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Abstract—this paper firstly generalizes majority vote to 
fuzzy majority vote, then proposes a cluster matching 
algorithm that is able to establish correspondence among 
fuzzy clusters from different fuzzy partitions over a 
common data set. Finally a new combination model of fuzzy 
partitions is build on the basis of the proposed cluster 
matching algorithm and fuzzy majority vote. Comparative 
results show that the proposed combination model is able to 
foster strengths and circumvent weaknesses of component 
fuzzy partitions and to combine the component fuzzy 
partitions into a better fuzzy partition than any of 
component fuzzy partitions and those resulted from two 
current combination models of fuzzy partitions.  
 
Index Terms—fuzzy vote, fuzzy majority vote, combination of 
fuzzy partitions, evaluation of fuzzy partition 

I.  INTRODUCTION 

Fuzzy clustering has been proved preferable to crisp 
clustering and a number of fuzzy clustering algorithms 
[1-4] have been proposed. However, different fuzzy 
clustering algorithms may produce different fuzzy 
partitions over the common data set, and none of them 
are universal enough to perform equally well in any 
cases. For example, FCM [1] performs well on noiseless 
dataset with hyper-spherical shape, G-k [2] algorithm on 
noiseless dataset with hyper-ellipsoidal shape and both 
AFCM[3] and PFCM[4] are similar to FCM except that 
they are robust to noises. For a life dataset it may be of 
different shapes, therefore no single fuzzy clustering 
algorithm can accurately discover its structure and it 
makes some errors. However the errors made by 
different fuzzy clustering algorithms would not 
necessarily overlap. This suggests that different 
clusterings potentially offer complementary information 
about the patterns to be partitioned, which could be 
harnessed to improve the performance of pattern 
recognition systems. Therefore, A promising direction 
for accurate discovery of the data structure may be to 
combine diverse fuzzy partitions into a consolidate one, 
which is expected to merge advantages of multiple 
candidate fuzzy clusterings into one whole. Similar 
problems associated with crisp clusterings have been 
studied extensively and there is an extensive body of 
work on combining multiple crisp clusterings [5-8]. 
However, the topic of combining fuzzy clusterings has 
not received the same attention. Evgenia Dimitriadou[9] 

proposes a combination scheme for fuzzy clusterings that 
aims to find a consensus fuzzy partition which optimally 
represents the set of component fuzzy clusterings over 
the same data set. A.D. Gordon [10] also presents a 
combination model that aims to identify a consensus 
fuzzy partition which closely fits the set of component 
fuzzy partitions over the same data set. However, no 
theory guarantees that a consensus fuzzy partition 
representing or fitting a set of fuzzy partitions can 
represent or fit the real structure of the data set. The 
current paper also addresses the problem of combining 
fuzzy partitions with the same number of clusters over 
the same data set. 

There are two difficult problems in combining 
multiple fuzzy partitions. One is to establish the 
correspondences among clusters of the component fuzzy 
partitions so that the first cluster of one partition means 
the same as that of another one, so is the second cluster 
and so on, the other problem is to design the rule of 
combining multiple fuzzy partitions. To solve the first 
problem, Evgenia Dimitriadou [9] first builds up the 
confusion matrix between the consensus fuzzy partition 
that is initialized by one of the component fuzzy 
partitions and the component fuzzy partition, then the 
first two clusters associated with the first maximum 
element of the confusion matrix correspond to each other, 
so do the second two clusters associated with the second 
maximum element of the confusion matrix, and so on. 
Since the initial consensus fuzzy partition is randomly 
selected from the set of component fuzzy partitions and 
then updated by each of the other component fuzzy 
partitions step by step, the resultant consensus fuzzy 
partition suffers from both the initial consensus fuzzy 
partition and the order of the component fuzzy partition 
to take part in updating the consensus fuzzy partition. 
Unlike Evgenia Dimitriadou[9], A.D. Gordon[10] first 
builds up the dissimilarity matrix between the consensus 
fuzzy partition that is initialized randomly and each of 
the component fuzzy partitions, then treats the problem 
of cluster correspondence as the problem of assignment 
and solves it by Hungarian method[11]. The resultant 
consensus fuzzy partition suffers from the initialization 
of the consensus fuzzy partition. 

