used when avoiding 

obstacles that are close to the walking path, and in that the variation of speed during avoidance has not been 

verified. 

In the model we propose in this article, we use the angle α and distance r to identify an obstacle that lies 

on or near the walking path. The angle α represents the angle from the direction of travel and adjusts the 

range of objects that are regarded as obstacles. Also, r represents the distance from the pedestrian to the 

obstacle. 

 

 
Fig. 12. Sub-goal parameter settings. 
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The sub-goal settings are made using four parameters d1, d2, d3 and θ. Parameter d1 is the distance between 

the obstacle and the pedestrian, and θ is the angle between the direction of travel and the direction of the 

obstacle (positive in the clockwise direction). These two parameters are used to prioritize objects when there 

are two or more objects regarded as obstacles. Parameter d2 represents the distance between the obstacle 

and the sub-goal. Also, considering the acceleration effect that was mentioned as one of the issues with SFM, 

parameter d3 represents the distance from the sub-goal beyond which the pedestrian's goal is switched from 

the sub-goal back to the original destination. When the obstacle is another pedestrian, this switching of goals 

takes place at the end of each step regardless of the magnitude of d2, because the distance changes at each 

step. These parameters are illustrated in Fig. 12. 

 

 
Fig. 13. Definition of β. 

 

A sub-goal is set as follows:  

STEP-1: Select the objects within the range of angle α and distance r. 

STEP-2: From these selected objects, choose the one with the lowest value of d1 as the obstacle to be 

avoided. 

STEP-3: Judge whether θ is positive or negative. If θ is positive, set a sub-goal at a distance of d2 to the left 

of the obstacle, and if θ is negative, set a sub-goal at a distance of d2 to the right of the obstacle. 

STEP-4: Determine whether the obstacle is another pedestrian or a fixed object. If it is a pedestrian, change 

the goal from the sub-goal back to the original destination at the end of the step. If it is an object, change the 

pedestrian's goal back to the original destination if d2 > d3.  

 Introducing a New Virtual Force to Implement Deceleration Processing 

To solve the problem whereby pedestrians on intersecting paths are unable to avoid each other, we 

reproduce the decelerating motion that pedestrians perform in consideration of other people. In the 

proposed model, the psychological effect of consideration to other pedestrians is represented by an external 

force defined as follows: 
 

𝑓𝑎 = −
𝑣−𝑉

𝜏
𝑒−(𝑥−𝑑)                                 (7) 

 

Here, (v - V)/t is a term based on the current speed v and the speed after deceleration V, and the maximum 

value of the external force fa is adjusted by parameter τ. In other words, as the speed decreases, the maximum 

value of the external force becomes smaller. On the other hand, in the term 𝑒−(𝑥−𝑑), where x is the distance 

to the other pedestrian and d is the distance when the pedestrians pass each other, the external force 

approaches its maximum value if the distance between the pedestrians is small, but decreases asymptotically 

to zero if the distance is large. With the addition of this external force 𝑓𝑎 as a fourth external force term, the 

model is able to take other pedestrians into consideration. 

To allow this force 𝑓𝑎 to act, we define the angle α as being positive if the other pedestrian is situated in a 

clockwise direction relative to the direction of travel, and we determine the force as follows: 
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STEP-1: Select a pedestrian for whom the value of angle α is no larger than 45 degree 

STEP-2: Judge whether this pedestrian will pass in front or behind. If behind, then go to STEP-4. 

STEP-3: If α is 7.7 degree or more, calculate Fa. Otherwise go to STEP-4. 

STEP-4: To ensure that 𝑓𝑎 is an accelerating force, set 𝑓𝑎 = 2𝐹𝑔. 

4. Evaluation Experiment 

 Overview of Simulator 

4.1.1. Implementation 

The simulator was developed by Java, using JOGL (Java binding for the OpenGL API) for 3D drawing, and a 

GUI implemented in Swing. The simulator process is illustrated in Fig. 14. The simulations were run in an 

event-driven manner with JOGL events handled by three methods and event listeners in the GLEventListener 

interface, and action listeners defined in Swing. 

