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Abstract—Scheduling algorithm for batch-mode data-
intensive jobs is a key issue in data-intensive Grid 
applications. It focuses on how to minimize the overhead of 
transferring the required data set to the executing grid site. 
Existing approaches pay attention to the access cost of a 
data-intensive job at each executing grid site for replicating 
the required data set. However, they neglect the influence 
from potential behaviors of jobs in the waiting queue at each 
grid site when the access cost is evaluated. In this paper, we 
consider the influence of potential behaviors on the access 
cost, and propose a data-intensive job scheduling algorithm 
with potential behaviors. Furthermore, the causation of 
potential behaviors is analyzed. The simulation result in 
OptorSim shows that it has better performance in mean job 
time of all jobs, total number of replications, total number 
of local files accesses and effective network usage than the 
scheduling algorithm based on access cost. 
 
Index Terms—distributed computing, grid computing, data 
grid, job scheduling, access cost, replica replacement 
 

I.  INTRODUCTION 

With the development of grid computing, Data Grid 
[1,2] as an important branch of Grid Computing focuses 
on supporting an efficient management mechanism for 
controlled sharing and large amounts of distributed data. 
Data-intensive jobs are one major kind of jobs in Data 
Grid, and their scheduling strategies are regarded as one 
of the most important research fields. Batch-mode data-
intensive jobs require access to a large amount of data 
(terabytes or petabytes). Therefore, it is the key how to 
process with the minimal access cost. Existing data-
driven job scheduling algorithms [3-7] have been 
proposed to solve this issue by evaluating the access cost 
based on some important influencing factors, such as 
network bandwidth, network load, CPU workload etc. 
However, distributions of data set between scheduling 
and run time are always changing dynamically when 
replica replacements occur frequently during this period 
at each grid site. The potential behaviors of jobs in the 

waiting queue are supposed to be analyzed if batch-mode 
data-intensive jobs are required to be scheduled. 

In this paper, we address the overall processing 
performance in the scheduling algorithm based on Access 
Cost with Potential Behaviors (ACPB). ACPB, which is 
an application-centric scheduling strategy and the 
evolution of scheduling algorithm based on access cost, 
focuses on the influence of potential behaviors of jobs in 
the waiting queue at each grid site on the heuristic 
function of access cost. The underlying influencing 
factors to potential behaviors are analyzed and discussed.  
To get the situation of potential behaviors, a simple and 
decentralized feedback mechanism is given to support the 
job scheduling process. The features of ACPB are 
summarized as bellow: 

a) The access cost is recalculated with potential 
behaviors. 

b) The native replica replacement strategy and the 
length of waiting queue are considered as two main 
important influencing factors on potential behaviors. 

c) A decentralized feedback mechanism is created to 
support resource broker to make decisions in OptorSim. 

To evaluate the effect of ACPB, it is simulated by 
OptorSim [8] and compared with the scheduling 
algorithm based on access cost (AC) [3]. The simulation 
result shows that ACPB has better performance in mean 
job time, number of replications, total number of local 
files accesses and effective network usage than these of 
the existing scheduling algorithm based on Access Cost 
(AC). 

The rest of this paper is organized as follows. In 
section 2, gives an overview of previous work on job 
scheduling algorithms. In section 3, the proposed 
scheduling algorithm based on Access Cost with Potential 
Behaviors (ACPB) is presented. In section 4, simulation 
experiments with ACPB and AC in OptorSim are 
performed and discussed. Section 5 concludes the paper 
and outlines some future research work. 

II.  RELATED WORK 
 

According to the different performance goals, the 
scheduling systems or algorithms can be classified into 
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three categories: system-centric, economy-based and 
application-centric systems.  

A system-centric scheduling system focuses on the 
overall performance of the whole set of jobs and the 
whole Grid system. Condor [9] aims to increase 
utilization of workstation by hunting idle workstations for 
sharing job execution. Condor follows an approach to 
scheduling that lies between the centralized and 
decentralized scheme. For scheduling jobs, each 
workstation itself is responsible for maintaining the local 
queue of jobs to be run and scheduling the jobs onto idle 
workstations for execution.  

