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Abstract—Qualitative Coalitional Games (QCGs), as a 
variation of coalitional games, is to investigate agents’ 
strategies and behaviors in cooperating games. Each agent 
has a set of goals as its desires and will be satisfied if at least 
one of its desires is achieved by executing some strategies in 
a coalition, otherwise be unsatisfied. After introducing 
QCGs, we add preference to QCGs framework to enable 
that every agent has the ability to join the best coalition for 
achieving its preferences goals (QCGPs). In order to make a 
formal description and reason about repeated coalitional 
games, the paper will study Branching Temporal 
Qualitative Coalitional Games with preferences. 
Computational Tree Logic (CTL) is used for QCGPs with 
complete axiomatisation of it, denoted as CTQCGPs. 
Further more, this paper analyses the expression power, 
complexity, and some characteristic of CTQCGPs.  
 
Index Terms—Coalition games, Multi-agents Systems, 
Modal logic, Artificial Intelligence. 
 

I.  INTRODUCTION 

The study of social software is a hot topic among 
research communities, including computer scientists, 
game theorists and philosophers. The key idea of it is 
regarding the social process as a computer program, and 
then using formal methods to analyze, design and 
validates social procedures just the same way in computer 
programs [1]. On the other hand, the multi-agents 
systems have gained the attention of game theory and 
artificial intelligence. So using formal methods, such as 
model and logic are an effective way for games which are 
often studied by mathematics tools. With the idea, 
coalitional Games (CGs) [2.3] are regarded as a natural 
tool for modeling goal-oriented multi-agents systems. 
When the goals of agents can be achieved with 
transferable payoffs of which the expression of payoff is 
not a numeric value, we have to use qualitative ways to 
solve the problem, Wooldridge.et.al[4] first introduces 
QCGs and pays an attention to the computation 
complexity of QCGs for decision problem and make the 
definition of the satisfaction of agents. In QCGs, each 
agent has a set of goals as its desires and will be satisfied 
in a coalition by performing some strategies. The means 
of an agent’s satisfaction is that a coalition including that 
agent achieves a set of goals which at least include one of 

the elements of that agent’s goals. [5, 6]Add preference to 
QCGs without temporal concept, what the means of 
preference of agent is that in any two goals of the agent, it 
prefers one to the other goal. In order to systematically 
study the multi-agents systems [7], repeated games [8] 
are an important way. Line Temporal logic(LTL) is used 
for repeated games in QCGs(TQCGs) by iterating games 
in time serial[9], but the expression power of LTL is only 
useful in universal quantifier. This paper will use CTL for 
QCGPs(CTQCGPs) for existential and universal 
quantifier.  

This paper is organized as follows: Section Ⅱ

introduces QCGPs with a formal description, section Ⅲ 
defines logic for expressing the properties of individual 
QCGPs, and the language for QCGPs is also given. In 
section Ⅳ  we built CTQCGPs. Sone chatacteristic of 
CTQCGPs is given in Ⅴ.Conclusion and future work 
will be given in section Ⅵ. 

II. QUALITATIVE COALITIONAL GAMES WITH 
PREFERENCES  

Coalitional games were introduced in [4] for 
interpreting cooperative interactions in games, just like 
“which coalition I should join in”. Although coalitional 
games are a very good model for numeric value in which 
every agent’s payoff can be expressed as a numeric value, 
unfortunately, it can not enable the payoff of a goals set 
to be expressed in that way. The new situation assumes 
that every agent has a set of goals as its desires and 
achieves its desires by attending a coalition to get some 
goals. To a different agent, in two goals, it prefers a goal 
to the other between two goals. The abstract description 
of coalitional games is given in [8], the formal model of 
QCGs is first presented in [4], and QCGPs is introduced 
in [5]. These models pay attention to how the coalition 
can be formal without caring for the concrete strategy and 
how to compute the payoff of agents. 

QCGPs include a non-empty, finite set A=(1, …m) of 
agents, each agent has a set of goals Gi⊆G. Here G is a 
goals set of all agents, and the elements of Gi has a partial 
order relation for interpreting the preference of agent i. 

Definition 1 Qualitative Coalitional Games with  
Preferences (QCGPs) is a 2n+3 tuple 
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Γ=<A, G ,G1,…,Gn, V, ⊲1,…,⊲n>  
where. A is a finite, non-empty set of agents; 
G={g1,…,gm}is a set of possible goals; Gi⊆G is the set of 
goals for agent i∈A; V:

GA 222 → is the characteristic 
function of the game which for every coalition C⊆A 
determines a set V(C) of choices, the intended 
interpretation being that if H∈V(C) then one of the 
choices is available to coalition C is to bring about all the 
goals in H simultaneously. ⊲i⊆Gi×Gi, is a partial order 
over Gi representing i’s preference relation, so that gr⊲igt 
indicates that i would rather have goal gr satisfied than 
goal gt 

