
Scheduling Algorithm with Potential Behaviors

Jianhua Jiang
1College of Computer Science and Technology, Jilin University, Changchun, China

2Department of Information, Changchun Taxation College, Changchun, China
Email: jianhuajiang@yahoo.com

Huifang Ji, Gaochao Xu and Xiaohui Wei

1College of Computer Science and Technology, Jilin University, Changchun, China
Email: jihuifang_1986@yahoo.cn,{xugc, weixh}@jlu.edu.cn

Abstract—Scheduling algorithm for batch-mode data-
intensive jobs is a key issue in data-intensive Grid
applications. It focuses on how to minimize the overhead of
transferring the required data set to the executing grid site.
Existing approaches pay attention to the access cost of a
data-intensive job at each executing grid site for replicating
the required data set. However, they neglect the influence
from potential behaviors of jobs in the waiting queue at each
grid site when the access cost is evaluated. In this paper, we
consider the influence of potential behaviors on the access
cost, and propose a data-intensive job scheduling algorithm
with potential behaviors. Furthermore, the causation of
potential behaviors is analyzed. The simulation result in
OptorSim shows that it has better performance in mean job
time of all jobs, total number of replications, total number
of local files accesses and effective network usage than the
scheduling algorithm based on access cost.

Index Terms—distributed computing, grid computing, data
grid, job scheduling, access cost, replica replacement

I. INTRODUCTION

With the development of grid computing, Data Grid
[1,2] as an important branch of Grid Computing focuses
on supporting an efficient management mechanism for
controlled sharing and large amounts of distributed data.
Data-intensive jobs are one major kind of jobs in Data
Grid, and their scheduling strategies are regarded as one
of the most important research fields. Batch-mode data-
intensive jobs require access to a large amount of data
(terabytes or petabytes). Therefore, it is the key how to
process with the minimal access cost. Existing data-
driven job scheduling algorithms [3-7] have been
proposed to solve this issue by evaluating the access cost
based on some important influencing factors, such as
network bandwidth, network load, CPU workload etc.
However, distributions of data set between scheduling
and run time are always changing dynamically when
replica replacements occur frequently during this period
at each grid site. The potential behaviors of jobs in the

waiting queue are supposed to be analyzed if batch-mode
data-intensive jobs are required to be scheduled.

In this paper, we address the overall processing
performance in the scheduling algorithm based on Access
Cost with Potential Behaviors (ACPB). ACPB, which is
an application-centric scheduling strategy and the
evolution of scheduling algorithm based on access cost,
focuses on the influence of potential behaviors of jobs in
the waiting queue at each grid site on the heuristic
function of access cost. The underlying influencing
factors to potential behaviors are analyzed and discussed.
To get the situation of potential behaviors, a simple and
decentralized feedback mechanism is given to support the
job scheduling process. The features of ACPB are
summarized as bellow:

a) The access cost is recalculated with potential
behaviors.

b) The native replica replacement strategy and the
length of waiting queue are considered as two main
important influencing factors on potential behaviors.

c) A decentralized feedback mechanism is created to
support resource broker to make decisions in OptorSim.

To evaluate the effect of ACPB, it is simulated by
OptorSim [8] and compared with the scheduling
algorithm based on access cost (AC) [3]. The simulation
result shows that ACPB has better performance in mean
job time, number of replications, total number of local
files accesses and effective network usage than these of
the existing scheduling algorithm based on Access Cost
(AC).

The rest of this paper is organized as follows. In
section 2, gives an overview of previous work on job
scheduling algorithms. In section 3, the proposed
scheduling algorithm based on Access Cost with Potential
Behaviors (ACPB) is presented. In section 4, simulation
experiments with ACPB and AC in OptorSim are
performed and discussed. Section 5 concludes the paper
and outlines some future research work.

II. RELATED WORK

According to the different performance goals, the
scheduling systems or algorithms can be classified into

This work is partially supported by National Natural Science
Foundation of China (Grant No.60703024) and Jilin Province of
Science and Technology under Grant No.20070122 and 20060532.

Gaochao Xu is the corresponding author.

JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008 51

© 2008 ACADEMY PUBLISHER

three categories: system-centric, economy-based and
application-centric systems.

A system-centric scheduling system focuses on the
overall performance of the whole set of jobs and the
whole Grid system. Condor [9] aims to increase
utilization of workstation by hunting idle workstations for
sharing job execution. Condor follows an approach to
scheduling that lies between the centralized and
decentralized scheme. For scheduling jobs, each
workstation itself is responsible for maintaining the local
queue of jobs to be run and scheduling the jobs onto idle
workstations for execution.