To overcome the sensitivity of the above approaches 
to the initial consensus fuzzy partition in matching 
clusters from different fuzzy partitions, we transform the 
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problem of establishing the correspondence among the 
clusters of component fuzzy partitions into the problem 
of partitioning their cluster centers so that the cluster 
centers in the same cluster correspond to each other. The 
second problem is solved by generalizing the majority 
voting rule for ensemble of crisp partitions to the fuzzy 
majority voting rule for ensemble of fuzzy partitions. 
Based on this, a new combination model of fuzzy 
partitions is build, and its performance are studied 
intensively by simulation experiments. 

  The rest of this paper is organized as follows. In section 
II the related work is reviewed. The traditional majority 
voting rule is generalized to the fuzzy majority voting 
rule in section III. An algorithm for matching clusters of 
different fuzzy partitions is proposed in section IV. A 
new combination model of  fuzzy partitions is proposed 
in section V .Numerical experiments and conclusions are 
given in section VI and VII, respectively. 

II. Related Work 

  A  The Voting Algorithm [9] 

The main idea of literature [9] is to find partition P of 
a given data set X={x1, x1, …, xN} with g clusters which 
optimally represents a given set of M partitions of X. 
Each of these M partitions is represented by an N×g 
membership matrix Uh (h=1, 2, …, M). The final 
partition PM is encoded as an N×g  matrix. The 
element  h

iju of Uh is the degree of membership of xi to 
the j-th class of the h-th partition. We denote the i-th row 
of Uh as  h

iu , that is  h
iu  is the membership vector of 

the pattern xi for the partition Uh. The final partition P is 
encoded as a N×g matrix with elements pij and rows pi. 
The task of finding an optimal partition is given by the 
minimization problem: 
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Where  hh U is any permutation of the columns of Uh. 
  This minimization problem is solved by the voting 

algorithm[9], which is described in Table I. 
Table 1 Voting Algorithm [9]  

Step1 set P(1)=U1 and id1
ˆ (id means identical 

permutation); 
Step2 for m=2 to M 

(a) compute the solution m̂ of 
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by the following approximation algorithm: 
(1)build up the confusion matrix between P and U; 
(2)find the maximum element in this confusion matrix; 

(3)associate the two clusters corresponding to the  
maximum element; 

(4)remove these two clusters; 
(5)with the reduced confusion matrix go to (2); 

(b) compute the voting result P(m) after m runs as 
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P(m) denotes the voting result after the first m steps. 

B  A Model for Fitting a Fuzzy Consensus Partition to a 

Set of Membership Functions [10] 

  This model identifies the “closest” consensus fuzzy 
partition PM fitting its membership function matrix UM to 
the membership function matrices {Uh (h=1,2,…,M)}, 
that have been permuted to “best” match g classes of Ph 
with g classes of PM. The “closest” consensus fuzzy 
partition PM of {Ph (h=1,2,…,M)} can be obtained by 
solving the following problem in the integer variables 
Yh=[yhpl] and nonnegative membership functions 
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Subject to the constraints 
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  The constrained problem [P1] can be minimized by 
means of the alternating least-square algorithm (ALS) 
described in Table II, that alternates between minimizing 
F(Y1, Y2, …,YM, UM) with respect to {Yh (h=1,2,…,M)} 
given the current estimate of the median membership 
function matrix UM; and minimizing F(Y1, Y2, …,YM, 
UM) with respect to UM given the current matching of 
classes between Yh and UM (h=1, 2,…, M). 

Table 2  The Alternating Least-square Algorithm (ALS) 
Step1 Given the estimates of the median membership  
function matrix UM, new least-squares estimates of the  
elements of Yh (h=1, 2, …, M) can be determined by 
 solving M independent matching problems: 
[P1a]              
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Subject to constraints (3), (4) and (5). 
([P1a] can be efficiently solved using the well-known  

Hungarian method [11] in O(g3) time complexity). 
Step2 treating the elements of Yh (h=1, 2, …, M) as  
constraints, it is necessary to solve: 
[P1b]:        min F(Y1, Y2, …, YM, UM) 
Subject to constraints (6) and (7).  
The solution is given by 
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C  Majority Voting Rule (MAJ) 

This rule does not require the a posteriori outputs for 
each class, and each classification gives only one crisp 
class output as a vote for that class. Then, the ensemble 
output is assigned to the class with the maximum number 
of votes among all classes. For any sample Xx , for a 
group of M classification in a g-class problem, we denote 
the decision of label outputs for x from classification f(i) 
is c(i), 1≤c(i)≤g. Several terminologies are defined in the 
following. 