Condor-G [10] leverages the advantages of both 
Condor and Globus Toolkit [11]. Globus Toolkit is a 
software infrastructure for setting up a Grid environment 
across multiple administrative domains, which supports 
resources management, secure file transfer, information 
discovery and secure authentication and authorization in a 
Grid environment. Based on Condor, Condor-G makes 
use of the mechanisms provided by Globus Toolkit to 
cross the boundaries of real institutions, aiming at 
utilizing the idle workstations among these institutions. 

An economy-based scheduling system is based on the 
idea of market economy. Under this scheme, scheduling 
decisions are made based on the economy model. 
Nimrod-G [12] implements a relationship mechanism of 
producer and consumer in Data Grid. Economic methods 
include: commodity market model, posted price model, 
bargaining model, tender/contract-net model, auction 
model, bid-based proportional resource sharing model, 
trading model, and monopoly/oligopoly model. These 
models compare the different costs of replica replacement 
and remote access. 

An application-centric scheduling system tries to 
maximize the performance of individual applications. 
Adaptive scheduling model, such as AppLes [5], is one of 
the most important application-centric scheduling 
systems. AppLes focuses on the run-time resource 
availability and the development of scheduling agent for 
parallel meta computing.  Each scheduling agent is 
implemented by the task mapping mechanism. For 
scheduling decision, scheduling agents will consider the 
different requirement for different applications based on 
their load prediction and dynamic resource availabilities. 
To gain the precise information of dynamic resource 
availabilities and other influencing factors, AppLes uses 
NWS (Network Weather Service) [13] to monitor these 
factors. 

The scheduling model based on access cost, such as 
Chameleon [14], is a branch of application-centric 
scheduling strategy. Chameleon calculates the cost by the 
relationship between the grid site which holds data files 
and the grid site where the job will be run. The job is 
scheduled by the access cost of these different grid sites. 
The scheduling algorithms based on access cost can be 
classified into two categories based on if prediction 
techniques are adopted or not. Application-centric 
scheduling algorithms based on prediction techniques [15, 
16, 17] use statistics techniques to predict the resource 

behavior. Traditional scheduling methods focus on the 
application of statistics.  

1. Schopf [17] introduces a stochastic scheduling 
method in scheduling input data to processors at run-time. 
It assumes the mean of predicted completion time follows 
a normal distribution, and the scheduler will schedule a 
job on a grid site with higher power and lower variability. 
The limitation of this approach is the assumption of the 
distribution of the period of job executing to be a normal 
distribution. Therefore, this assumption should be 
verified in an experiment. Furthermore, the behaviors of 
jobs executed at each grid site are not analyzed. 

2. Yang and Schopf [16] introduce interval predication 
and interval variance predication as two more predictive 
measurements instead of one-step estimate. The grid site 
with lower interval variance is considered more “reliable”, 
so a scheduler assigns less work to higher variance grid 
sites. However, it does not explore the reason why the 
higher variance it leads to. 

3. Vazhdukai [15] uses a regression technique to 
predict data transfer in Grid systems. It uses the liner 
regression model, quasi-linear regression model, or 
polynomial regression model to predict the dependent 
variable. 

There are two major scheduling algorithms [3, 8] based 
on access cost in OptorSim.  

 Access cost scheduling algorithm 
 Queue access cost scheduling algorithm 

Access cost scheduling algorithm (AC) [3] schedules 
data-intensive jobs to the grid site with minimal access 
cost. Access cost is an estimated value, which is based on 
the network status, for obtaining all files required by this 
job at the scheduling time. This scheduling algorithm 
considers the importance of file distribution, whereas it 
neglects the influencing factor of the length of jobs in the 
waiting queue. The proposed scheduling algorithm is 
given based on this traditional scheduling algorithm. 
Compared with our proposed algorithm, AC supposes 
that the data distribution in Data Grid will be the same 
between the scheduling and run time. However, it will be 
different when replica replacements occur frequently at 
each grid site. ACPB regards the potential behaviors of 
jobs in the waiting queue as an important influencing 
factor to the access cost. 

Queue access cost scheduling algorithm [3] schedules 
data-intensive jobs to the grid site, which has the minimal 
total estimated access cost of all the jobs in the waiting 
queue. For each job in the queue the access cost is 
calculated as same as the access cost algorithm (AC). It 
also neglects the importance of potential behaviors of 
jobs in the waiting queue. 