We say a set of goals H satisfies agent i if H∩Gi≠Φ. 
We say that H satisfies C⊆A if it satisfies every member 
of C. Also, we say that H is feasible for coalition C if 
H∈V(C). The coalition preference which means the 
coalition likes one goal set more than the other goals set. 
We introduce the following definition. 
Definition 2 A coalitions, called by C, can achieve all the  
goals sets of it and every members of it are satisfied in 
that sets. 
     Х(C) = {G’⊆G: (∧i⊆C(G’∩Gi ≠Φ)∧(G’∈V(C))},  

let ХΓ=∪C⊆AХ(C) 
Definition 3 A coalition prefers a goals set than the other  
set of goals in ХΓ C⊆A, H, H’∈ХΓ, we say C strongly 
prefers the goal set H to H’, denoted as H⊃c H’ if  

1 H∈Х(C),  
2 ∀i∈C, ∃ri∈H∩Gi, ∀si∈H’∩Gi, ri⊲isi. 

 We say C weakly prefers the goal H to H’, denoted as 
H≻cH’ if 

 1 H∈Х(C), 
 2 ∀i∈C, ∀si∈H’∩Gi, ∃ri∈H∩Gi: ri⊲isi 

The H⊃cH’ means that coalition C can achieve H which 
will satisfy every member of it and every member has a 
goal in H∩Gi which is better than any other goals from 
H’∩Gi. H≻cH’ indicates that for ∀i∈C, no matter which 
goals of H’∩Gi, i will find a better goal in H∩Gi. In this 
definition, H’ is not required to be in Х(C); we use ⊲c to 
express ⊃c or ≻c in the following paper  
The following example is concrete description of  the 
coalition with preference  
Example1 let  Γ1 be a  Qualitative Coalitional Games 
with Preferences (QCGPs)  

Γ1=<A, G ,G1, G2 ,G3, V, ⊲1, ⊲2,⊲3>, where 
A=(a1, a2, a3), G=(g1 ,g2 ,g3, g4, g5. g6) 
G1=(g1, g4):  g1⊲1 g4 
G2=(g2, g3， g4):  g2⊲2 g3⊲2 g4 
G3=(g4, g5, g6):  g4,⊲3 g5⊲3g6 
V(a1)={(g1,g2)}:  
V(a2,a3)={(g1,g3), g6}:  
V(a1,a3)={(g4, g5), (g1, g4), (g1, g6)}: 

We will make use of  Γ1 in  later example 

Ⅲ. THE LOGIC FOR QCGPS 

Logic for expressing properties of individual of QCGs 
has been given in [9]; the key idea is that the language is 
defined in two parts: Lc is the satisfaction language, and 
is used to express properties of choices made by agents. 
The basic constructs in that language are of the form sati, 
meaning “agent i is satisfied”. The overall language 
L(QCGs) is used for expressing properties of QCGs 
themselves. The main construct in that language is of the 
form <C>φ, where φ is a formula of the satisfaction 
language, and means that C have a choice such that this 
choice makes φ true. For example, <3>(sat1∧ sat4) will 
mean that agents 3 has a choice that simultaneously 
satisfies agents 1 and 4, we add preferences to that 
language. So we improve the logic by adding preference 
operations 

A.  The formal expression of logic 
Formally, the grammar φc defines the satisfaction 

language Lc, while φq defines the QCGPs language 
L(QCGPs). 
   φc ::= sati | ¬φc |φc∨φc 
   φq::= <C>φc| [C]φc |⊲Cφc | ¬φq |φq∨φq 
Here, i∈A, C⊆A, the other propositional connectives (∧,
→,↔) is also used in the language of Lc and L(QCGPs),  
the [C]φ means that no matter what strategy C take, φ 
will be true and can be written as ¬<C>φ. 
When Γ=<A, G ,G1,…,Gn,V, ⊲1,…, ⊲n> is a QCGPs, 
H⊆G, and φ∈Lc, Γ. H |=Qφ is defined as fellows. 

Γ. H |=Q sati          iff  Gi∩H≠Φ 
Γ. H |=Q ¬sati     iff not Γ. H |=Q sati 
Γ. H |=Q φ1∨φ2    iff  Γ. H |=Q φ1 or Γ. H |=Qφ2 

When φ is L(QCGPs) formula, Γ |=Qφ is defined as fello- 
ows  
Γ |=Q<C>ψ    iff there is a H∈V(C), such that Γ. H |=Qψ 
Γ |=Q⊲Cψ      iff there is a H∈V(C), H’∈ХΓ, Γ. H |=Qψ, 

Γ. H’ |=Qψ and H ⊲C H’ 
Γ |=Q¬ψ         iff not Γ |=Qψ 
Γ |=Qψ1∨ψ2   iff Γ |=Qψ1 or Γ |=Qψ2 
The preference of coalition of C means C has better 

choice to satisfy their goals. We will use the logic in 
section 4 to Branching Temporal framework. 
Example 2: let  Γ1 be as in Example 1 Then  

Γ1 |=Q (a1)(sat1∧sat2 ) 
Γ1 |=Q (a2,a3)sat1∧(a2,a3)sat2)∧¬((a2,a3)(sat1∧sat2)) 
Γ1 |=Q ¬ ((a1,a3) sat2) 
Γ1 |=Q⊲ (a1,a3) sat1 