Definition 1 For a sample Xx , the crisp vote di,l(x) 
for class l given by classification f(i) is defined as  
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di,l=1 means that classification f(i) votes for class l, and 
di,l=0 means that classification f(i) votes against class l.  

Definition 2 For a sample Xx , the discriminating 
function  xlg for class l (1≤l≤g) is defined as 

    


M

i il xdxlg
1

                                       (9) 

The discriminating function represents the total 
number of votes given to a class by all classifications. 
The higher value of the discriminating function 
 xlg indicates more supports for class l. Consequently, 

the output of an ensemble of classifications is the class 
label with the maximum value of the discriminating 
function. 

 xlgk
glmaxarg 1 

                     (10) 

III  Fuzzy Majority Voting Rule 

  The definition of crisp vote di,l(x) indicates that a crisp 
partition f(i) either supports or denies utterly that pattern 
x belongs to class l. Since a fuzzy partition considers that 
any patterns belong to all clusters with different 
membership degrees, the crisp vote has to be revised 
before it is applied to fuzzy partitions. 

Since a crisp clustering is a special case of fuzzy 
clustering, Definition 1 indicates that the crisp vote di,l(x) 
is actually the membership degree of pattern x belonging 
to class l. From this point of view the natural way of 
generalizing a crisp vote to a fuzzy vote is to define the 
fuzzy vote  xdil

~ given to pattern x by the fuzzy 
clustering  if~ as the fuzzy membership degree   xu i

l of 
pattern x belonging to class l derived from the fuzzy 
clustering  if~ . This yields that the consensus fuzzy 
partitions is the mean of all the component fuzzy 
partitions, which is the optimal representation of all the 
component fuzzy partitions, just as Evgenia Dimitriadou 
etc al stated in the literature[9]. The reason can be found 
in remarks at the end of this section. However 
experiments in section VI show that the mean of all the 
component fuzzy partitions is not sure to represent the 
real structure of the data set. Considering this, we do not 
simply define the fuzzy vote  xdil

~  as the fuzzy 
membership degree   xu i

l , but treat the classes 
differently, that is, we directly define     xuxd i

lil 
~ for 

class    xul i
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 , but for other classes, we 
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Experiments in section VI show that this definition of 
fuzzy vote yields relatively good consensus fuzzy 
partition. The following definitions are the fuzzy 
counterparts of definitions 1-2. 

Definition 3 for a pattern Xx , the fuzzy vote 
given to class l by the fuzzy partition       gN

i
l

i xuU  is 
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Where N is the number of patterns, g the number of 
clusters and   xu i

l the membership degree of pattern x 
belonging to cluster l. Contrary to the crisp vote, the 
fuzzy vote indicates that a fuzzy partition neither 
supports nor denies utterly that a pattern belongs to a 
cluster, but supports it belongs to all clusters to different 
extents. It is obvious that the crisp vote is the special 
case of the fuzzy vote.  

Definition 4 for a pattern Xx , the fuzzy 
discriminating function for class l (1≤l≤g) is defined as 

    


M

i il xdxlg
1

~~                                        (12) 

Where M is the number of component fuzzy partitions. 
Like the discriminating function defined by formula (9), 
the fuzzy discriminating function of a class also 
represents the amount of supports given to it by all fuzzy 
partitions. Higher value of the fuzzy discriminating 
function  xlg~  means more supports for pattern x 
belonging to class l. Unlike simple majority voting rule, 
instead of assigning a class label to pattern x, we 
calculate the membership degree cul(x) of x belonging to 
each class l, 1≤l≤g, determined by M fuzzy partitions 
jointly as follows 

      glxtgxlgxcu g

tl   
1,~~

1
            (13) 

Formula (13) indicates that the combination of fuzzy 
partitions is still a fuzzy partition. This is different from 
the consensus crisp partition. If formula (13) is replaced 
with  xlgk

gl
~maxarg 1 

 , it is obvious that the 

majority voting rule is the special case of the fuzzy 
majority voting rule. 