All in all, these two scheduling algorithms above in 
OptorSim focus on how to calculate the traditional access 
cost. However, the situations of data distributions 
between the scheduling and running time will be different 
when replica replacements are often in each grid site. 
Therefore, it is necessary for us to seek the causation. 
This paper assumes that the replica replacement strategy 
and the length of jobs in waiting queue at the local grid 
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site are two direct influencing factors on the variation of 
data distribution. 

To test this hypothesis, which is that the replica 
replacement occurs frequently influences the access cost 
significantly, this paper proposes a scheduling algorithm 
based on access cost with potential behaviors of jobs. The 
experiment is performed in OptorSim, and the traditional 
access cost scheduling algorithm (AC) has been 
compared with our proposed algorithm.  

The main contribution of our scheduling algorithm, 
compared to the previous work, is considering the 
potential behaviors of jobs in the waiting queue at each 
grid site as an important influencing factor to the access 
cost, and it help us to predict the real access cost with 
more accurate at scheduling time. 

III. SCHEDULING ALGORITHM WITH POTENTIAL 
BEHAVIORS 

A. Scheduling Algorithm 
To predict the data distribution of each grid site at run 

time, the potential behaviors of jobs in the waiting queue 
should be analyzed and inferred. In this section, the 
influencing factors on existing access cost approach is 
given firstly, then predictive access cost is defined 
secondly, and the proposed scheduling algorithm is 
depicted in detail finally. 

1) 

2) 

Influencing factors 
Existing access cost can be mainly evaluated by the 

processing time for replica creation when the target site is 
fixed or assumed. The processing time for replica 
creation includes:  

 the time for replica set location 
 the time for making replica selection decision  
 the time for replica transferring 

How to shorten the processing time for replica creation 
is the key. The relevant influencing factors are discussed 
in papers [12, 18-24] as below: 

 Network topology: Network topology is always 
considered as the key factor to replica 
transferring. 

 Network bandwidth: The replica in Data Grid 
is very huge, so the replica transferring is 
affected by the network bandwidth directly. 

 CPU load: Replica creation will be much 
affected if the CPU load is heavy. 

 I/O bandwidth: If the source node has a high 
I/O bandwidth, the time of replica transferring 
from this site is reduced greatly. 

 Access probability: The grid sites in Data Grid 
have different access probability in the recent 
history. The grid site which has a high access 
probability has the high priority to be selected 
as the source node. 

 Job queue: If jobs in the waiting queue are 
long at a grid site, replica transferring will be 
delayed for a long time. Therefore, selecting 
these grid sites which have a shorter length of 
waiting queues is better choice. 

These six factors are classified into two categories: 
static factors and dynamic factors. Network topology, 
network bandwidth and I/O bandwidth are static factors; 
CPU load, access probability and job queue are dynamic 
factors. It is easy to get the values of static factors 
without any extra tools, but we need a feedback 
mechanism to monitor dynamic factors when required. 
We will give the feedback mechanism in the next 
subsection. 

Predictive access cost 
In order to get the predictive access cost, some relevant 

definitions are listed as bellow. 
Define 1:  

∑
=

= n

k
k

i
i

TfF

TfFfP
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),()(

.                                           (1) 

Where T refers to the duration to the present and F(fi,T) 
is the frequency of fi within T. 

Define 2:  
L(Gi) refers to the length of jobs in the waiting queue 

at the grid site Gi. 
Define 3: 
T (Ri) refers to the time to live of the report Ri.  
Define 4: 
PPA(fi)= P(fi)×L(Gi)/Maxlength.     (2)  
Where PPA (fi) refers Probability of Potential Access of 

fi. 
Define 5: 
N(Gi, Gj) refers the bandwidth capacity between grid 

site Gi and grid site Gj.  
Define 6: 
PACF(fi)=Min(P(fi))×(Sizeof(fi)/N(Gm,Gn))) .   (3) 
Where  PACF (fi) refers to the Predictive Access Cost of 

fi. 
Define 7: 

∑
=

=
N

k
kACFiAC fPGP

0

)()( .                                                  (4) 

Where N refers to the number of required files for the 
scheduling job. 