B.  Expressive power of L(QCGPs) 
The Expresive power of L(QCGs) is given in [9] by 

analyzing some properties of it, we pay attention to the 
properties of the preference which means what L(QCGPs) 
can express is that coalition can prefer some set of agents 
concurrently, we are not interested in neither how and 
why the coalitions prefer some goals, nor why an agent 
prefer one goal to the other one. We will use QCGPs-
simulation to show the properties of preference, In other 
words, the language can not differentiate the preference 
of two games Γ and Γ’ iff QCGPs-simulate each other 
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     A relation   
Z⊆ 

c A∈
∪  V(C)×V’(C) 

is a QCGPs-simulation between two QCGPs, Γ=<A, G , 

G1,…,Gn,V, ⊲1,…, ⊲ n>, and Γ’= <A, G’ ,G1’,…, Gn’, V’ 

,⊲1’,…,⊲ n’> iff the following conditions hold for all 
coalitions C. 

1 if HZH then if H∩Gi=Φ, iff H∩Gi’=Φ for all i (the 
satisfaction condition), if H∩Gi≠Φ and there is H’∈ХΓ, 
H⊲iH’ iff H∩Gi’≠Φ and there is H’∈ХΓ’, H⊲iH’ for all i 
(the preference condition),  

2 for every H∈V(C), there is a H∈V’(C) such that 
HZH (Z is total) 

3 for every H∈V’(C), there is a H∈V(C), such that 
HZH (Z is surjective) 
If there is a QCGP-simulation between Γ and Γ’, we 
write Γ⇌Γ’  
Example 3: Let Γ2=<A, G’ ,G1’, G2’, G3’, V’,⊲1’, ⊲2’,⊲ 3’ 
> be the QCG with the same agents as in Γ1 

A=(a1, a2, a3), G’=(f1, f2, f3, f4,) 
G1’=(f1, f3):  f1⊲1 f3 
G2’=(f1,  f4): f1⊲2 f4 
G3’=( f2, f3  f4,):  f3⊲3f4,⊲3 f2 
V(a1)={(f1)}: 
V(a2,a3)={(f1), (f2)}:  
V(a1,a3)={(f1,f3)}: 

Then Γ1⇌Γ2.The relation Z consisting of the following 
pairs is a QCGP-simulation between Γ1 and Γ2 
{(g1,g2), (f1)} : {(g1,g3), (f1)}: {(g1, g4), (f1,f3)}: {g6), (f2)} 
Note that Z not a function, nor the inverse of a function. 

We can simulate any choice in one game with a choice 
in the other, and vice versa, if there is QCGPs-simulation 
for two games.  
We write Γ≡Γ’ iff ∀φ∈L(QCGPs)[Γ. H |=Q φ ⇔ Γ’. H |=Q φ]   
  
Theorem 1.The preference is invariant under QCGPs-
simulation: Γ⇌Γ’ ⇒ Γ≡Γ’ 

Proof: let Γ=<A, G ,G1,…,Gn, V, ⊲1,…,⊲n> and 
Γ’=<A, G’ ,G1’,…,Gn’, V’,⊲1’,…,⊲ n’> with Γ⇌Γ’ , first, 
we show that   

           HZH ⇒(Γ. H |=Q ψ ⇔ Γ’. H |=Q’ ψ)               (1) 
For any ψ by induction over ； For the satisfaction 
condition, Γ. H |=Q ψ iff H∩Gi≠Φ, iff, H∩Gi≠Φ iff Γ’. H 
|=Q ψ. For the preference condition, there is H’∈ХΓ, Γ. H 
|=Q ψ, Γ. H’ |=Q ψ, H ⊲i H’ iff H’∈ХΓ’, Γ’. H |=Q ψ, Γ’. 
H’ |=Q ψ, H⊲iH’. The inductive step (negation and 
disjunction) is straightforward. We now show that           

Γ. |=Q φ ⇔ Γ’. |=Q φ  
for any φ by induction on φ For the base case, let φ=⊲C ψ, 
for the direction to the right, if Γ. H |=Qψ then there is a 

H∈V(C), H’∈ХΓ, such that Γ. H |=Qψ, Γ, H’ |=Qψ and H 
⊲CH’ by totality of Z, there is a H∈V’(C) such that HZH, 
by (1) then Γ’. H|=Qψ and H’∈ХΓ’, Γ’. H’|=Qψ, H⊲iH’.  
The direction to the left is symmetric: if Γ’. H |=Q ψ, 
there is H∈V’(C), H’∈ХΓ’, Γ’. H|=Q ψ, Γ’. H’ |=Q ψ, 
H⊲iH’ by surjective of Z, there is a H∈V(C) such that 
HZH, by (1) then Γ. H’|=Q ψ and H’∈ХΓ’, Γ. H |=Q ψ, 
H⊲iH’, the step (negation and disjunction) is 
straightforward. The proof of invariant of satisfaction is 
given in [9] ∎ 
 