⚫ init method: A method called only once at the start of a simulation to set up drawing parameters such 
as light source parameters and reflection parameters for the drawing objects. 

⚫ reshape method: A method called to reset the viewpoint position and field of view when the OpenGL 
drawing canvas is resized. 

⚫ display method: A method called when drawing. This method is called repeatedly after the simulation 
has started. This method is where the action and drawing parts of the agent discussed in Section 3.1 
are performed. 

⚫ JOGL event listeners: Event listeners defined on the OpenGL drawing canvas. 
⚫ Swing action listeners: Action listeners of windows created by Swing and their member objects. 

 

 
Fig. 14. Simulation flowchart. 

 

4.1.2. Model implementation 
 

 
Fig. 15. Simulator configuration. 

Journal of Computers

643 Volume 14, Number 11, November 2019



  

The space and agents that make up the MAS are defined as Environment and Intelligence classes. The user 

first defines all the constituent elements of the space in the Environment class. In the Intelligence class, which 

defines the action rules governing the behavior of agents, the agent behavior is determined by receiving 

information from the Environment class. Parts that are changed by the actions of agents are reflected in the 

Environment class to build relationships between the agents and the space. 

 

 
Fig. 16. Simulator screenshot. 

 

 Sub-goal Experiments 

Sub-goal experiments were performed with the same initial positions as the model verification tests of 

obstacle avoidance performed in Section 3: 

(a) avoiding an obstacle on the walking path (x=0), and 
(b) avoiding an obstacle close to the walking path (x=0.3) 

However, this time the pedestrian parameter τ was set to 0.01. This was because the actions performed 

when switching the goal from the sub-goal to the destination resulted in a slow reaction at the previous value 

of τ=0.1. The parameters used for sub-goal setting were r=7.8 m, d2=1.8 m, and α=10 degree. These 

parameters were set with reference to the values discussed in Section 3 - avoidance start distance: 7.3 m, 

distance from obstacle when passing: 41.3 m, angle subtended by obstacle: 10 degree. 

 

 
Fig. 17. Avoidance paths. 
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The verification results are shown in Fig. 17 (avoidance path) and 18 (speed variation). The avoidance start 

distance and the distance from the obstacle when passing are summarized in Table 1. 

 

 
Fig. 18. Speed variation. 

 

Table 1. Distances Representing the Avoidance Characteristics of the Proposed Model 

Initial Condition Distance at start of avoidance Distance from obstacle when passing 

(a) 7.5m 1.33m 

(b) 7.5m 1.40m 

 

 Deceleration Processing Experiment  

The deceleration processing verification experiments were performed under the following initial 

conditions: 

(a) the same conditions as the intersecting path avoidance experiment of Section 3 
(b) the conditions of Fig. 19, under which deceleration processing was started in a previous study 

In experiments performed with deceleration processing parameters of V = 0.7 m/s and d=1.4 m, the 

avoidance paths and speed variation for case (a) are shown in Fig. 20 and 21, respectively. Fig. 22 shows the 

speed variation for case (b). 

 

 
Fig. 19. Initial positions in case (b). 

 

As Fig. 22 shows, the pedestrians were able to pass each other under the starting conditions of case (a). In 

this case, the distance between the pedestrians while passing was 0.91 m. At 2.3 s after the start of strong 

deceleration, the minimum speed of 0.72 m/s is reached, after which the pedestrian accelerates back to 
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normal speed after 1.14 s. On the other hand, Fig. 22 shows the speed variation when simulated under the 

conditions of case (b). The distance from the other pedestrian at the time of passing was 1.39 m. After 1.19 s 

of strong deceleration, a minimum speed of 0.8 m/s was reached, and then the pedestrian accelerated back 

to a normal speed after 0.93 s. 

 

 
Fig. 20. Pedestrian paths. 

 

 
Fig. 21. Speed variation of case (a). 

 

 
Fig. 22. Speed variation of case (b).  