Therefore, each candidate grid site as target node can 
be calculated which holds the minimal Predictive Access 
Cost will be chosen as the final target node.  

3) Scheduling algorithm 
From fig. 1, we can describe the scheduling workflow 

as follows: 
a) The resource broker gets a data-intensive job 

from the waiting queue in the master grid site. 
b) The required data set of this job is analyzed and 

grouped as a set. 
c) The distribution status of replicas is gained based 

on the required files of this job, and the grid sites 
in this distribution will be grouped as a candidate 
set. 

d) Iteratively calculating the access cost for each 
grid site in the candidate set based on latest 
reports and the status of data distribution. 
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e) Choosing the grid site with minimal access cost, 
and scheduling the data-intensive job to this site 
finally. 

Therefore, the proposed approach is an application-
centric scheduling strategy. Each job is scheduled to the 
grid site with predictive minimal access cost at run-time. 

 
Figure 1.  

1) 

2) 

3) 

Scheduling algorithm workflow. 

B. Replica Feedback Mechanism 
Replica feedback mechanism is a communication 

mechanism between grid sites and the resource broker in 
Data Grid, and also the infrastructure of ACPB. This 
section includes three subsections: report content, report 
operations and report workflow. 

Report content 
In order to predict the future access cost of a data-

intensive job, four factors are included in report content. 
Declaration of replica replacement strategy and the access 
probabilities of replicas in local grid site are the first two 
factors. The length of jobs in waiting queue in local grid 
site is the third factor. Time to live of this report is the 
last factor on inference the future access cost of a data-
intensive job. These four factors can be depicted in the 
following:  

a) Declaration of replica replacement strategy: it 
indicates which replica replacement strategy the 
gird site uses, such as LFU, LRU etc. 

b) The recent access probabilities of replicas in 
local grid site: this is the major content in the 
report content which indicates the future access 
probabilities of replicas in local grid site.  

c) The length of jobs in the waiting queue: it tells 
that whether the local grid site is busy or not, and 
the probability of replica replacement occurring.  

d) Time to live of this report: it is used to evaluate 
the period of validity of this report. 

Report Operations 

The replica feedback mechanism is to communicate 
between the resource broker and grid sites in Data Grid. 
A report queue is created and maintained in each grid site, 
and the latest report is accessed by the resource broker 
before making an informed scheduling decision. 

The main operations for the report queue are 
summarized as follows: 

a) addNewReport(report,ttl). A latest report is 
created when a replica replacement is occurred, and it 
will be inserted into the local report queue if allowed. The 
permission condition is that if all reports in the report 
queue were invalid, any new report is allowed to be 
added. If the report is added successfully, it returns true. 
Otherwise, it returns false with different reasons for 
failure. 

b) readLatestReport(). The resource broker will 
access the report queue before making a scheduling 
decision. If no latest report, it returns null. Otherwise, it 
returns the latest report in the report queue. 

c) displayReportQueue(). This method is applied to 
checking reports in the report queue. 

Report Workflow 
To introduce the replica feedback mechanism clearly, 

the report workflow is depicted in fig. 2. 
From fig. 2, it shows that report is generated by the 

local grid site when replica replacement occurs, and the 
report will be inserted into its local report queue if a 
certain condition is satisfied. If not, the operation of 
adding a new report will fail. The local report queue is 
maintained by itself, and it is queried by resource broker 
to gain the latest report. The query operation will be 
performed before the job scheduling decision has been 
made. 

 
Figure 2.  Report Workflow. 
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IV. EXPERIMENTS AND DISCUSSION 

A. Experiment Configuration 
Experiment configuration in OptorSim includes 

parameter configuration, grid configuration and job 
configuration. 