Condor-G [10] leverages the advantages of both
Condor and Globus Toolkit [11]. Globus Toolkit is a
software infrastructure for setting up a Grid environment
across multiple administrative domains, which supports
resources management, secure file transfer, information
discovery and secure authentication and authorization in a
Grid environment. Based on Condor, Condor-G makes
use of the mechanisms provided by Globus Toolkit to
cross the boundaries of real institutions, aiming at
utilizing the idle workstations among these institutions.

An economy-based scheduling system is based on the
idea of market economy. Under this scheme, scheduling
decisions are made based on the economy model.
Nimrod-G [12] implements a relationship mechanism of
producer and consumer in Data Grid. Economic methods
include: commodity market model, posted price model,
bargaining model, tender/contract-net model, auction
model, bid-based proportional resource sharing model,
trading model, and monopoly/oligopoly model. These
models compare the different costs of replica replacement
and remote access.

An application-centric scheduling system tries to
maximize the performance of individual applications.
Adaptive scheduling model, such as AppLes [5], is one of
the most important application-centric scheduling
systems. AppLes focuses on the run-time resource
availability and the development of scheduling agent for
parallel meta computing. Each scheduling agent is
implemented by the task mapping mechanism. For
scheduling decision, scheduling agents will consider the
different requirement for different applications based on
their load prediction and dynamic resource availabilities.
To gain the precise information of dynamic resource
availabilities and other influencing factors, AppLes uses
NWS (Network Weather Service) [13] to monitor these
factors.

The scheduling model based on access cost, such as
Chameleon [14], is a branch of application-centric
scheduling strategy. Chameleon calculates the cost by the
relationship between the grid site which holds data files
and the grid site where the job will be run. The job is
scheduled by the access cost of these different grid sites.
The scheduling algorithms based on access cost can be
classified into two categories based on if prediction
techniques are adopted or not. Application-centric
scheduling algorithms based on prediction techniques [15,
16, 17] use statistics techniques to predict the resource

behavior. Traditional scheduling methods focus on the
application of statistics.

1. Schopf [17] introduces a stochastic scheduling
method in scheduling input data to processors at run-time.
It assumes the mean of predicted completion time follows
a normal distribution, and the scheduler will schedule a
job on a grid site with higher power and lower variability.
The limitation of this approach is the assumption of the
distribution of the period of job executing to be a normal
distribution. Therefore, this assumption should be
verified in an experiment. Furthermore, the behaviors of
jobs executed at each grid site are not analyzed.

2. Yang and Schopf [16] introduce interval predication
and interval variance predication as two more predictive
measurements instead of one-step estimate. The grid site
with lower interval variance is considered more “reliable”,
so a scheduler assigns less work to higher variance grid
sites. However, it does not explore the reason why the
higher variance it leads to.

3. Vazhdukai [15] uses a regression technique to
predict data transfer in Grid systems. It uses the liner
regression model, quasi-linear regression model, or
polynomial regression model to predict the dependent
variable.

There are two major scheduling algorithms [3, 8] based
on access cost in OptorSim.

 Access cost scheduling algorithm
 Queue access cost scheduling algorithm

Access cost scheduling algorithm (AC) [3] schedules
data-intensive jobs to the grid site with minimal access
cost. Access cost is an estimated value, which is based on
the network status, for obtaining all files required by this
job at the scheduling time. This scheduling algorithm
considers the importance of file distribution, whereas it
neglects the influencing factor of the length of jobs in the
waiting queue. The proposed scheduling algorithm is
given based on this traditional scheduling algorithm.
Compared with our proposed algorithm, AC supposes
that the data distribution in Data Grid will be the same
between the scheduling and run time. However, it will be
different when replica replacements occur frequently at
each grid site. ACPB regards the potential behaviors of
jobs in the waiting queue as an important influencing
factor to the access cost.

Queue access cost scheduling algorithm [3] schedules
data-intensive jobs to the grid site, which has the minimal
total estimated access cost of all the jobs in the waiting
queue. For each job in the queue the access cost is
calculated as same as the access cost algorithm (AC). It
also neglects the importance of potential behaviors of
jobs in the waiting queue.

All in all, these two scheduling algorithms above in
OptorSim focus on how to calculate the traditional access
cost. However, the situations of data distributions
between the scheduling and running time will be different
when replica replacements are often in each grid site.
Therefore, it is necessary for us to seek the causation.
This paper assumes that the replica replacement strategy
and the length of jobs in waiting queue at the local grid

52 JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

site are two direct influencing factors on the variation of
data distribution.

To test this hypothesis, which is that the replica
replacement occurs frequently influences the access cost
significantly, this paper proposes a scheduling algorithm
based on access cost with potential behaviors of jobs. The
experiment is performed in OptorSim, and the traditional
access cost scheduling algorithm (AC) has been
compared with our proposed algorithm.

