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Abstract—Compared with labeled data, unlabeled data are 
significantly easier to obtain. Currently, classification of 
unlabeled data is an open issue. In this paper a novel SVM-
KNN classification methodology based on Semi-supervised 
learning is proposed, we consider the problem of using a 
large number of unlabeled data to boost performance of the 
classifier when only a small set of labeled examples is 
available. We use the few labeled data to train a weaker 
SVM classifier and make use of the boundary vectors to 
improve the weaker SVM iteratively by introducing KNN. 
Using KNN classifier doesn’t enlarge the number of training 
examples only, but also improves the quality of the new 
training examples which are transformed from the 
boundary vectors. Experiments on UCI data sets show that 
the proposed methodology can evidently improve the 
accuracy of the final SVM classifier by tuning the 
parameters and can reduce the cost of labeling unlabeled 
examples.  
 
Index Terms—semi-supervised learning, support vector 
machine, K-nearest neighbor, boundary vectors 
 

I.  INTRODUCTION 

In this paper we focus on solving the classification 
problem by using semi-supervised learning strategy. 
Traditional classifiers are constructed based on labeled 
data in supervised learning. Labeled examples, however, 
are often difficult, expensive, or time consuming to 
obtain, as they require the efforts of experienced human 
annotators. Meanwhile it is relatively easier to collect 
unlabeled examples and there have been a few 
classification approaches using unlabeled data in recent 
years. Semi-supervised learning addresses this problem 
by using large number of unlabeled data, together with 
the small number of labeled data, to construct better 
classifiers. Because semi-supervised learning requires 
less human effort and gives higher accuracy, it is of great 
interest both in theory and in practice [1]. 

Traditional supervised learning needs sufficient labeled 

data as training sets, or else can’t get a supervised 
learning method with strong generalization [2], but 
obtaining lots of labeled data is difficult in practice, even 
can’t come true. Unsupervised learning tries to find the 
inner structure of the unlabeled data to construct the 
corresponding learning machine, so it leads to 
unsupervised learning can’t ensure high learning 
accuracy usually [3]. In this case, only using traditional 
machine learning strategy can’t gain a learning machine 
with strong generalization and high accuracy if there is 
inadequate labeled data. 

Semi-supervised learning is brought forward as a 
learning strategy in recent years, which not only makes 
use of the labeled data and unlabeled data but also 
supplements the shortages of supervised learning and 
unsupervised learning. Semi-supervised learning theory 
and algorithm developed quickly in the recent years [4], 
because it has been become research focus in the field of 
machine learning, attracting much more scholars devote 
themselves to the further study. 

The central issue that this paper addresses is how to 
use information from unlabeled data to enhance the 
predictability of classification. In this paper, we propose 
a novel SVM-KNN classification method based on semi-
supervised learning, which makes full use of unlabeled 
data. Our experimental results support the statistical 
learning theory showing that incorporating unlabeled data 
improves accuracy of the classifier when insufficient 
training information is available. 

This paper is organized as follows. In section II we 
describe the related works for our method. In Section Ⅲ 
we introduce the proposed semi-supervised learning 
methodology. In section Ⅳ  we present some 
experimental results, using a tuning method that utilizes 
both labeled and unlabeled data to enhance the accuracy 
of classification. We gieve conclusion in section Ⅴ. 

 

II. RELATED WORK 

A.  Semi-supervised learning 
Semi-supervised learning (SSL) is halfway between 

supervised and unsupervised learning [3]. In addition to 
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unlabeled data, this kind of methodology is provided with 
some supervised information – but not necessarily for all 
examples. Often, this information will be the labels 
associated with some of the examples. In this case, the 
data of SSL set [ ]( )i i nX x ∈= can be separated into two 

parts: the points 1( , , )h hX x x= … , for which labels 

1( , , )h hY y y= …  are provided, and the 
points 1( , , )t h h tX x x+ += … , the labels of which are not 
known. This is the normal form of semi-supervised 
learning set [4]. 

Semi-supervised learning will be most useful whenever 
there are much more unlabeled data than labeled. This is 
likely to occur if obtaining data points is cheap, but 
obtaining the labels costs a lot of time, effort, or money 
[5]. This is the instance in many application areas of 
machine learning, for example, in speech recognition, it 
costs almost nothing to record large amounts of speech, 
but labeling it requires many people to listen to it and 
type a transcript. Since unlabeled data contain less 
information than labeled data, they are required in large 
amounts in order to increase prediction accuracy 
significantly [4].  