1) 

2) 

Parameter configuration 
The basic simulation parameters are set up by means of 

parameter configuration file. There are three parts of 
parameters in this configuration file. The first part defines 
the grid topology and resources, the second part defines 
the jobs and their associated files, and the last part defines 
the relevant parameters and algorithms to use. The most 
important parameters include: the access pattern through 
which the jobs access files; the job submission pattern by 
which the users submit jobs to the resource broker; the 
level and variability of non-grid traffic present and the 
optimisation algorithms to use. A full description of each 
is in the OptorSim user guide [4]. In our experiment, the 
access pattern is sequential access, which means that the 
files are sequentially accessed. The interval of job delay 
is defined as the delay of resource broker submitting each 
job, and the value is 2500 ms. The optimization algorithm 
of replica replacement we adopted is LFU, which always 
deletes least frequently accessed file to replicate the 
required file. For experiment environment, the CPU is 
Intel core T2400 1.83 GHz and the capacity of memory is 
1G.  

Grid Configuration 
The topology of CMS testbed is depicted in fig. 3. 

 
Figure 3.  

3) 

CMS Data Challenge 2002 grid topology. 

From fig.3, CERN and FNAL are given SEs of 100 
GB capacity and no CEs in the CMS testbed. SE refers to 
Storage Element, and CE refers to Computing Element. 
All master files are stored at one of these sites. Every 
other site is given 50 GB of storage and a CE with one 
worker node.  

Job Configuration 
Initially, all files were placed on the CERN Storage 

Element. There are six job types, with no overlap 
between the set of files each job accessed. Each set of 
files is assumed to have the capacity of 10GByte files. 

From table 1, highptlepjob represents this kind of jobs 
with highest selection probability, least required files and 
minimal execution time, while highptphotjob represents 
that kind of jobs with lowest selection probability, the 
largest number of files and the maximal execution time in 
this paper. These six types of jobs represent major 
scenarios of applications with different selection 
probabilities and different numbers of required files in 
Data Grid. To make sure the experiment more valuable, 
we give two assumptions as bellow: 

 The job with more files has lower selection 
probability.  In reality, the number of jobs with 
fewer files is more than that with more files, 
and so is it in Data Grid. 

 The execution time of the job which requires 
fewer data files is much shorter. This 
assumption is common sense. 

TABLE 1. SELECTION PROBABILITY, THE MAX NUMBER OF REQUIRED 
FILES AND EXECUTION TIME FOR EACH JOB TYPE. 

Job type Selection 
probability 

Number of 
files 

Execution time 
(ms) 

jpsijob 0.1 12 8 
highptlepjob 0.5 2 2 
incelecjob 0.15 5 4 

incmuonjob 0.07 14 10 
highptphotjob 0.03 58 25 

zbbbarjob 0.15 6 4 
 

B. Experiment Comparison and Discussion 
1) Experiment Comparison 
We have implemented ACPB algorithm and compared 

it with scheduling algorithm based on access cost (AC) in 
OptorSim. Mean job time, number of replications, and 
effective network usage are chosen as evaluation criteria 
and illustrated in detail as follows.  

We give two different perspectives to the experiment 
of ACPB and AC. 

• Different queue length with the same number of 
jobs. 

• Different numbers of jobs with the same queue 
length. 

a) Different queue length with the same number of 
jobs. 

We assume there are 1000 batch-mode data-intensive 
jobs required to be processed in CMS testbed. ACPB and 
AC are processed with different maximum queue length 
of 25, 50, 75, 100, 125, 150 and 175. The simulation 
result is shown in the following figures. 
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Figure 4.  Mean job time of all jobs on grid vs. queue length. 
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From fig. 4, it shows that mean job time of all jobs on 
grid is increased with the increasing of queue length. 
ACPB spends less time than AC with the equal length of 
queue as illustrated. 
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Figure 5.  Total number of replications vs. queue length. 

From fig. 5, in general, total number of replications for 
ACPB is much less than AC when the length of queue is 
less than 125. As the length of queue is increased, total 
number of replications is relatively reduced. However, 
there is an outlier when the queue length equals 175. 
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Figure 6.  Total number of local file accesses vs. queue length. 

From fig. 6, it depicts that total number of local file 
accesses of ACPB is less than AC except the situation 
when the queue length is 125. 
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Figure 7.  Effective network usage vs. queue length. 

From fig. 7, it tells that effective network usage of 
ACPB is less than AC. As the length of queue is 
increased, effective network usage of ACPB is reduced. 
When the maximum queue length is 150, the effective 
network usage of ACPB is a little higher than AC. 