5. Discussion 

 Sub-goal Setting 

With the proposed model, it was possible to avoid obstacles present on the pedestrian's walking path, and 

in the vicinity of the walking path. Also, regarding the distance to the obstacle at the time when avoidance is 

started, which is a pedestrian avoidance characteristic discussed in Section 3, we obtained a value of 7.5 m. 
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This is close to the target value of 7.34 m and demonstrates the validity of the sub-goal parameter r. We were 

also able to keep the distance from the obstacle while passing within the target range of 0.7 - 1.3 m, 

demonstrating the validity of parameter d2. With regard to the issues of a pedestrian's path after passing an 

obstacle, we successfully suppressed the deceleration effect by setting parameter d3 so as to change the 

destination before reaching the sub-goal. 

Focusing on the speed variation, a deceleration of about 15% was observed in the conventional model, but 

by setting a sub-goal we were able to suppress the deceleration to 5%. This means that setting a sub-goal 

made it possible to reproduce the characteristic whereby pedestrians move constant speed regardless of any 

avoidance paths. 

From the above results, it can be said that we were successful in reproducing the obstacle avoidance 

behavior of pedestrians, which was the original purpose of introducing sub-goals. However, generic 

simulators must be able to cope with more complex conditions such as multiple obstacles. Here, we consider 

the behavior of the model shown in Fig. 23 in order to consider the issues of the proposed model. 

 

 
Fig. 23. A problematic initial arrangement of obstacle. 

 

In our proposed model, obstacle 1 is selected as the obstacle to be avoided, and based on the positional 

relationship of the pedestrian and the obstacle, is situated in such a way that a sub-goal is positioned at a 

distance d2 to the right of the obstacle so as to minimize the distance between the pedestrian and the 

destination. However, when obstacle 2 lies beyond obstacle 1, a pedestrian might choose to go to the left of 

obstacle 1. The inability of the proposed model to make such judgments is an issue worthy of further study. 

In the future, the model will need to incorporate a decision unit that performs this sort of path selection. 

 Deceleration Processing 

We were able to avoid another pedestrian in the two verification experiments and were able to show that 

the new forces added to the proposed model are effective for deceleration processing. Furthermore, with 

regard to the variation of speed during avoidance, we found that the minimum speeds after deceleration in 

the verification experiments - 0.72 m/s in (a) and 0.8 m/s in (b) - were similar to the speed of 0.8 m/s reported 

in the literature. This also demonstrates the validity of the minimum speed V as a deceleration parameter. 

However, in experiments with two pedestrians passing in opposite directions, the distance between then 

was 0.91 m in (a) and 1.39 m in (b), which is slightly different from the value of 1.5 m reported in the literature, 
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and the acceleration and deceleration times measured in (a) were longer than the values reported in the 

literature. This means there is room for improvement in the proposed model. Perhaps the reduced distance 

from the other pedestrian in these experiments was caused by the longer deceleration time. The longer 

deceleration time may have been caused by the force Fa increasing as the two pedestrians approached each 

other but decreasing when this distance became smaller than the passing distance d set as a parameter. 

However, this distance is a value determined based on time and speed factors, so a simple reduction of the 

deceleration time will not lead to a solution for this problem. In the future, it will therefore be necessary to 

solve this problem by understanding the characteristics of pedestrians during deceleration in greater detail. 

 Future Works and Challenges 

One of the challenges to advancement of this research is the scarcity of data relating to pedestrian 

characteristics. In particular, since there have hardly been any studies made of deceleration movements, it 

will be necessary to clarify the characteristics of these movements by conducting experiments with actual 

pedestrians. It should also be noted that the validity of the model proposed in this article has only been tested 

in experiments with very simple environments with a basic set-up consisting of one pedestrian and one 

obstacle, or two pedestrians and no obstacles. The validity of this model's behavior should therefore be tested 

with a wider range of initial arrangements.  

6. Conclusion 

In this article, in order to address the issues of the existing Social Force Model (SFM), we have proposed a 

new model that incorporates sub-goals and deceleration movements. We evaluated this model and confirmed 

its validity by conducting obstacle avoidance and pedestrian avoidance simulations. As a result, we were able 

to reproduce the avoidance behavior used in path selection by introducing sub-goals and were able to 

reproduce pedestrian avoidance behavior that cannot be achieved with SFM, even with deceleration 

movements. 
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