A number of classification algorithms that uses both 
labeled and unlabeled data have been proposed, for 
example, self-learning or self-labeling is the earliest 
semi-supervised learning method Probably, which is 
still extensively used in the processing of natural 

language. S
3

VM, originally called Transductive SVM, 
they are now called Semi-Supervised SVM to 
emphasize the fact that they are not capable of 
transduction only, but also can induction. The idea is to 
find a decision boundary in 'low density' 
regions.  Graph-based algorithms, one can build a 
weighted graph over the labeled and unlabeled 
examples, and assume that two strongly-connected 
examples tend to have the same label and solve an 
optimization problem. Generative models, Mixture of 
Gaussian or multinomial distributions, and pretty much 
any generative model can do semi-supervised learning. 
Especially for EM algorithm, which is often used for 
training generative models when there is unlabeled data 
[1]. 

One of the many approaches to semi-supervised 
learning is to first train a weaker predictor, which is then 
used in exploiting the unlabeled examples. For instance, 
in content-based image retrieval (CBIR), a user usually 
poses several example images as a query and asks a 
system to return similar images. In this situation there are 
many unlabeled examples, i.e. images that exist in a 
database, but there are only several labeled examples, i.e. 
the query images. Another instance is online web page 
recommendation. When a user is surfing the Internet, he 
may occasionally encounter some interesting web pages 
and may want the system bring him to similarly 
interesting web pages. It will be difficult to require the 
user to confirm more interesting pages as training 
examples because the user may not know where they are. 
In this instance, although there are a lot of unlabeled 

examples, i.e. web pages on the Internet, there are only a 
few labeled examples, i.e. the current interesting web 
pages [6]. In these situations, there are very few labeled 
training examples to rely on. The initial weaker predictor 
may not classify the other examples correctly, so we 
propose a novel SVM-KNN classification method based 
on semi-supervised learning to solve these cases. 

B.  Support vector machine 
Support vector machine (SVM) is the youngest part in 

the statistical learning theory [7], whose dominating 
content is accomplished from 1992 to 1995 and 
developed quickly at present because of its solid theory 
and widespread applications. SVM is based on the 
structural risk minimization principle (SRM), which was 
proposed by Vapnik in 1998. Comparing with other 
learning methods, its generalization is optimal.  

SVM is proposed through the optimal hyperplane in 
the linear partition case [8], the optimal hyperplane is 
depicted in the figure1, the pentacles and squares denote 
the training examples of two classes respectively, L is 
the separated line which partitions two classes correctly, 

1L  and 2L  are the separate lines nearest to and parallel 

with L, the distance between 1L and 2L  is called 
classification margin. The optimal classification line 
requests to partition two classes correctly and make the 
margin up to maximum so as to ensure structural risk 
minimization [9]. Extend to high dimension feature space, 
the optimal line becomes the optimal hyperplane. 

The basic classification task is to estimate a 
classification function { }: 1

N

f R → ± using input-output 
training examples [10] from two classes  

,( )i ix y  { }1, , 1, 1di R y= ∈ ∈ + −…，n, x       (1) 

The function f should correctly classify unseen 
examples ( , )x y  i.e. ( )f x y= if ( , )x y  have the 
same probability distribution with the training data. 
In this work we will discuss binary classification 
[10]. If the points are linearly separable, then there 
exist an n -vector w  and scalar b  such that 

( ) 1 0,i iy x bω ⋅ + − ≥⎡ ⎤⎣ ⎦ 1, 2,i = …，n       (2) 

 

 
Figure1.The optimal hyperplane 
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The “optimal” separating plane,ω ⋅x+b=0 , is the one 
which is furthest from the closest points in the two 
classes [11]. Geometrically this is equivalent to 
maximizing the separation margin or distance between 
the two parallel planes 1w x b⋅ + = ±  i.e. 1 2,L L  (see 
Figure 1.) 
The “margin of separation” in Euclidean distance is 

2
2 ω  where 2

2
i=1

n

iw w=∑ is the 2-norm. To maximize 

the margin, we minimize w  subject to the constraints 
(2). According to structural risk minimization[12], for a 
fixed empirical misclassification rate, larger margins 
should lead to better generalization and prevent over-
fitting in high-dimensional feature spaces, so the task of 
standard SVM is:  