Therefore, from fig. 4, 5, 6 and 7, ACPB has better 
performance than AC in evaluation criteria of mean job 
time of all jobs on grid, total number of replications, total 
number of local file accesses and effective network usage. 
However, ACPB does not have an advantage compared 
with AC when the length of queue is more than 125. 

b) Different numbers of jobs with the same queue 
length. 

From the first perspective, we know that ACPB has 
better performance when the queue length is less than 125 
and it is not the same situation as the queue length is 
more than 125. To verify our conclusion, we do more 
experiments with the queue length of 50 and 150 
separately. The results of these experiments are given in 
figures. 

• Maximum queue length is 50. 
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Figure 8.  Mean job time for all jobs of ACPB vs. AC. 

Fig. 8 indicates that the ACPB’s mean job time for 
different number of jobs is less than AC’s. As the number 
of jobs increases, the required mean job time for both 
ACPB and AC is increasing. However, the ACPB 
algorithm needs less mean job time, and the tendency is 
obvious when the number of jobs is more than 400. 
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Figure 9.  Total number of replications of ACPB vs. AC. 

From fig. 9, total number of replications required for 
ACPB is less than AC. As the number of jobs increases, 
the required total number of replications for both 
algorithms is increasing. The AC algorithm requires more 
replications than ACPB when the number of jobs is same, 
no matter what the number of jobs is.  
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Figure 10.  Total number of local file accesses of ACPB vs. AC. 

From fig. 10, total number of local file accesses 
required for ACPB is less than AC. As the number of 
jobs increases, the required total number of local file 
accesses for both algorithms is increasing. The AC 
algorithm requires more local files accesses than ACPB 
when the number of jobs is equal.  
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Figure 11.  Effective network usage of ACPB vs. AC. 

From fig. 11, effective network usage of ACPB is 
lower than AC. There is no significant difference for 
different amount of jobs; however, values of effective 
network usage of both algorithms have a decrease 
tendency when the number of jobs is increased. All in all, 
this phenomenon shows that effective network usage of 
Data Grid is not affected significantly by ACPB or AC. 

From fig. 8,9,10 and 11, the proposed algorithm named 
as ACPB has better performance in mean job time, total 
number of replications, total number of local file accesses 
and effective network usage when the maximum queue 
length is 50 at each grid node. As we have discussed, the 
critical point of ACPB and AC is 125. To explore the 
characteristics of ACPB, we should consider another 
maximum queue length such as 150. 

• Maximum queue length is 150. 
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Figure 12.  Mean job time for all jobs of ACPB vs. AC. 

Fig. 12 indicates that the ACPB’s mean job time for 
different number of jobs is less than AC’s when the 
number of jobs is less than 1000. As the number of jobs 
increases, the required mean job time for both ACPB and 
AC is increasing. The mean job time of ACPB and that of 
AC are combined together. That is to say, there is no 
significant difference between ACPB and AC in mean 
job time when the number of jobs is more than or 
including 1000. 
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Figure 13.  Total number of replications of ACPB vs. AC. 

From fig. 13, the required total numbers of replications 
for both algorithms are increasing when the number of 
jobs increases. Total number of replications required for 
ACPB is less than AC when the number of jobs is less 
than 1000. However, total number of replications of 
ACPB and AC is combined together when the number of 
jobs is more than or including 1000.  

0

1000

2000
3000

4000

5000

6000

7000
8000

9000

10000

200 400 600 800 1000 1200 1400

Number of Jobs

T
ot
a
l 
n
um
be
r
 o
f
 l
oc
a
l 
f
il
e

ac
c
es
s
es

ACPB

AC

 
Figure 14.  Total number of local file accesses of ACPB vs. AC. 

From fig. 14, total number of local file accesses 
required for ACPB is less than AC. As the number of 
jobs increases, the required total number of local file 
accesses for both algorithms is increasing. The AC 
algorithm requires more local files accesses than ACPB 
when the number of jobs is same. However, the 
difference between ACPB and AC is not significant. 
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Figure 15. 

2) 

 Effective network usage of ACPB vs. AC. 