Theorem 2. Let Γ, Γ’ be defined over the same set of 
agents:  Γ⇌Γ’ ⇐ Γ≡Γ’  

Proof  Let Γ=<A, G, G1,…,Gn, V, ⊲1,…,⊲n> and 
Γ’=<A, G’ ,G1’,…,Gn’, V’,⊲1’,…,⊲ n’> with Γ≡Γ’, with 
any coalition C and any choice H∈V(C), associate the set 
SC 

H ={i: H∩Gi≠Φ, ∃H’∈ХΓ, H⊲iH’} of agents satisfied 
if C prefers H to H’. Similarly for Γ’: T C’ 

H ={i: 
H∩Gi’≠Φ,∃H’∈ХΓ’, H⊲iH’}. For any H∈V’(C). We 
define a QCGPs- simulation Z: Γ⇌Γ’ as follows: for 
every coalition C and pair of choices H∈V(C), H∈V’(C),  

HZH ⇔ SC 
H’=TC’ 

H . 
We must show that Z is total, i.e., that if H∈V(C) then 

there is H∈V’(C), such that SC 
H’=TC’ 

H’. Suppose not: assume 
that i∈SC 

H’ and i∉TC’ 
H ,  for all H∈V’(C) Then Γ. |=Q⊲Csati, 

and Γ’. |=Q¬⊲Csati which contradicts the fact that Γ≡Γ’ 
the same is to i∉SC 

H’, i∈TC’ 
H’. Similarly, we must show that 

Z is surjective, the proof is the same as Z is total. Finally, 
we show that the satisfaction condition holds if. HZH, 
then H∩Gi≠Φ iff i∈SC 

H’, iff, by the definition of Z, i∈TC’ 
H’  

iff H∩Gi’≠Φ ∎ 

C.  Axiomatisation for QCGPs 
We give the axiomatisation of qualitative coalitional 

games, and show its soundness and completeness. We use 
K(QCGPs) to express the axiomatisation for QCGPs for 
close resemblance to the modal system K, which also 
indicates that our logic, is in a sense, a weakest basic 
system for QCGPs, The system K(QCGPs) over the 
language L(QCGPs) is defined as follows, where φ,ψ are 
arbitrary L(QCGPs) formulae, α,β are arbitrary Lc 
formulae and C is an arbitrary coalition: 

Prop   If φ is an L(QCGPs)-instance of a propositional 
tautology, then φ is provable 

K  [C](α→β)→([C]α→[C]β) is provable. ⊲C 
(α→β)→(⊲Cα→⊲Cβ) is provable 

MP     If φ,φ→ψ are provable, then ψ is provable 
Nec  If α is an (Lc) instance of a propositional 

tautology, then [C]α, ⊲Cα are provable 
It is easy to see that the deduction theorem holds for 

K(QCGPs).We will need the following properties of 
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K(QCGPs). The proofs are straightforward for readers 
familiar with modal logic 
LEMMA 1. α,β∈Lc : 
      1   |= K(QCGP) <C>(α∧β) →<C>(α) 

2   |= K(QCGP) <C>(α∨β) →(<C>(α) ∨<C>(β)) 
3   |= K(QCGP) (<C>(α)∧[C](α→β)) →<C>(β) 
4   |= K(QCGP)⊲C(α∧β) →⊲Cα 

      5   |= K(QCGP)⊲C(α∨β) →(⊲Cα∨⊲Cβ) 
 
Theorem 3 (SOUNDNESS & COMPLETENESS)  
For any Ω⊆ L(QCGPs), φ∈L(QCGPs), 

Ω|=Qφ⇔Ω|= K(QCGPs).φ 
Proof: For soundness (the direction to the left), it is 

easy to see that the axioms are valid, and that the rules 
preserve logical consequence. For completeness, let 
ψ⊆L(QCGPs) be K(QCGPs) consistent. We show that ψ 
is satisfied by some QCGPs. Let A be the set of agents 
and let n = |A|,. Let ∆ be a L(QCGPs) maximal and 
K(QCGPs) consistent set containing ψ. We now construct 
Γ=<A, G ,G1,…,Gn,V, ⊲1,…,⊲ n> intended to satisfy ψ. 
as follows: 
          G = { sat1, . . . , satn} 

  Gi = { satn, sati } satn⊲isati for each i 
H∈V(C) ⇔ ⊲cℰH∈∆ for any H∈G where 
ℰH=

,i nsat H sat H∈ ∈
∧ sati∧ ∧

∉∈ HsatiA,i
¬sati, we show that 

Gamma |=Q γ⇔γ∈∆ 
For any γ by structural induction over γ For the base 

case, γ=⊲cα, α∈Lc, Again, we use induction on the 
structure of α, For the (nested) base case, let α=sati, For 
the direction to the right, if Γ |= Q γ then there is an 
H∈V(C), and ∃H∈ХΓ and Γ. H |=Q γ, Γ. H |=Q γ, H⊲cH, 
then sati∈H, and by Lemma 1.4, γ=⊲csati∈∆. For the 
direction to the left, Let ⊲csati∈∆, S⊆G, S’⊆G let          