In the following we exemplify the fuzzy majority 
voting rule. Supposing that there are three component 
fuzzy partitions over the same data set, each of which has 
three clusters and is denoted by its fuzzy partition matrix 
U(i) (i=1, 2, 3). In the case that the correspondence 
among clusters from the component fuzzy partitions is 
established, i.e., the first column of the fuzzy component 
partitions represents the same class, so are the second 
and third column. Given a pattern x, the membership 
degree of x belonging to each cluster derived from U(i) 
(i=1,2,3) is 
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Definition 3 yields 
 

        0376.0,6894.0,0588.0~,~,~
131211 xdxdxd .  
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        0.1774 0.1605, 0.4187,~,~,~
232221 xdxdxd  

        1435.0,4743.0,1328.0~,~,~
333231 xdxdxd  

Formular (12) gives 
         0.3585 1.3242, 0.6103,3~,2~,1~ xgxgxg  

Formula (13) results in  
(cu1(x), cu2(x), cu3(x))=(0.2662,  0.5775,  0.1563) . 
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IV  A Cluster Matching Algorithm Based on KNN 

  When no a priori class information for the patterns is 
available, a direct application of fuzzy majority voting 
rule to combining fuzzy partitions is not possible, for it is 
not immediately clear which cluster from a specific 
partition corresponds to what in another. Therefore, it is 
necessary to establish the correspondence among clusters 
of all component fuzzy partitions so that the same 
column of        MixuU gN

i
l

i ,,2,1,  
 defines the 

same cluster. Both Evgenia Dimitriadou[9] and A.D. 
GORDON[10] establish this kind of correspondence by 
corresponding the clusters of each component fuzzy 
partition with those of the consensus fuzzy partition, 
which is firstly initialized randomly or with one of the 
component fuzzy partitions, then updated adaptively. 
They suffer from the initialization of the consensus fuzzy 
partition.The underlying idea of establishing the 
correspondence between clusters of one fuzzy partition 
and those of another is that the similar clusters 
correspond to each other so that the sum of 
dissimilarities between two fuzzy partitions is minimized, 
as shown in the literatures [9, 10]. Inspired by this idea, 
we transfer the problem of pairing clusters from different 
fuzzy partitions into the problem of partitioning the set of 
cluster centers. Supposing that there are M fuzzy 
partitions      MUUU ,,, 21  , each of which has g 
clusters. Each cluster is represented by its center. This 
yields a set of cluster centers, 
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M
gg vvvvvvV ,,,,,,,,, 1
22
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11

1  .where  i
jv is the 

j-th cluster center of the i-th fuzzy partition. We define 
the similarity between two clusters as the Euclidian 
distance between their  centers. Consequently, 
establishing the correspondence among the clusters of M 
fuzzy partitions is transferred into partitioning the set V 
of center vectors into g clusters, each of which contains 
M center vectors from different fuzzy partitions. The 
center vectors belonging to the same cluster correspond 

to each other, i.e., if      M
jjj M

vvv ,,, 21
21
 belong to the same 

cluster, then the j1-th cluster of  1U , the j2-th cluster of 
 2U , …, the jM-th cluster of  MU  define the same cluster, 

where    gjMs s ,,2,1,,,2,1   . To assure the 
center vectors in the same cluster are from different 
fuzzy partitions, we define the dissimilarity between two 
cluster centers as 
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The K nearest neighbors method (KNN) is employed to 
partition the data set V into g clusters, each of which 
contains M center vectors. Consequently, an approach to 
establishing the correspondence among the clusters from 
different fuzzy partitions is developed, which is 
described by the pseudo code in Table 3. 