The main contribution of our scheduling algorithm,
compared to the previous work, is considering the
potential behaviors of jobs in the waiting queue at each
grid site as an important influencing factor to the access
cost, and it help us to predict the real access cost with
more accurate at scheduling time.

III. SCHEDULING ALGORITHM WITH POTENTIAL
BEHAVIORS

A. Scheduling Algorithm
To predict the data distribution of each grid site at run

time, the potential behaviors of jobs in the waiting queue
should be analyzed and inferred. In this section, the
influencing factors on existing access cost approach is
given firstly, then predictive access cost is defined
secondly, and the proposed scheduling algorithm is
depicted in detail finally.

1)

2)

Influencing factors
Existing access cost can be mainly evaluated by the

processing time for replica creation when the target site is
fixed or assumed. The processing time for replica
creation includes:

 the time for replica set location
 the time for making replica selection decision
 the time for replica transferring

How to shorten the processing time for replica creation
is the key. The relevant influencing factors are discussed
in papers [12, 18-24] as below:

 Network topology: Network topology is always
considered as the key factor to replica
transferring.

 Network bandwidth: The replica in Data Grid
is very huge, so the replica transferring is
affected by the network bandwidth directly.

 CPU load: Replica creation will be much
affected if the CPU load is heavy.

 I/O bandwidth: If the source node has a high
I/O bandwidth, the time of replica transferring
from this site is reduced greatly.

 Access probability: The grid sites in Data Grid
have different access probability in the recent
history. The grid site which has a high access
probability has the high priority to be selected
as the source node.

 Job queue: If jobs in the waiting queue are
long at a grid site, replica transferring will be
delayed for a long time. Therefore, selecting
these grid sites which have a shorter length of
waiting queues is better choice.

These six factors are classified into two categories:
static factors and dynamic factors. Network topology,
network bandwidth and I/O bandwidth are static factors;
CPU load, access probability and job queue are dynamic
factors. It is easy to get the values of static factors
without any extra tools, but we need a feedback
mechanism to monitor dynamic factors when required.
We will give the feedback mechanism in the next
subsection.

Predictive access cost
In order to get the predictive access cost, some relevant

definitions are listed as bellow.
Define 1:

∑
=

= n

k
k

i
i

TfF

TfFfP

0
),(

),()(

. (1)

Where T refers to the duration to the present and F(fi,T)
is the frequency of fi within T.

Define 2:
L(Gi) refers to the length of jobs in the waiting queue

at the grid site Gi.
Define 3:
T (Ri) refers to the time to live of the report Ri.
Define 4:
PPA(fi)= P(fi)×L(Gi)/Maxlength. (2)
Where PPA (fi) refers Probability of Potential Access of

fi.
Define 5:
N(Gi, Gj) refers the bandwidth capacity between grid

site Gi and grid site Gj.
Define 6:
PACF(fi)=Min(P(fi))×(Sizeof(fi)/N(Gm,Gn))) . (3)
Where PACF (fi) refers to the Predictive Access Cost of

fi.
Define 7:

∑
=

=
N

k
kACFiAC fPGP

0

)()(. (4)

Where N refers to the number of required files for the
scheduling job.

Therefore, each candidate grid site as target node can
be calculated which holds the minimal Predictive Access
Cost will be chosen as the final target node.

3) Scheduling algorithm
From fig. 1, we can describe the scheduling workflow

as follows:
a) The resource broker gets a data-intensive job

from the waiting queue in the master grid site.
b) The required data set of this job is analyzed and

grouped as a set.
c) The distribution status of replicas is gained based

on the required files of this job, and the grid sites
in this distribution will be grouped as a candidate
set.

d) Iteratively calculating the access cost for each
grid site in the candidate set based on latest
reports and the status of data distribution.

JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008 53

© 2008 ACADEMY PUBLISHER

e) Choosing the grid site with minimal access cost,
and scheduling the data-intensive job to this site
finally.

Therefore, the proposed approach is an application-
centric scheduling strategy. Each job is scheduled to the
grid site with predictive minimal access cost at run-time.

Figure 1.

1)

2)

3)

Scheduling algorithm workflow.

B. Replica Feedback Mechanism
Replica feedback mechanism is a communication

mechanism between grid sites and the resource broker in
Data Grid, and also the infrastructure of ACPB. This
section includes three subsections: report content, report
operations and report workflow.

Report content
In order to predict the future access cost of a data-

intensive job, four factors are included in report content.
Declaration of replica replacement strategy and the access
probabilities of replicas in local grid site are the first two
factors. The length of jobs in waiting queue in local grid
site is the third factor. Time to live of this report is the
last factor on inference the future access cost of a data-
intensive job. These four factors can be depicted in the
following:

a) Declaration of replica replacement strategy: it
indicates which replica replacement strategy the
gird site uses, such as LFU, LRU etc.

b) The recent access probabilities of replicas in
local grid site: this is the major content in the
report content which indicates the future access
probabilities of replicas in local grid site.

c) The length of jobs in the waiting queue: it tells
that whether the local grid site is busy or not, and
the probability of replica replacement occurring.

d) Time to live of this report: it is used to evaluate
the period of validity of this report.