Xi=
GS⊆
∨ ℰH(S∪sati, satn) 

Xi
’=

' GS ⊆
∨ ℰ H(S’∪sati).  

sati→Xi, sati→Xi
’ is a Lc instance of a propositional 

tautology, by Nec ⊲c(sati→Xi)∈∆, ⊲c(sati→Xi
’)∈∆, 

then∃S,S ’Γ.(S∪{sati, satn})|=Q γ, Γ.(S’∪{sati})|=Qγ, and  
(S∪{sati, satn})⊲c(S’∪{sati}), so Γ |= Q⊲csati which 
concludes the proof of the direction to the left in the 
innermost induction proof. Both the inner and the outer 
induction steps (negation and disjunction) are 
straightforward. The proof about γ=<C>α is be given in 
[9]∎ 

Ⅳ.  BRANCHING TEMPORAL QCGPS 

Using temporal method is an effective ways for 
repeated games, to CTL, at each node of it, a (possibly 

different) QCGPs Γ is played. A Branching temporal 
qualitative coalitional games (CTQCGPs) is then a triple  
M =<S, R, Q>  where: 

S: is a set of states;  
R: is a total binary relation R⊆S×S. i.e.. ∀s∈S, 

∃t∈S, <s, t>∈R, and  
Q: S→Q, where Q is the class of all QCGPs, is a 

function associating a qualitative coalitional games Q(S) 
=<A, G, G1,…,Gn, V, ⊲1,…⊲n>with every state s∈S. 

A. A Logic for CTQCGPs  
In this section we provide the formal syntax and 

semantics for representative systems of Branching 
Temporal QCGPs propositional by branching time 
temporal logics, CTL (Computational Tree Logic) allows 
basic temporal operators of the form: a path 
quantier−either A (for all futures pathe) or E (for some 
future path) followed by a single one of the usual linear 
temporal operators G (always), F (sometime), X (next 
time) or U (until).Formally, the language of L(CTQCGPs) 
is defined by the grammar φt 

φt ::= <C>φt|¬φt|⊲cφt |φt∨φt | E(φtUψt) | EXφ| EGφ| 
The remaining temporal operators to express 

eventuality and universality can be derived in standard 
way, for instance: EFφt = E(Т∪φt), and AGφt = ¬EF¬φt. 
CTL formulae are interpreted in Kripke models. When M 
=<S, R, Q>is a CTQCGPs，A path π =<π0, π1, π2, · · ·> 
of M is an infinite sequence of states in s such that (πi, 
πi+1)∈R for all i≥0. s∈S, φ is a L(QCGPs) formula, the 
satisfaction relation. M.s |=T φ, is defined as follows (the 
cases for negation and disjunction are defined as usual). 

M. s |=T φ iff Q(s) |=Q φ when φ∈L(QCGPs) 
M. s |=T E(φtUψt)φ iff there exists a path π such that 

π0 =s and a k≥0. Such that πk |=Q ψ and πi |=Q φ for all 
0≤i< k, Q(πi )|=Q φ, φ, ψ∈L(QCGPs). 

  M. s |=T EXφ iff there exists a path π such that π0 = s  
and Q(π1) |=Q φ, φ∈L(QCGPs) 

M. s |=T EGφ iff there exists a path π such that π0 = s 
and Q(πi) |=Q φ for all i≥0. 

We will henceforth use L(CTQCGPs) to refer to both 
the language, and the logic we have defined over this 
language. 

B.  Expressive Power of CTQCGPs 
The notion of simulation for QCGPs (Section 2.2) can 

be naturally used to the branching temporal case. When 
M = (S, R, Q) and M’= (S’, R’, Q’) are CTQCGPs and s 
∈S, s’∈S’ we define.  

M.s⇌ T M’.s’ ⇔ Q(s) ⇌ Q’(s’),  
      M.⇌ T M’, ⇔ ∀s, ∃s’ M.s⇌ T M’.s’, and ∀s’, ∃s, 

M.s⇌ T M’.s’ 
The notion of elementary equivalence for CTQCGPs 

over the language L(CTQCGPs) can be defined as 
follows. M.s≡ M’.s’ iff, for every φ∈L(CTQCGPs), M. s 
|=T φ iff M’ s’ |=T φ M≡M’, iff for ∀S’, ∃S, M.s≡ T M’.s’ 
and ∀S’, ∃S, M.s≡M’.s’. Note that in the branching 
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temporal case, the fact that M,s ⇌ T M’,s’ is not sufficient 
for M,s≡M’,s’ to hold. 

C.   Satisfiability 
    The satisfiability problem for L(CTQCGPs) is as 
follows: given a formula φ∈ L(CTQCGPs), does there 
exist a CTQCGPs M and s∈S, such that M. s |=T φ ? 
Theorem 4. The sat. probl. for L(CTQCGPs) is a 
PSPACE-complete problem. 