Table 3 The Cluster-matching Algorithm Based on KNN 

1 Compute the centre vectors of each fuzzy partition by 
        
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Xx
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2Compute dissimilarity 
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t
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Msi ,,1,   using (14); 
3Find M nearest neighbours for each centre vector 
  Migtv i
t ,,1;,,1,   . They form a M-nearest 

neighbourhood denoted by   i
tv ; 

4Compute the compactness comp(·) of each M-nearest 
neighbourhood by         

 i
tvvv

i
t vvdvcomp

21 , 21, ; 

5Select g most compact and disjoint M-nearest neighbourhoods. The 
centre vectors belonging to the same M-nearest neighbourhood 
represent the same cluster and the columns corresponding to them in 
U(i) (i=1,2, …,M) are labeled as the same class label. 

 
In the following we exemplify the proposed cluster-

matching algorithm. Supposing that there are three 
component fuzzy partitions, each of which has three 
clusters. Their cluster centers are listed in Table 4. The 
dissimilarity between any pair of cluster centers is 
derived from formula (14). The M-nearest 
neighbourhood of each center vector and its compactness 
are listed in Table 4, where M=3. The set of nine cluster 
center vectors is partitioned into three disjoint clusters: 

      3
2

2
2

1
1 ,, vvv ,       3

1
2

1
1

2 ,, vvv  and       3
3

2
3

1
3 ,, vvv . The 

cluster       3
2

2
2

1
1 ,, vvv  means that the first cluster of the 

first fuzzy partition, the second cluster of the second 
partition and the second cluster of the third fuzzy 
partition define the same cluster, so do       3

1
2

1
1

2 ,, vvv  
and       3

3
2

3
1

3 ,, vvv . 
V A Combination Scheme for Fuzzy Partitions Using 

Fuzzy Majority Voting Rule and KNN 
Supposing that there are M fuzzy partitions over the 

data set X, each of which is denoted by a fuzzy partition 
matrix U(i)， i=1, 2, …, M. They are matched by the 
cluster matching algorithm in Table 3, then the well    
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matched M fuzzy partitions are combined into a 
consensus fuzzy partition using fuzzy majority voting 

rule. The pseudo description of the proposed 
combination model is given in Table 5. 

   
Table 3 The Cluster Centers of Three Component Fuzzy Partitions 

 1
1v       

 1
2v        

 1
3v  

 2
1v        

 2
2v       

 2
3v  

 3
1v        

 3
2v      

 3
3v  

6.6294    5.0626    5.9525 
3.0091    3.3618    2.7947 
5.4126    1.6670    4.4202 
1.9359    0.3271    1.4351 

5.0626    6.6294    5.9525 
3.3618    3.0091    2.7947 
1.6670    5.4126    4.4202 
0.3271    1.9359    1.4351 

5.0626    6.6294    5.9525 
3.3618    3.0091    2.7947 
1.6670    5.4126    4.4202 
0.3271    1.9359    1.4351 

 
Table 4 the 3-nearest neighbourhood of each cluster center and its 

compactness 
 3-nearest             compactness 

neighbourhood                                 
 1
1v  
 1
2v  
 1
3v  

 2
1v  
 2
2v  
 2
3v  

 3
1v  
 3
2v  
 3
3v  

{
 1
1v ,

 2
2v ,

 3
2v }   0.2287*10-5   

{
 1
2v ,

 2
1v ,

 3
1v }   0.0408*10-5   

{
 1
3v ,

 2
3v ,

 3
3v }   0.2593*10-5   

{
 2
1v ,

 3
1v ,

 1
2v }   0.0408*10-5 

{
 2
2v ,

 3
2v ,

 1
1v }   0.2287*10-5  

{
 2
3v ,

 3
3v ,

 1
3v }   0.2593*10-5   

{
 3
1v ,

 2
1v ,

 1
2v }   0.0408*10-5 

{
 3
2v ,

 2
2v ,

 1
1v }   0.2287*10-5 

{
 3
3v ,

 2
3v ,

 1
3v }   0.2593*10-5 

 
Table 5  A Combination Model of Fuzzy Partitions Based on Fuzzy 

Majority Voting Rule and KNN 
Step1 input the fuzzy partition matrices U(i) (i=1, 2, …, M) and pattern 

samples X; 
Step2 establish the correspondence among clusters from M fuzzy 

partitions using the cluster-matching algorithm in Table 3; 
Step3 combine M fuzzy partitions using fuzzy majority voting rule 

described in section III; 
 