Report Operations

The replica feedback mechanism is to communicate
between the resource broker and grid sites in Data Grid.
A report queue is created and maintained in each grid site,
and the latest report is accessed by the resource broker
before making an informed scheduling decision.

The main operations for the report queue are
summarized as follows:

a) addNewReport(report,ttl). A latest report is
created when a replica replacement is occurred, and it
will be inserted into the local report queue if allowed. The
permission condition is that if all reports in the report
queue were invalid, any new report is allowed to be
added. If the report is added successfully, it returns true.
Otherwise, it returns false with different reasons for
failure.

b) readLatestReport(). The resource broker will
access the report queue before making a scheduling
decision. If no latest report, it returns null. Otherwise, it
returns the latest report in the report queue.

c) displayReportQueue(). This method is applied to
checking reports in the report queue.

Report Workflow
To introduce the replica feedback mechanism clearly,

the report workflow is depicted in fig. 2.
From fig. 2, it shows that report is generated by the

local grid site when replica replacement occurs, and the
report will be inserted into its local report queue if a
certain condition is satisfied. If not, the operation of
adding a new report will fail. The local report queue is
maintained by itself, and it is queried by resource broker
to gain the latest report. The query operation will be
performed before the job scheduling decision has been
made.

Figure 2. Report Workflow.

54 JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

IV. EXPERIMENTS AND DISCUSSION

A. Experiment Configuration
Experiment configuration in OptorSim includes

parameter configuration, grid configuration and job
configuration.

1)

2)

Parameter configuration
The basic simulation parameters are set up by means of

parameter configuration file. There are three parts of
parameters in this configuration file. The first part defines
the grid topology and resources, the second part defines
the jobs and their associated files, and the last part defines
the relevant parameters and algorithms to use. The most
important parameters include: the access pattern through
which the jobs access files; the job submission pattern by
which the users submit jobs to the resource broker; the
level and variability of non-grid traffic present and the
optimisation algorithms to use. A full description of each
is in the OptorSim user guide [4]. In our experiment, the
access pattern is sequential access, which means that the
files are sequentially accessed. The interval of job delay
is defined as the delay of resource broker submitting each
job, and the value is 2500 ms. The optimization algorithm
of replica replacement we adopted is LFU, which always
deletes least frequently accessed file to replicate the
required file. For experiment environment, the CPU is
Intel core T2400 1.83 GHz and the capacity of memory is
1G.

Grid Configuration
The topology of CMS testbed is depicted in fig. 3.

Figure 3.

3)

CMS Data Challenge 2002 grid topology.

From fig.3, CERN and FNAL are given SEs of 100
GB capacity and no CEs in the CMS testbed. SE refers to
Storage Element, and CE refers to Computing Element.
All master files are stored at one of these sites. Every
other site is given 50 GB of storage and a CE with one
worker node.

Job Configuration
Initially, all files were placed on the CERN Storage

Element. There are six job types, with no overlap
between the set of files each job accessed. Each set of
files is assumed to have the capacity of 10GByte files.

From table 1, highptlepjob represents this kind of jobs
with highest selection probability, least required files and
minimal execution time, while highptphotjob represents
that kind of jobs with lowest selection probability, the
largest number of files and the maximal execution time in
this paper. These six types of jobs represent major
scenarios of applications with different selection
probabilities and different numbers of required files in
Data Grid. To make sure the experiment more valuable,
we give two assumptions as bellow:

 The job with more files has lower selection
probability. In reality, the number of jobs with
fewer files is more than that with more files,
and so is it in Data Grid.

 The execution time of the job which requires
fewer data files is much shorter. This
assumption is common sense.

TABLE 1. SELECTION PROBABILITY, THE MAX NUMBER OF REQUIRED
FILES AND EXECUTION TIME FOR EACH JOB TYPE.

Job type Selection
probability

Number of
files

Execution time
(ms)

jpsijob 0.1 12 8
highptlepjob 0.5 2 2
incelecjob 0.15 5 4

incmuonjob 0.07 14 10
highptphotjob 0.03 58 25

zbbbarjob 0.15 6 4

B. Experiment Comparison and Discussion
1) Experiment Comparison
We have implemented ACPB algorithm and compared

it with scheduling algorithm based on access cost (AC) in
OptorSim. Mean job time, number of replications, and
effective network usage are chosen as evaluation criteria
and illustrated in detail as follows.

We give two different perspectives to the experiment
of ACPB and AC.