The satisfiability problem of TQCGs in [9] is given by 
LTL+Km(the fusion of LTL and multi-modal K),so the 
same method is for CTL+Km, in [12,13]pointing that the 
complexity of CTL+Km is PSPACE-complete problem. 
The detail context to translate L(CTQCG) formula to 
LTL+Km is in [9], so the same method can be used for 
CTL+Km 

D.   Satisfiability 
The system K(CTQCGPs) over the language 

L(CTQCGPs) is defined as follows, where φ,ψ are 
arbitrary L(CTQCGPs) formulae, A,B are arbitrary 
L(QCGPs) formulae, α β are arbitrary Lc formulae and C 
an arbitrary coalition. For simplicity, we write T instead 
of`K(TQCGPs) for derivability in K(CTQCGPs). 

Prop     If A is an L(QCG) instance of a propositional 
tautology, then |−T A 

K         |−T[C](α→β) →[C](α) →[C](β) 
MP      if |−K(QCGPs)A and |−K(QCGPs) A→B, then |−TB 
Nec     If α is an (Lc) instance of a propositional ta- 

utology, then |−T[C]α , |−T⊲cα 
A1      EX(φ∨ψ)↔ (EXφ∨EXψ) 
A2      AXφ↔¬ EX¬φ 
A3    AG(φ→(¬ψ∧EXφ)) →(φ→AFψ) 
A4    AG(φ→(¬ψ∧AXφ)) →(φ→EFψ) 
A5    AG(φ→ψ) →(EXφ→EXψ) 
U1    E(φUψ) ↔(ψ∨(φ∧EX(φUψ))) 
U2    A (φUψ) ↔(ψ∨(φ∧AX (φUψ))) 
Prop  if φ is an (L(CTQCGPs)) instance of a 

propositional tautology, then |−T φ 
Nec    If  |−φ then |−AGφ 
MP    If  |−φ and If  |−φ→ψ then |−ψ 

Axioms Prop and K and rules MP and Nec say that 
every K(CTQCGPs)-theorem is also a K(CTQCGPs)-
theorem. The subsystem consisting of axioms A1–U2 and 
rules Prop–Nec is a version (with L(QCGPs) formulae in 
place of atomic propositions) of an axiomatisation of 
branching time logic proved to be sound and complete in 
[10]. 
 
Theorem 5 (SOUNDNESS & COMPLETENESS). For 
any φ∈L(TQCGPs) |− T φ⇔|= T φ 

Proof: The logic K(CTQCGPs) is a temporalisation of 
K(QCGPs): the language of K(CTQCGPs) has atomic 
K(QCGPs) formulae in place of atomic propositions; the 
semantic structures of K(CTQCGPs) identifies a semantic 
structure for K(QCGPs) by using Kripke model for 
interpreting K(QCGPs) formulae; and the rules of 

K(CTQCGPs) are the rules of the temporal logic for 
temporal formulae in addition to axioms/rules of 
K(QCGPs) formulae. Finger [11] show that the 
temporalisation of a sound and complete system is sound 
and complete. The theorem thus follows immediately 
from Theorem 3. ∎ 

E.  An Example 
  We add Branching Temporal dimension with preference 
to the example given in [9]. There are there agents and 
server providing web service, all agents needs to access 
the server from time to time, There are three basic action 
for agents, read access, write access and wait, For the 
integrity, web service is violated if two agents write 
access are granted (inconsistent writes) or read and write 
access are granted (inconsistent reads), or no action for 
any agents (inefficiency) at the same time 
    Let M =<S, R, Q> be a CTQCGPs where S is some 
infinite set of states, and R is total binary relation over 
S×S and Q are holds for Q(s: s∈S)=<A, G, G1, G2, G3, 
Gser, V, ⊲1,⊲2  ⊲3 ⊲ser> 
     A={1,2,3,ser}, We model the agents as players 1, 2 
and 3, and the server as player ser  

 G={s1,s2,s3,s4,s5,s6,s7), That each of these goals are 
achieved means that right now. 
     s1: every agent is granted read access 

   s2: agent 1 is granted write access  
 s3: agent 2 is granted write access 
s4: agent 3 is granted write access 
s5: Server prefer write access agent 1 to agent 2  
s6: Server prefer write access agent 1 to agent 3  
s7: Server prefer write access agent 2 to agent 3 

for the preference of every agent, for example,  players 1 
more like (s1, s2) than  (s1), Notice that when players 1 
get the goal (s1, s2) that means he can read or write, not 
that read and write at the same time.  
G1= {(s1), (s1, s2)}    (s1, s2)⊲1 (s1) 
G2= {(s1), (s1, s3)}   (s1, s3)⊲2 (s1) 
G3= {(s1), (s1, s4)}   (s1, s4)⊲3 (s1) 
Gser = {(s1), (s5), (s6), (s7)} 

It is assumed that for ser, its preference will be changed 
with time: Given the symbol t (minute) for time with the 
state changes, ser has different preference. 