V  Experiments 

An important consideration in the combination of 
partitions is that much better results can be achieved if 
diverse partitions, rather than similar partitions, are 
combined. To create diverse fuzzy partitions we employ 
three fuzzy clustering algorithms—FCM[1], PFCM[2] 
and AFCM[3], each of which (except PFCM[2] that is 
initialized by the output of FCM) is initialized by three 
centre initialization methods—CCIA[12], kd-tree[13] 
and MST[14], respectively. Therefore, there are totally 
nine fuzzy partitions denoted by FCM-CCIA, FCM-MST, 
FCM-kd-tree, PFCM-CCIA, PFCM-MST, PFCM-kd-
tree, AFCM-CCIA, AFCM-MST, AFCM-kd-tree, 
respectively. They are combined into a consensus fuzzy 
partition, denoted by FMV, by the combination model in 
Table 5, in the way depicted in Fig. 1. 

To test the performance of the proposed combination 
model, we compare it with two combination methods 
voting [9] and ALS[10] on four real data sets, which are 
described in Table 6.  

For all fuzzy clustering algorithms we use the 
following Computational Protocols; convergence term 
ε=0.0001, maximum number of iterations=100, the  

 
Fig.1 the flowchart of combining fuzzy partitions  

(FMVi (i=1, 2, 3) means the combination results of the first time and FMV the final 
result of combination.) 

 
Table 6 The brief description of data sets 

 Number of  
instances 

Number of 
attributes 

Number of 
clusters 

Pima-Indians-
diabete [15] 

svmguide3[16] 
ionosphere[16] 
Sat.image[16] 

768 
 

1243 
351 

4435 

8 
 

22 
34 
36 

2 
 

2 
2 
6 

 
fuzzifer m=2. The parameters of PFCM are initialized as 
follows: m=2, η=1.5, a=1, b=3. ALS suffers from the 
initialization of the consensus fuzzy partition. We 
initialize it with each of nine component fuzzy partitions 
respectively. The voting [9] algorithm suffers from the 
sequence of the component fuzzy partitions to take part 
in the combination of fuzzy partitions. We place nine 
component fuzzy partitions in the order of FCM-CCIA, 
FCM-MST, FCM-kd-tree, AFCM-CCIA, AFCM-MST, 
AFCM-kd-tree, PFCM-CCIA, PFCM-MST, PFCM-kd-
tree, then initialize the consensus fuzzy partition P(1) with 
each of the above nine fuzzy partitions, respectively and 
fix others in their places.  

We evaluate the fuzzy partition using pattern 
recognition rate PR that is a standard evaluation index, 
partition coefficient PC[18] that measures the fuzzy 
degree of fuzzy partitions, fuzzy Rand indexe R  and 

related indexes－fuzzy Jaccard coefficient JC , fuzzy 
Fowlkes-Mallows index FM , fuzzy Minkowski 

measure M  and fuzzy  statistic   [17], which are 
objective criteria for the evaluation of fuzzy partitions, as 
R. J. G. B. Campello stated [17]. The big values of the 
indexes R , JC , FM and  indicate the good 
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closeness between the reference partition and the fuzzy 
partition to be evaluated, while the low value 
of M reveals good closeness between them.  

To test the performance of the proposed combination 
model of fuzzy partitions, we compare it with all 
component fuzzy partitions and two consensus fuzzy 
partitions, voting [9] and ALS[10], over a small size and 
a large size data set, ionosphere [15] and sat.image [16]. 
We also compare it with only two consensus fuzzy 
partitions, voting [9] and ALS [10], over two middle size 
data sets, diabetes and svmguide3. The comparative 
results listed in Table 7-9 indicate that, in terms of all 
evaluation indexes for fuzzy partitions, the proposed 
combination model FMV outperforms two consensus 
fuzzy partitions, voting [9] and ALS [10]. Table 7 and 9 
show that, in terms of pattern recognition rate, the 
proposed combination model FMV is comparable to the 
best component fuzzy partitions FCM-CCIA, FCM-MST 
and FCM-kdtree, while in terms of other indexes, FMV 
is preferable to them over the data sets ionosphere and 
sat. image, respectively. Table 10 indicates that, in terms 
of CPU time, voting [9] is the cheapest, and FMV is a 
little more expensive computation than ALS [10]. In a 
word, the proposed combination method FMV is able to 
foster strengths and circumvent weaknesses of 
component fuzzy partitions and outperforms voting [9] 
and ALS [10] at the cost of a little extra computation in 
our experiments. It is important for the consensus fuzzy 
partition to be comparable, but uncertain to be preferable, 
to the best component fuzzy partition in any cases, for no 
fuzzy clustering algorithm can generates good partitions 
in all cases and we do not know which fuzzy clustering 
algorithm may produce a good clustering in advance. 
Furthermore, we do not know how to accurately assess a 
fuzzy partition, much less select the best individual fuzzy 
partition when no information about the data set is 
available. In this sense, the consensus fuzzy partition 
obtained from the proposed combination model is more 
stable and reliable than any component fuzzy partition, 