• Different queue length with the same number of
jobs.

• Different numbers of jobs with the same queue
length.

a) Different queue length with the same number of
jobs.

We assume there are 1000 batch-mode data-intensive
jobs required to be processed in CMS testbed. ACPB and
AC are processed with different maximum queue length
of 25, 50, 75, 100, 125, 150 and 175. The simulation
result is shown in the following figures.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

25 50 75 100 125 150 175

Queue Length

M
e
a
n

J
o
b

T
i
m
e

o
f

a
l
l

J
o
b
s

ACPB

AC

Figure 4. Mean job time of all jobs on grid vs. queue length.

JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008 55

© 2008 ACADEMY PUBLISHER

From fig. 4, it shows that mean job time of all jobs on
grid is increased with the increasing of queue length.
ACPB spends less time than AC with the equal length of
queue as illustrated.

0

500

1000

1500

2000

2500

25 50 75 100 125 150 175

Queue Length

To
ta
l
 n
u
mb
er

of

re
pl
i
ca
t
io
ns

ACPB

AC

Figure 5. Total number of replications vs. queue length.

From fig. 5, in general, total number of replications for
ACPB is much less than AC when the length of queue is
less than 125. As the length of queue is increased, total
number of replications is relatively reduced. However,
there is an outlier when the queue length equals 175.

0

1000

2000

3000

4000

5000

6000

7000

8000

25 50 75 100 125 150 175

Queue Length

T
ot
a
l
n
um
be
r
 o
f
 l
oc
a
l
f
il
e

ac
c
es
s
es

ACPB

AC

Figure 6. Total number of local file accesses vs. queue length.

From fig. 6, it depicts that total number of local file
accesses of ACPB is less than AC except the situation
when the queue length is 125.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

25 50 75 100 125 150 175

Queue Length

Ef
f
ec
ti
v
e
ne
t
wo
r
k
us
a
ge

ACPB

AC

Figure 7. Effective network usage vs. queue length.

From fig. 7, it tells that effective network usage of
ACPB is less than AC. As the length of queue is
increased, effective network usage of ACPB is reduced.
When the maximum queue length is 150, the effective
network usage of ACPB is a little higher than AC.

Therefore, from fig. 4, 5, 6 and 7, ACPB has better
performance than AC in evaluation criteria of mean job
time of all jobs on grid, total number of replications, total
number of local file accesses and effective network usage.
However, ACPB does not have an advantage compared
with AC when the length of queue is more than 125.

b) Different numbers of jobs with the same queue
length.

From the first perspective, we know that ACPB has
better performance when the queue length is less than 125
and it is not the same situation as the queue length is
more than 125. To verify our conclusion, we do more
experiments with the queue length of 50 and 150
separately. The results of these experiments are given in
figures.

• Maximum queue length is 50.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

200 400 600 800 1000 1200 1400

Number of Jobs

M
e
a
n

j
o
b

t
i
m
e

o
f

a
l
l

j
o
b
s

o
n

G
r
i
d ACPB

AC

Figure 8. Mean job time for all jobs of ACPB vs. AC.

Fig. 8 indicates that the ACPB’s mean job time for
different number of jobs is less than AC’s. As the number
of jobs increases, the required mean job time for both
ACPB and AC is increasing. However, the ACPB
algorithm needs less mean job time, and the tendency is
obvious when the number of jobs is more than 400.

0

500

1000

1500

2000

2500

3000

3500

200 400 600 800 1000 1200 1400

Number of Jobs

To
ta
l
 n
u
mb
er

of

re
pl
i
ca
t
io
ns

ACPB

AC

Figure 9. Total number of replications of ACPB vs. AC.

From fig. 9, total number of replications required for
ACPB is less than AC. As the number of jobs increases,
the required total number of replications for both
algorithms is increasing. The AC algorithm requires more
replications than ACPB when the number of jobs is same,
no matter what the number of jobs is.

0

1000

2000
3000

4000

5000

6000

7000
8000

9000

10000

200 400 600 800 1000 1200 1400

Number of Jobs

T
ot
al

nu
mb
e
r
of

lo
ca
l
 f
il
e

ac
ce
ss
e
s

ACPB

AC

Figure 10. Total number of local file accesses of ACPB vs. AC.

From fig. 10, total number of local file accesses
required for ACPB is less than AC. As the number of
jobs increases, the required total number of local file
accesses for both algorithms is increasing. The AC
algorithm requires more local files accesses than ACPB
when the number of jobs is equal.

56 JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

200 400 600 800 1000 1200 1400

Number of Jobs

Ef
fe
ct
i
ve
 n
e
tw
or
k
 u
sa
g
e

ACPB

AC

Figure 11. Effective network usage of ACPB vs. AC.