21 1min ( ) ( )
2 2

ω ω ω ωΦ = = ⋅  

( ). . 1 0,i is t y x bω ⋅ + − ≥⎡ ⎤⎣ ⎦ 1,2, ni = …，   (3) 

The Lagrangian equation is: 

1

1( , , ) ( )
2

{ [( ) ] 1}
n

i i i
i

L w b w w

y w x b

α

α
=

= ⋅

− ⋅ + −∑
                     (4) 

Then the former of the optimal problem accordingly 
becomes to: 

, 1 1
.       0,    1,2 ,...,   

0
1

min ( ) 1/ 2 ( )
N N

i j i j i j i
i j i

s t i Ni
N

yi i
i

L y y x x

α

α

α α α α
= =

≥ =

=∑
=

= ⋅ −⎧ ∑ ∑⎪
⎨
⎪⎩

(5) 

At last it calculates the decision function[13]： 
* *

* *

1

( ) sgn{( ) }

sgn{ ( ) }
n

i i i
i

f x w x b

y x x bα
=

= ⋅ +

= ⋅ +∑                    (6) 

The above only considers the linearly separable case. 
But in practice the most data is nonlinearly separable. In 
order to solve the nonlinearly separable cases, we 
introduce the kernel function into SVM. Generally to say, 
through the space mapping of the data, the dimensional-
low data will be mapped into a sufficiently high 
dimensional space. Then the data can be linearly 
separable in the high dimensional space. To avoid the 
complex inner product operation of the high dimensional 
space, the kernel function uses the simple operation of the 
original space to replace it [14] [15]. Then: 

( , ) ( ) ( )i iK x x x xϕ ϕ= ⋅                         (7) 
The quadratic programming of the classical SVM is:  

, 1 1

1

1min ( ; ( )) ( ) ( )
2

0

0 ,          1, 2, ,

i

N N
T

i i i l i j i j i
i j i

N

i i
i

i

Q x y y x x

y

c i N

α
α ϕ ϕ ϕ α α α

α

α

= =

=

⎧ = −⎪
⎪
⎪

=⎨
⎪
⎪ ≤ ≤ =
⎪
⎩

∑ ∑

∑
L

  (8) 

The final classifier is： 

1

( ) sgn ( )
N

i i i
i

f x y K x x bα
=

⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦
∑                    (9) 

C.  Selection of Kernel function 
There are four common kernel functions depicted as 

below, we must decide which one to try first. Then the 
penalty parameter C and kernel parameters are chosen. 
• Linear: ( , ) T

i j i jK x x x x= . 

• Polynomial: ( , ) ( ) , 0T d
i j i jK x x x x rγ γ= + > . 

• Radial basis function (RBF): 
2

( , ) exp( ), 0i j i jK x x x xγ γ= − − >  

• Sigmoid: ( , ) tanh( )T
i j i jK x x x x rγ= + . 

In our experiment, we choose RBF kernel as our kernel 
function. The RBF kernel nonlinearly maps examples 
into a higher dimensional space, unlike the linear kernel, 
it can handle the situation when the relation between class 
labels and attributes is nonlinear. What is more, the linear 
kernel is a special case of RBF as [16] [17] shows that the 
linear kernel with a penalty parameter has the same 
performance as the RBF kernel with some parameters. In 
addition, the sigmoid kernel behaves like RBF for certain 
parameters [17] and the number of hyper-parameters 
which influences the complexity of model selection. The 
polynomial kernel has more hyperparameters than the 
RBF kernel [18]. 

 D.  K-Nearest neighbor 

The K-Nearest Neighbor (KNN) algorithm is proposed 
by Cover and Hart in 1968 [19], whose theory has been 
developed maturely. K nearest neighbors are calculated 
using Euclidean distance, though other measures are 
available, Euclidean distance offers a fine mix of ease 
and efficiency. The classification of the example is 
determined by a majority vote of the labels of the k-near 
neighbors [20]. Intuitively, This method is very simple: 
for instance, if example 1x  has k nearest examples in the 
feature space and a majority of them have the same 
label 1y , then example 1x  belongs to 1y . 