If  t mod 2 = 0   (s5)⊲ser(s6) ⊲ser(s1) 
If  t mod 3 = 0   (s6)⊲ser(s7) ⊲ser(s1) 
If  t mod 5 = 0   (s7)⊲ser(s5) ⊲ser(s1) 
otherwise (s1) ⊲ser (s5)⊲ser(s7)⊲ser (s6)  

V(1, ser)={(s1), (s1, s2)},  
V(2, ser)= {(s1), (s1, s3)}  
V(3, ser)= {(s1), (s1, s4)} 
V(1,2,ser)={(s1), (s1, s2, s5)},  
V(2,3,ser)={(s1), (s1, s3, s6)},  
V(1,3,ser) ={(s1), (s1, s4, s7)}, 
V(1,2,3,ser) ={(s1,s2,s3,s4,s5,s6,s7)}, 

The following properties hold in the system  
1 EF<ser>(sat1∧sat2 ∧sat3)  all agents will be satisfied 

in sometime at some future path   just like t=30 
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2 AG <ser>(sat1∨sat2 ∨sat3)  for all future  path, there 
is at least a agent will be satisfied 
3 E [<ser>(sat1∨sat3) U <ser>(sat2)] agent  1 or 3 will 

be satisfied in some future path until  agent  2 is satisfied. 

Ⅴ.  CHARACTERIZING CTQCGPS S 

In this section, we investigate the axiomatic 
characterizations of various classes of CTQCGPs., We 
pay attention to the preference characteristic with time. 
As usual, when saying that a formula scheme' 
characterizes a property P of models, we mean that φ is 
valid in a model M iff M has property P; if only the right-
to-left part of this biconditional holds, then we say 
property P implies φ. 

A. Basic Correspondences 
Let hs(C) denote the set of all agents that could 

possibly be satisfied (not necessarily jointly) by coalition 
C in state s:  

hs (C) = { i: i∈A & ∃H∈Vs (C), Gs
i∩H ≠Φ}  

The “h” here is for “happpiness”: We regard hs(C) as 
all the agents that C could possibly make happy in s. 
Thus the semantic property i∈hs(C) is a counterpart to the 
syntactic expression <C>sati [9], we use hps(C) to 
denotes the hs(C) with preference. 
hps(C) = {i: i∈A & ∃H∈Хs (C), ∀H∈Хs (C)/G, there is 
no such that case (H∩Gi)⊲i(H∩Gi)} which means C have  
realized a preference set of goals in s.  
∀s∈S, for all path from s, 

 s→s’, (i∈hps(C))→(i∈hps’(C))                    (AXHP) 
if means C have realized a preference set of goals.in all 
the state immediately following s. 
∀s∈S, for a path from s,  

s→s’, (i∈hps (C)) →(i∈hps’(C))               (EXHP) 
if means C have realized a preference set of goals in a 
state immediately following s. 
Lemma 2. ⊲C sati→AX⊲C sati  characterizes AXHP,  ⊲C 
sati→EX⊲C sati characterizes EXHP 
We also characterise the unperference property 
∀s∈S, for all state immediately following s,  

s→s’, (i∉hps (C)) →(i∉hps’(C))                  (AXUP) 
∀s∈S, for a state immediately following s,  

s→s’, (i∉hps (C)) →(i∉hps’(C))                   (EXUP) 
Lemma 3. ¬⊲C sati→AX¬⊲C sati  characterizes AXUP , 
¬⊲C sati→EX¬⊲C sati  characterizes EXUP, 
To the time of future, eventually, C will be able to make i 
happy with preferences. 

for all path ∃s∈S, (i∈hps(C))                     (AFEH) 
for a path ∃s∈S in the path  (i∈phs(C))      (EFEH) 
for all path  ∃s∈S, (i∉hps(C))                     (AFEU) 
for a path  ∃s∈S in the path (i∉hps(C))       (EFEU) 

Lemma 4 AF⊲C sati  characterizes AFEH,  EF⊲C sati 
characterizes EFEH 
        AF¬⊲C sati characterizes AFEU  AF¬⊲C sati  
characterizes EFEU 

Finally, we consider safety properties.  Which means C 
always have realized a preference goals set and C never 
can have realized a preference goals set  

for all path ∀s∈S, (i∈hps(C))                     (AGPH) 
for a path ∀s∈S, in the path (i∈hps(C))      (EGPH) 
for all path ∀s∈S,  (i∉hps (C))                     (AGPU) 
for a path ∀s∈S in the path , (i∉hps(C))     (EGPU) 
 

Lemma 5   AG⊲Csati  characterizes AGPH,  EG⊲Csati  
characterizes EGPH 
         AG¬⊲C sati  characterizes AGPU,  EG¬⊲Csati  
characterizes EGPU 

B. Basic Properties of preference Choice Sets 
We consider whether a coalition has a preference set of 
goals in a state and whether it has a best choice. 
Definition 4 for C⊆A, the maximal strongly preferred  
goal sets with respect to C, denoted μ⊐ are defined 
through 

μ⊐(C) = {H ∈Х(C), ∀H ∈Х(C), it is not the case 
that H⊐cH} the maximal weakly preferred goal sets with 
respect to C, denoted 