From fig. 11, effective network usage of ACPB is
lower than AC. There is no significant difference for
different amount of jobs; however, values of effective
network usage of both algorithms have a decrease
tendency when the number of jobs is increased. All in all,
this phenomenon shows that effective network usage of
Data Grid is not affected significantly by ACPB or AC.

From fig. 8,9,10 and 11, the proposed algorithm named
as ACPB has better performance in mean job time, total
number of replications, total number of local file accesses
and effective network usage when the maximum queue
length is 50 at each grid node. As we have discussed, the
critical point of ACPB and AC is 125. To explore the
characteristics of ACPB, we should consider another
maximum queue length such as 150.

• Maximum queue length is 150.

0

5000

10000

15000

20000

25000

200 400 600 800 1000 1200 1400

Number of Jobs

M
e
a
n

j
o
b

t
i
m
e

o
f

a
l
l

j
o
b
s

o
n

G
r
i
d ACPB

AC

Figure 12. Mean job time for all jobs of ACPB vs. AC.

Fig. 12 indicates that the ACPB’s mean job time for
different number of jobs is less than AC’s when the
number of jobs is less than 1000. As the number of jobs
increases, the required mean job time for both ACPB and
AC is increasing. The mean job time of ACPB and that of
AC are combined together. That is to say, there is no
significant difference between ACPB and AC in mean
job time when the number of jobs is more than or
including 1000.

0

500

1000

1500

2000

2500

3000

200 400 600 800 1000 1200 1400

Number of Jobs

To
ta
l
 n
u
mb
er

of

re
pl
i
ca
t
io
ns

ACPB

AC

Figure 13. Total number of replications of ACPB vs. AC.

From fig. 13, the required total numbers of replications
for both algorithms are increasing when the number of
jobs increases. Total number of replications required for
ACPB is less than AC when the number of jobs is less
than 1000. However, total number of replications of
ACPB and AC is combined together when the number of
jobs is more than or including 1000.

0

1000

2000
3000

4000

5000

6000

7000
8000

9000

10000

200 400 600 800 1000 1200 1400

Number of Jobs

T
ot
a
l
n
um
be
r
 o
f
 l
oc
a
l
f
il
e

ac
c
es
s
es

ACPB

AC

Figure 14. Total number of local file accesses of ACPB vs. AC.

From fig. 14, total number of local file accesses
required for ACPB is less than AC. As the number of
jobs increases, the required total number of local file
accesses for both algorithms is increasing. The AC
algorithm requires more local files accesses than ACPB
when the number of jobs is same. However, the
difference between ACPB and AC is not significant.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

200 400 600 800 1000 1200 1400

Number of Jobs

Ef
f
ec
ti
v
e
ne
t
wo
r
k
us
a
ge

ACPB

AC

Figure 15.

2)

 Effective network usage of ACPB vs. AC.

Fig. 15 indicates that there is no significant difference
between ACPB and AC in effective network usage. The
value of effective network usage decreases when the
number of jobs is increased. It also tells that the Data
Grid will become stable when the maximum number of
jobs is more than 800.

From fig. 12,13,14 and 15, the proposed algorithm
named as ACPB has better performance in mean job time,
total number of replications, and total number of local file
accesses when the number of jobs is less than 1000 and
the maximum queue length is 150 at each grid site. There
is no significant difference between ACPB and AC when
the number of jobs is more than or including 1000.

Discussion
Data-driven job scheduling algorithms focus on how to

schedule the job to its suitable processing grid site. From
the experiments illustrated above, we compare the
evaluation criteria between ACPB and AC for different
queue lengths. As the hypothesis we have given before,
the queue length is an important influencing factor on
potential behaviors of jobs in waiting queue. The
hypothesis is verified when the length of jobs in waiting
queue is less than 125. That is to say, there is a significant
difference between our proposed scheduling algorithm

JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008 57

© 2008 ACADEMY PUBLISHER

named as ACPB and the scheduling algorithm based on
access cost called AC when the maximum queue length at
each grid site is less than 125. However, the hypothesis is
not accepted when the maximum queue length is more
than 125, which means ACPB can be replaced by AC
when the maximum queue length is more than 125.

Queue length of 125 is a critical point. We attach
importance to the value which is not a constant. In other
words, there may be some influencing factors on this
value. For example, it may be changed when different
jobs with different data files in different Data Grid
environments.

The result of different experiments illustrated in this
paper indicates that there is a significant difference
between ACPB and AC when the maximum queue length
is less than 125. Therefore, the queue length is an
important influencing factor on potential behaviors of
jobs in the waiting queue. In the algorithm given, queue
length which is put into calculating access cost is
considered as an important influencing factor. The
experiment demonstrates that the proposed algorithm gets
better performance since the queue length factor has a
positive influence when it is less than 125. At the same
time, this factor has no or little influence on the value of
access cost. Therefore, the proposed algorithm can be
improved when the queue length is increasing.