Fig. 15 indicates that there is no significant difference 
between ACPB and AC in effective network usage. The 
value of effective network usage decreases when the 
number of jobs is increased. It also tells that the Data 
Grid will become stable when the maximum number of 
jobs is more than 800. 

From fig. 12,13,14 and 15, the proposed algorithm 
named as ACPB has better performance in mean job time, 
total number of replications, and total number of local file 
accesses when the number of jobs is less than 1000 and 
the maximum queue length is 150 at each grid site. There 
is no significant difference between ACPB and AC when 
the number of jobs is more than or including 1000. 

Discussion 
Data-driven job scheduling algorithms focus on how to 

schedule the job to its suitable processing grid site. From 
the experiments illustrated above, we compare the 
evaluation criteria between ACPB and AC for different 
queue lengths. As the hypothesis we have given before, 
the queue length is an important influencing factor on 
potential behaviors of jobs in waiting queue. The 
hypothesis is verified when the length of jobs in waiting 
queue is less than 125. That is to say, there is a significant 
difference between our proposed scheduling algorithm 
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named as ACPB and the scheduling algorithm based on 
access cost called AC when the maximum queue length at 
each grid site is less than 125. However, the hypothesis is 
not accepted when the maximum queue length is more 
than 125, which means ACPB can be replaced by AC 
when the maximum queue length is more than 125. 

Queue length of 125 is a critical point. We attach 
importance to the value which is not a constant. In other 
words, there may be some influencing factors on this 
value. For example, it may be changed when different 
jobs with different data files in different Data Grid 
environments. 

The result of different experiments illustrated in this 
paper indicates that there is a significant difference 
between ACPB and AC when the maximum queue length 
is less than 125. Therefore, the queue length is an 
important influencing factor on potential behaviors of 
jobs in the waiting queue. In the algorithm given, queue 
length which is put into calculating access cost is 
considered as an important influencing factor. The 
experiment demonstrates that the proposed algorithm gets 
better performance since the queue length factor has a 
positive influence when it is less than 125. At the same 
time, this factor has no or little influence on the value of 
access cost. Therefore, the proposed algorithm can be 
improved when the queue length is increasing. 

The decentralized feedback mechanism for replica 
report is given to support decision making. This 
mechanism is very simple, effective and easy to be 
implemented. Based on this feedback mechanism, the 
latest report has its probability to be into the report queue 
if there is no valid report in it. In other words, the latest 
report will not be inserted into the report queue in time 
when the time to live of reports in the report queue is too 
long or replica replacement operations are frequently 
performed in a short period. Therefore, the time to live of 
reports should be dynamically given based on the 
frequency of replica replacement operations. 

V. CONCLUSIONS AND FUTURE WORK 

The scheduling algorithm for data-intensive jobs is 
very important for Data Grid applications. Existing 
scheduling algorithms based on access cost are effective 
and efficient approaches. However, the influencing 
factors on access cost should be reconsidered, since 
existing algorithms neglect the importance of potential 
behaviors of jobs in the waiting queue. These potential 
behaviors can be predicted roughly based on the queue 
length of waiting jobs and the local replica replacement 
strategy. To verify this hypothesis that the potential 
behaviors of jobs in the waiting queue have an effect on 
the evaluation of access cost, we have proposed a 
scheduling algorithm based on access cost with potential 
behaviors and given a decentralized feedback mechanism 
to replica report. 

From these preceding experiments and comparisons, 
we can see that the proposed algorithm named as ACPB 
has better performance than AC when the maximum 
queue length at each grid site is less than 125 in the Data 
Grid with same number of jobs required to be processed. 

However, there is no significant difference when the 
maximum queue length is more than 125. Based on 
experiments in OptorSim, ACPB shows that it has better 
performance in mean job time of total jobs on grid, total 
number of replications, total number of local file accesses 
and effective network usage than the scheduling 
algorithm based on access cost (AC) when the waiting 
queue’s maximum length is less than 125 for each grid 
site. 

Based on the discussion section, we have explained the 
reason why the experiment result is. For the future, we 
will explore the evaluation criteria of access cost and the 
relationship between the waiting queue length and access 
cost. Furthermore, we should redesign the decentralized 
feedback mechanism to collect the latest replica report 
quickly and to support resource broker to make decisions 
efficiently. 
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