Although KNN method depends on utmost theorem in 
the theory, during the decision course it is only related to 
small number of nearest neighbors, so adopting this 
method can avoid the problem of examples imbalanced, 
otherwise, KNN mainly depends on limited number of 
nearest neighbors around not a decision boundary, so it is 
suitable for classifying the case of examples set of 
boundary intercross and examples overlapped. 
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Euclidean distance is calculated as follows [21]: suppose 
two vectors ix and jx ，

1 2( , , )n
i i i ix x x x= …， , 

1 2( , , )n
j j j jx x x x= …， ,  

the distance between ix and jx is ： 

2

1

( , ) ( )
n

k k
i j i j

k

D x x x x
=

= −∑                              (10) 

In our experiment, we estimate the nearest neighbor of 
an example according to this formula. 

Ⅲ. SVM-KNN METHODOLOGY BASED ON SEMI-
SUPERVISED LEARNING 

A.  The motivation of the methodology 
In many pattern classification problems, if there is 

plenty of unlabeled data while only a small number of 
labeled data is available, then we should adopt semi-
supervised learning strategy, the existing methods have 
different kinds of restrictions at present, so how to seek 
an approach to solve the classification problem 
extensively is a troublesome problem. We design a semi-
supervised learning methodology by combining SVM and 
KNN algorithm, SVM fails to provide an accurate 
estimate of the true decision boundaries, because of the 
small size of labeled data. In contrast, we can utilize the 
information from the unlabeled data, which can help to 
recover the true decision boundaries for classification. As 
for SVM classification, the support vectors decide the 
decision boundaries directly, while the boundary vectors 
stand a good chance to be the support vectors, so we can 
choose the boundary vectors to rectify the decision 
boundaries iteratively. We employ KNN algorithm to 
label the boundary vectors because KNN mainly depends 
on limited number of nearest neighbors around, so it is 
suitable for classifying the case of examples set of 
boundary intercross and examples overlapped. At last the 
boundary vectors are mingled with the initial training 
examples to improve the accuracy of classification. 

The primary goal of this paper is to develop a semi-
supervised learning methodology to show high 
performance of classification by utilizing unlabeled data. 
Unlike existing methods, our methodology is planed to 
adapt to a variety of cases unlike other approaches have 
many restrictions. It yields an improvement when 
unlabeled data can help to reconstruct the optimal 
classification boundary by tuning three parameters. The 
three parameters can be depicted in the section  

B.  Proposed methodology 
When we classified a data set including large number 

of unlabeled data, if only utilize the few training 
examples available, then we can’t obtain a high accuracy 
classifier with inadequate training examples; if we want 
to obtain a classifier of high performance, then labeling 
the unlabeled data is necessary, but labeling vast 
unlabeled data wastes time and consumes strength. In this 
paper, we propose a novel method which uses SVM 
cooperated with KNN for classification based on semi-

supervised learning theory. The general model is depicted 
as above (See Figure 2). To begin with, we construct a 
weaker classifier SVM according to the few training 
examples available, then using the weaker SVM classifies 
the remaining large number of unlabeled data in the data 
set, picking out n  examples belonging to each class 
around the decision boundary by calculating Euclidean 
distance in the feature space, because the examples 
located around the boundary are easy to be misclassified, 
but they are likely to be the support vectors, we call them 
boundary vectors, so picking out these boundary vectors 
whose labels are fuzzy labeled by the weaker classifier 
SVM. Secondly we recognize these boundary vectors as 
testing set while recognize initial training examples as 
training set, use KNN method to classify them and 
recognize the results as the labels for boundary vectors. 
In the end, we put these boundary vectors and their labels 
into initial training set to enlarge the number of the 
training examples then retrain a SVM, iteratively until the 
number of the training examples is m times of the whole 
data set. The experimental results on three UCI data sets 
indicate that the final classifier SVM has significant 
improvement on accuracy. 

Model Description

m Labels of labeled data

Labeled data

unlabeled data

Goal: predict the labels 
of unlabeled data

X y

 Figure2. The general description of the proposed model 
 

The detailed steps of our method are as follows: 
1) Utilize the labeled data available in a data set as 

initial training set and construct a weaker classifier 
SVM1 based on this training set. 