for it can combine the advantages of all component fuzzy 
partitions and pool them into a consensus fuzzy partition 
that is uncertain to be better than any component fuzzy 
partition, but sure to be superior to an overwhelming 
majority of the component fuzzy partitions in any cases.  

To compare FMV with voting [9], ALS [10] and 
component fuzzy partitions, we test them over the data 
set ionosphere. Table 7 shows that all evaluation indexes 
agree with our consensus fuzzy partition FMV 
outperforms ALS and voting a little. Compared to nine 
individual fuzzy partitions, in terms of pattern 
recognition rate, the consensus fuzzy partition generated 
by the proposed combination model is as good as the 
best component fuzzy partition FCM-CCIA, FCM-MST 
and FCM-kdtree, better than other six component fuzzy 
partitions. Table 7 also shows that other evaluation 
indexes agree with that FMV outperforms all the 
component fuzzy partitions. In general, the proposed 
consensus fuzzy partition FMV is able to combine the 
advantages of all component fuzzy partitions and at least 
comparable to the best component fuzzy partition. 
Contrary to FMV, in terms of pattern recognition rate, 
ALS and voting are worse than the best component fuzzy 
partition. Furthermore, ALS and voting are worse than 
part of the component fuzzy partitions in terms of other 
evaluation indexes. In a word, ALS and voting fail to 
combine the advantages of the component fuzzy 
partitions and are inferior to the best component fuzzy 
partitions. It is also revealed by Table 7 that when the 
pattern recognition rates of FMV, FCM-MST and FCM-
kdtree are equal, other indexes for fuzzy partitions still 
can distinguish the three fuzzy partitions. This indicates 
that it is not sufficient to evaluate fuzzy partitions only 
by pattern recognition rate and other evaluation indexes 
for fuzzy partitions are also powerful tools for assessing 
fuzzy partitions. 

To further compare the performances of FMV, ALS 
and voting, we test them over two middle size data sets, 
diabetes and svmguide3. Table 8 shows that FMV 

Table 7 the comparative results among consensus fuzzy partitions and individual fuzzy partitions over ionosphere 
Fuzzy partitions 

PR(%)         PC         R      JC    FM            M  

FMV 70.9402     0.8151     0.5602     0.4056     0.5775     0.1205     0.9038 
ALS Mean 

std 
70.3704     0.5303     0.5161     0.3671     0.5373     0.0312     0.9480 
           0              0     0.0000              0              0              0             0 

voting Mean 
std 

70.3704     0.5303     0.5161     0.3671     0.5373     0.0312     0.9480 
          0      0.0000              0              0              0     0.0000             0 

FCM-CCIA 
FCM-MST 
FCM-kdtree 
AFCM-CCIA 
AFCM-MST 
AFCM-kdtree 
PFCM-CCIA 
PFCM-MST 
PFCM-kdtree 