The decentralized feedback mechanism for replica
report is given to support decision making. This
mechanism is very simple, effective and easy to be
implemented. Based on this feedback mechanism, the
latest report has its probability to be into the report queue
if there is no valid report in it. In other words, the latest
report will not be inserted into the report queue in time
when the time to live of reports in the report queue is too
long or replica replacement operations are frequently
performed in a short period. Therefore, the time to live of
reports should be dynamically given based on the
frequency of replica replacement operations.

V. CONCLUSIONS AND FUTURE WORK

The scheduling algorithm for data-intensive jobs is
very important for Data Grid applications. Existing
scheduling algorithms based on access cost are effective
and efficient approaches. However, the influencing
factors on access cost should be reconsidered, since
existing algorithms neglect the importance of potential
behaviors of jobs in the waiting queue. These potential
behaviors can be predicted roughly based on the queue
length of waiting jobs and the local replica replacement
strategy. To verify this hypothesis that the potential
behaviors of jobs in the waiting queue have an effect on
the evaluation of access cost, we have proposed a
scheduling algorithm based on access cost with potential
behaviors and given a decentralized feedback mechanism
to replica report.

From these preceding experiments and comparisons,
we can see that the proposed algorithm named as ACPB
has better performance than AC when the maximum
queue length at each grid site is less than 125 in the Data
Grid with same number of jobs required to be processed.

However, there is no significant difference when the
maximum queue length is more than 125. Based on
experiments in OptorSim, ACPB shows that it has better
performance in mean job time of total jobs on grid, total
number of replications, total number of local file accesses
and effective network usage than the scheduling
algorithm based on access cost (AC) when the waiting
queue’s maximum length is less than 125 for each grid
site.

Based on the discussion section, we have explained the
reason why the experiment result is. For the future, we
will explore the evaluation criteria of access cost and the
relationship between the waiting queue length and access
cost. Furthermore, we should redesign the decentralized
feedback mechanism to collect the latest replica report
quickly and to support resource broker to make decisions
efficiently.

REFERENCES

[1] A. Chervenak, I. Foster, C. Kesselman et al., “The Data
Grid: towards an architecture for the distributed
management and analysis of large scientific data sets,”
Journal of Network and Computer Applications, vol. 23,
pp. 187-200, July 2001.

[2] W. Hoschek, F. J. Jaen-Martinez, A. Samar, H. Stockinger,
and K. Stockinger, “Data management in an international
data grid project,” Lecture Notes In Computer Science,
Vol.1971, pp.77-90, 2000.

[3] D. G. Cameron, R. Carvajal-Schiaffino, P. Millar, C.
Nicholson, K. Stockinger, and F. Zini, “Evaluating
scheduling and replica optimisation strategies in
OptorSim,” in proc. of Grid, Phoenix, Arizona, USA,
November 2003, pp. 52-59.

[4] M. J. Lewis and A. Grimshaw, “The core legion object
model,” in proc. of 5th IEEE international Symposium on
High Performance Distributed Computing, Syracuse, New
York, USA, August 1996, pp.551-561.

[5] F. Berman, R. Wolski, and H. Casanova, “Adaptive
computing on the grid using AppLeS,” IEEE Transactions
on Parallel and Distributed Systems, vol.14 (4), pp.369-
382, April 2003.

[6] R. S. Chang, J. S. Chang, and S. Y. Lin, “Job scheduling
and data replication on data grids,” Future Generation
Computer Systems, vol.23 (7), pp.846-860, August 2007.

[7] M. Tang, B. S. Lee, X. Y. Tang, and C. K. Yeo, “The
impact of data replication on job scheduling performance
in the Data Grid,” Future Generation Computer Systems,
vol.22 (3), pp.254-268, February 2006.

[8] D. G. Cameron, A. P. Millar, and C. Nicholson, “Optorsim:
a simulation tool for scheduling and replica optimisation in
Data Grids,” in proc. of CHEP, Interlaken, Switzerland,
September 2004.

[9] M. Litzkow, M. Livny, and M. Mutka, “Condor-a hunter of
idle workstation,” in proc. of 8th International Conference
of Distributed Computing Systems, San Jose, California,
USA, June 1988, pp.204-111.

[10] J. Frey, T. Tannenbaum, et al, “Condor-G: a computation
management agent for multi-Institutional grids,” Cluster
Computing, vol.5, pp. 237-246, July 2002.

[11] I. Foster and C. Kesselman. “Globus: a metacomputing
infrastructure toolkit,” International Journal of
Supercomputer Applications, vol.11 (2), pp.115-128, April
1997.

58 JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

[12] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: an
architecture of a resource management and scheduling
system in a global computational grid,” in proc. of HPC
ASIA, Beijing, China, May 2000, pp.283-289.