2) Utilize SVM1 to predict the labels of all the 
remaining unlabeled data in the data set, then pick 
out 2 n  examples located around the decision 
boundary as boundary vectors. 

a) Choose an example ix  from the class of A (A 
is the label) and calculate the distance between 

ix  and all the examples of class B (B is the 
label) using Euclidean distance subsequently 
pick out n  examples of B corresponding to 
the n minimum distances.  

b) Choose an example iy  from the class of B (B 
is the label) and calculate the distance between 

iy  and all the examples of class A (A is the 
label) using Euclidean distance subsequently 
pick out n  examples of A corresponding to 
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the n minimum distances. 
c) We call the 2 n examples as boundary vectors, 

make the 2 n  boundary vectors together as a 
new testing set. 

3) KNN classifier classifies the new testing set with the 
initial training set, the boundary vectors get new 
labels. 

4) Put the boundary vectors and their new labels into 
initial training set to enlarge the training set, then 
retrain a new SVM2. 

5) Iteratively as above until the number of the training 
examples is m times of the whole data set. 

The final SVM predicts the initial unlabeled data and 
the remaining unlabeled data, the results indicating that it 
has significant improvement. 

Ⅳ . EXPERIMENTAL RESULTS 
Our experiment was carried out on three publicly 

available labeled data sets. Unlabeled data was simulated 
by dropping labels from some points in a given data set. 
In a given data set, some examples are randomly picked 
out to be used as the labeled training examples, while the 
remaining data are used as the unlabeled examples. The 
procedure is repeated ten times with random data 
partitions and reports the average result. 

The three benchmark data sets used in the following 
experiments are all chosen from the UCI machine 
learning repository [22], they are Iris data set, Breast 
cancer data set and Ionosphere data set. Iris data set: This 
data set consists of 150 four-dimensional examples. It is 
divided into three classes of equal size 50, but we only 
choose the examples of the two non-linear classes. The 
four features of this data set are: sepal length, sepal width, 
petal length, and petal width. Breast cancer data set: This 
is a nine-dimensional data set with 683 examples in two 
classes. There are 444 examples in class ‘‘benign’’, and 
239 examples in class ‘‘malignant’’. The nine features are: 
clump thickness, cell size uniformity, cell shape 
uniformity, marginal adhesion, single epithelial cell size, 
bare nuclei, bland chromatin, normal nucleoli and mitoses. 
Ionosphere data set:  This is a 34-dimensional data set 
with 351 examples in two classes. All 34 attributes are 
continuous and the two classes are “good” and “bad”.   
1） Experiment on Iris data 

In the experiment, we choose all the examples of the 
two non-linear classes as the data set in advance, 
subsequently choose 10 labeled examples randomly from 
the data set as initial training set and get rid of the labels 
of the other 90 examples as unlabeled data set. We repeat 
the procedure ten times and report the average result. 

Table 1 Experiment result on Iris data when m =0.26 n =2 

k  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

10 90 91.11% 
2 26 74 95.65% 
4 26 74 94.20% 
6 26 74 95.65% 

 
Table 2 Experiment result on Iris data when k =1 n =2 

m  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

10 90 91.11% 
0.26 26 74 95.65% 
0.34 36 64 96.88% 
0.40 36 64 94.92% 

 
Table 3 Experiment result on Iris data when m =0.4 k =1 

n  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

10 90 91.11% 
3 22 78 98.15% 
5 40 60 93.10% 
8 26 74 90.00% 

 
It is shown in the three Tables that we choose 10% 

labeled data of the whole data set as initial training set, 
after iterations the final training examples become more 
at a different degree so that it improves the classification 
accuracy on the 90% unlabeled data, during the course of 
the experiment we can tune the three parameters to obtain 
the optimal result as Table 3 shows when m =0.4 
k =1 n =3.  
2） Experiment on Breast cancer data 

In the experiment, we choose 100 data randomly from 
the data set as initial training set and get rid of the labels 
of the other 583 examples as unlabeled data set. We 
repeat the procedure ten times and report the average 
result.    