μ≻(C) = {H ∈Х(C): ∀H ∈Х(C), it is not the case 
that H≻cH} In the event of μ⊐(C) = μ≻(C) we write 
simply μ(C). To avoid excessive repetition, we use the 
relational symbol ⊲ to indicate either ⊐ or ≻ 

∀s∈S μs⊲(C)=Φ，C never has preference choice.    
∀s∈S ∃H∈μs⊲( C)≠Φ，H≠Ф , C has preference 

choice   
∀s∈S ∃H∈Хs(C),∀H∈Хs (C)/H，H⊲CH, C has 

a best preference choice  

C. Static preference Goal Sets and Choices 
The goal sets with preference for each agent and the 

choice sets for each coalition are guaranteed to remain 
unchanged.for all path(existential quantifier is easy for 
reader to built) 

∀s,s’ ∈S (Hi
 s= Hi

 s  & ⊲i
s=⊲i

s’)                  (ASGS) 
the goal set with preference is static for agent i. 

∀s,s’ ∈S (V(C)s= V(C)s’ &  ⊲i
s=⊲i

s’ )            (ASC)  
 coalition C’s preference choices remain static 

∀s,s’ ∈S , μ(C)s=μ(C)s’ )  coalition C’s maximal 
strongly preferred goal sets remain static  
Lemma 6. Any model satisfying both ASGS and ASC 
also satisfies AXHP and AXUP, and as a consequence, 
ASGS and ASC together imply ⊲Csati ↔AXPH ⊲Csati, 

D. Dynamic preference Goal Sets of individual agent 
Considering agent i’s goals set with preference is 

guaranteed to monotonically decrease over time. Roughly, 
this condition means that every agent is guaranteed to get 
no easier become to satisfy his preference over time. 
Formally a agent i’s preference goal sets in state s is 
better than all the immediately following s (existential 
quantifier is easy for reader to built) 

∀s∈S, for all path from s, s→s’,∃H∈μs⊲ (C), 
∀H∈μs’⊲ (C),∀g2∈(H∩Gi ),∃g1∈(H∩Gi), g1⊲g2  

The monotonically increasing over time is: 
∀s∈S, for all path from s, s→s’, ∀H∈μs⊲ (C), 
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∃H∈μs’⊲ (C), ∃g2∈(H∩Gi ),∀g1∈(H∩Gi), g2⊲g1  

E. Dynamic preference Choices   
We also investigate the coalition’s choice in time, 

which say that the sets of choices available to coalition C 
monotonically increase or decrease respectively. 
(existential quantifier is easy for reader to built) 

∀s∈S, for all path from s, s→s’, μs⊲(C) ⊆μs‘⊲(C) 
the coalition C’ preferred goal sets are monotonically 
increase 

∀s∈S, for all path from s, s→s’, μs⊲(C) ⊒μs‘⊲(C) 
the coalition C’ preferred goal sets are monotonically 
decrease 

F. Solution Concept 
Definition 5  Let Γ=<A, G ,G1,…,Gn, V, ⊲1,…,⊲ n> 

For a coalition C⊆A the core of C denoted K⊲(C), is the 
set { H∈μ⊲(C):, ∀C’⊂C, ∀H∈μ⊲(C’), it is not the 
case that H⊲CH },then the coalition C is core sets. 
To an agent, perhaps the key problem is whether at every 
time point there is some stable coalition, containing this 
agent. 

stable(i)= AG ∨
∈∈ CiAC ,

K⊲(C), if there is a coalition 

satisfying the stable of agent i. which means, to agent i, 
there is a stable solution for it. More characteristics of 
QCGPs can be seen in [5] 

Ⅵ.  CONCLUSION 

QCGs were introduced in [4] as a model for coalition 
games with non-numeric values payoff, it score how a 
coalition can be formed, to a agent. Although it has many 
goals as its desire, it can’t be get all the goals in games, 
so preference goals is effective ways for an agent’s 
strategy. 

Formal coalition cooperating games is a hot point in 
social software and multi-agents systems, in this paper we 
introduce the problem from QCGPs and CTL, we 
investigate the basic concept and model of QCG with 
preference and give a logic language for it by using 
simplest modal logic K, and we talk about the expression 
power and axiomatisation of the logic. The CTL is used 
for the repeated games and some characteristic of 
CTQCGPs, such as realizing preference goals sets, best 
strategy of coalition, the stabilization of coalition and so 
on, are given 

The further researches are multiple. First are the 
properties of CTQGCPs some principium investigations 
were made in [5], but considering the repeated games, 
more work should be taken. Second, temporalising 
QCGPs also has many ways, just like ATL and CTL*, 
The LTL and CTL are only reflects a simple case. The 
more complex temporal structure should be used for 
deeper percipience to coalition games. In addition, the 
dynamic goals and preferences are also important 
problems, in practice application, the goals and 
preferences of an agent are not static, for example, with 
the resource loss, a agent will decrease its goals and 

preferences or after by getting some goals, an agent will 
increase its goals for being unsatisfied in existing goals. 
So those factors will influence the structure and strategy 
of the coalition in games. 
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