[13] R. Wolski, N. T. Spring, and J. Hayes, “The network
weather service: a distributed resource performance
forecasting service for metacomputing,” Journal of Future
Generation Computing Systems, vol.15, pp.757-768,
October 1999.

[14] G. Karypis, E. H. Han and V. Kumar, “Chameleon:
hierarchical clustering using dynamic modeling,”
Computer, vol.32(8), pp.68-75, August 1999.

[15] S. Vazhkudai, and J. M. Schopf, “Using regression
techniques to predict large data transfers,” The
International Journal of High Performance Computing
Applications, vol.17 (3), pp. 249-268, August 2003.

[16] L. Y. Yang, J. M. Schopf, and I. Foster, “Conservative
scheduling: using predicted variance to improve scheduling
decisions in dynamic environments,” in proc. of SC,
Phoenix, USA, November 2003, pp.31-31.

[17] J. M. Schopf, and F. Berman, “Stochastic scheduling,” in
proc. of SC, Portland, Oregon, USA, November 1999,
pp.48-48.

[18] X. H. Wei, W. W. Li, O. Tatebe, G. C. Xu, L. Hu, and J. b.
Ju, “Implementing data aware scheduling in Gfarm using
LSF scheduler plugin mechanism,” in proc. of GCA, Las
Vegas, Nevada, USA, 2005, pp.3-10.

[19] R. Kavitha and I. Foster, “Design and evaluation of
dynamic replication strategies for a high performance data
grid,” in proc. of CHEP, Beijing, China, September 2001,
pp.106-118.

[20] Y. Zhao and Y Hu, “GRESS - a grid replica selection
service,” in proc. of PDCS, Marina Del Rey, Canada,
November 2003, pp.423-429.

[21] J. H. Jiang, G. C. Xu and X. H. Wei, “An enhanced data-
aware scheduling algorithm for batch-mode data-intensive
jobs on data grid,” in proc. of ICHIT, Cheju Island, Korea,
November 2006, pp.257-262.

[22] R. M. Rahman, K. Barker and R. Alhajj, “Replica selection
in grid environment: a data-mining approach,” in proc. of
ACM SAC, Santa Fe, New Mexico, March 2005, pp.695-
700.

[23] R. S. Chang, J. S. Chang and P. S. Lin, “An ant algorithm
for balanced job scheduling in grids,” Future Generation
Computer Systems, vol.25 (1), pp.20-27, January 2009.

[24] S. Venugopal, and R. Buyya, “An SCP-based heuristic
approach for scheduling distributed data-intensive
applications on global grids,” Journal of Parallel and
Distributed Computing, vol.68 (4), pp.471-487, April 2008.

[25] K. Ranganathan and I. Foster, “Identifying dynamic
replication strategies for a high performance data grid,”

Lecture Notes In Computer Science, Vol.2242, pp.75-86,
2001.

[26] L. Huy, P. Coddington, A. L. Wendelborn, et al., “A data-
aware resource broker for data grids,” in proc. of NPC,
(Lecture Notes in Computer Science Vol. 3222), Wuhan,
China, 2004, pp.73-82.

[27] E. Elmroth and J. Tordsson, “Grid resource brokering
algorithms enabling advance reservations and resource
selection based on performance predictions,” Future
Generation Computer Systems, vol.24 (6), pp.585-593,
June 2008.

Jianhua Jiang received his B.E degree from Jilin University,
China in 2003 and M.S degree from Jilin University in 2006.
Currently, he is working towards the Ph.D. degree in the
College of Computer Science and Technology at Jilin
University. His research focus is data grid, data mining,
business intelligence, OLAP and computer education. He has
served as a technical reviewer for several international
conferences and has published 8 papers in both technical and
educational fields.

Huifang Ji received her B.E degree from Jilin University,
China in 2008. Currently, she is working towards the M.S.
degree in the College of Computer Science and Technology at
Jilin University. Her research focus is job scheduling algorithms
and replica management in data grid and data mining.

Gaochao Xu received his Ph.D. degree from Jilin University,
Changchun, China in 1995, in computer architecture. His
research focus is distributed computing, grid computing, data
mining, and network security and computer education. He has
served as a technical reviewer for several IEEE international
conferences and has published more than 30 papers in both
technical and educational fields.

Xiaohui Wei received his Ph.D. degree from Jilin University,
Changchun, China in 1999, in computer architecture. His
research focus is distributed computing, grid computing, and
web intelligence and computer education. He has served as a
technical reviewer for several IEEE international conferences
and has published more than 20 papers in both technical and
educational fields.

JOURNAL OF COMPUTERS, VOL. 3, NO. 12, DECEMBER 2008 59

© 2008 ACADEMY PUBLISHER