 
Table 4 Experiment result on breast cancer data 

when m =0.3 n =3 

k  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

100 583 78.22% 
1 203 480 80.34% 
5 203 480 80.77% 
8 203 480 80.77% 

 
Table 5 Experiment result on breast cancer data 

when k =5 n =3 

m  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

100 583 78.22% 
0.3 203 480 80.77% 
0.4 272 411 80.69% 
0.5 335 348 84.55% 
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Table 6 Experiment result on breast cancer data 
when m =0.5 k =5 

n  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

100 583 78.22% 
2 341 342 84.91% 
5 331 352 90.06% 
8 341 342 86.24% 

 
It is shown in the three Tables that we choose 15% 

labeled data of the whole data set as initial training set, 
after iterations the final training examples become more 
at a different degree so that it improves the classification 
accuracy on the 85% unlabeled data, during the course of 
the experiment we can tune the three parameters to obtain 
the optimal result as Table 3 shows when 
m =0.5 k =5 n =5.  
3） Experiment on Ionosphere data 

In the experiment, we choose 70 data randomly from 
the dataset as initial training set, using the other 281data 
remained as unlabeled data. We repeat the procedure ten 
times and report the average result.    

 
Table 7 Experiment result on Ionosphere data 

when m =0.3 n =3 

k  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

70 281 69.40% 
2 100 251 72.24% 
3 100 251 71.72% 
5 100 251 72.65% 

 
Table 8 Experiment result on Ionosphere data  

when k =3 n =3 

m  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

70 281 69.40% 
0.3 100 251 72.65% 
0.4 136 215 77.14% 
0.45 152 199 77.84% 

 
Table 9 Experiment result on Ionosphere data 

when m =0.45 k =3 

n  
Training 
examples 

Testing 
examples 

Accuracy on 
initial 

unlabeled data 
(%) 

70 281 69.40% 
1 156 195 80.14% 
2 154 197 79.27% 
5 150 201 79.69% 

 

It is shown in the three Tables that we choose 20% 
labeled data of the whole data set as initial training set, 
after iterations the final training examples become more 
at a different degree so that it improves the classification 
accuracy on the 80% unlabeled data, during the course of 
the experiment we can tune the three parameters to obtain 
the optimal result as Table 3 shows when m =0.45 
k =3 n =1.  

Accury on initial unlabeled data changes
with K

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 2 4 6 8

K

A
c
c
u
r
a
c
y

Iris

Breast
cancer
Ionosphere

 
Figure3. When the other two parameters are fixed, the accuracy 
on initial unlabeled data changes along with the change of the K 
and we can choose the optimal value according to the above 
figure. 

 

Accuracy on initial unlabeled data changes
with m
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Figure4. When the other two parameters are fixed, the accuracy 
on initial unlabeled data changes along with the change of the m 
and we can choose the optimal value according to the above 
figure. 
 

In all the experiments, the classes of unlabeled data are 
binary and the initial training set consists of the examples 
of two classes, during the course of experiment we set 
three parameters including , ,k m n , k  is the number of 
nearest neighbors, m  is the percentage controlling the 
number of training data account for the number of whole 
data, n  is the number of boundary vectors picked out 
from every class for each iteration. As depicted above we 
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can tune the three parameters in order to gain better 
performance. 
 

Accuracy on initial unlabeled data
changes with n
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Figure5. When the other two parameters are fixed, the accuracy 
on initial unlabeled data changes along with the change of the n 
and we can choose the optimal value according to the above 
figure. 

 
In a word, we propose a novel SVM-KNN 

classification methodology based on semi-supervised 
learning theory improve the accuracy of the final 
classifier. We only introduce part of the unlabeled-
labeled data into the training set, but these unlabeled-
labeled data are boundary vectors picked out from the 
classification boundary, the boundary vectors may be the 
support vectors so the final SVM classifier can predict the 
examples excellently. 

Ⅴ. CONCLUSION 

In this work we have described a classification method 
based on semi-supervised learning theory in which 
unlabeled data can be used to augment the training set 
and improve the accuracy of the final classifier. Our 
results support the statistical learning theory results that 
incorporating unlabeled data improves accuracy of the 
classifier when insufficient training information is 
available. In order to obtain better results the three 
parameters can be tuned conveniently according to 
practical environment. The preliminary experimental 
results presented suggest that this method of utilizing 
large number of unlabeled data has a potential for 
significant benefits in practice [6]. 

Many research questions remain. In the future we will 
study the classification problem with unlabeled data set in 
which the labels of unlabeled examples are unbalanced 
distributed and solve the multi-category unlabeled data 
classification, so the further work are clearly required. 
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