70.9402     0.6487     0.5364     0.3899     0.5612     0.0703     0.9279 
70.9402     0.6487     0.5364     0.3899     0.5612     0.0703     0.9279 
70.9402     0.6487     0.5364     0.3899     0.5612     0.0703     0.9279 
69.5157     0.5000     0.5000     0.3500     0.5189     0.0000     0.9636 
69.5157     0.5000     0.5000     0.3500     0.5189     0.0000     0.9636 
69.5157     0.5000     0.5000     0.3500     0.5189     0.0000     0.9636 
69.2308     0.6423     0.5338     0.3847     0.5558     0.0662     0.9305 
53.8462     0.5000     0.5000     0.3500     0.5189     0.0000     0.9636 
60.3989     0.5031     0.5015     0.3518     0.5208     0.0028     0.9622 
The bold number means the optimal value of evaluation index 

outperforms ALS and voting by huge margins in terms of
pattern recognition. The partition coefficients PC listed 
in Table 8 show that ALS and voting 
average conflicting memberships towards 1/c (c=2) over 
the data set diabetes. The fuzzy rand index and related 

indexes listed in Table 8 agree with that FMV is a little 
better than ALS and voting. Table 8 also shows that ALS  
is as bad as voting in terms of all evaluation indexes. 

Table 8 the comparative results among consensus fuzzy partitions over two small size data sets with two clusters 
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Data set Consensus fuzzy 
partitions PR(%)        PC          R        JC     FM              M  

FMV 65.8854     0.7766     0.5252     0.4141     0.5863     0.0330     0.9334 
ALS Mean 

std 
61.9792     0.5990     0.5118     0.3771     0.5477     0.0174     0.9465 

         0              0              0              0             0               0              0 

diabetes 

voting Mean 
std 

61.9792     0.5990     0.5118     0.3771     0.5477     0.0174     0.9465 
         0     0.0000     0.0000     0.0000             0      0.0000     0.0000 

FMV 57.2808     0.7696     0.5076     0.3980     0.5731     0.0121     0.8793 
ALS Mean 

std 
50.6034     0.5406     0.5061     0.3975     0.5725     0.0077     0.8806 

         0              0              0     0.0000              0              0     0.0000 

svmguide3 

voting Mean 
std 

50.6034     0.5406     0.5061     0.3975     0.5725     0.0077     0.8806 
         0     0.0000              0     0.0000              0              0     0.0000 

  
To further investigate the performance of FMV, we 

compare it with two consensus fuzzy partitions, voting [9] 
and ALS [10], and all the component fuzzy partitions 
over a large size data set with six clusters. Table 9 shows 
that three consensus fuzzy partitions, FMV, voting [9] 
and ALS [10], and three individual fuzzy partitions, 
FCM-CCIA, FCM-MST and FCM-kdtree, are very close 
to each other and FMV is a little better than the best 
individual fuzzy partition in terms of pattern recognition 
rate. In terms of other evaluation indexes, voting [9] and 

ALS [10] are inferior to FCM-CCIA, FCM-MST, FCM-
kdtree, PFCM-CCIA and PFCM-MST, while FMV is 
superior to all component individual fuzzy partitions, as 
shown by Table 9. This experiment once more confirms 
that FMV is able to combine the advantages of 
component individual fuzzy partitions and at least 
comparable to the best component fuzzy partition in the 
case of large size data sets with multiple clusters, while 
voting [9] and ALS [10] can not. 

 

Table 9 the comparative results among consensus fuzzy partitions and individual fuzzy partitions over Sat. image 
Fuzzy partitions 

PR(%)        PC         R        JC    FM             M  

FMV 70.9583     0.6067     0.7883     0.3959     0.5737     0.4895     1.0090 
ALS Mean 

std 
70.5850     0.3700     0.6955     0.2974     0.4732     0.3814     1.1995 
 0.4152     0.0003      0.0010     0.0013     0.0014     0.0019     0.0032 

Voting Mean 
std 

69.8409     0.3657     0.6950     0.2959     0.4713     0.3793     1.2009 
0.8031     0.0034     0.0027     0.0028     0.0034     0.0044     0.0038 

FCM-CCIA 
FCM-MST 
FCM-kdtree 
AFCM-CCIA 
AFCM-MST 
AFCM-kdtree 
PFCM-CCIA 
PFCM-MST 
PFCM-kdtree 

70.3495     0.4799     0.7407     0.3262     0.4995     0.4034     1.1090 
70.3495     0.4799     0.7407     0.3262     0.4995     0.4034     1.1090 
70.3495     0.4799     0.7407     0.3262     0.4995     0.4034     1.1090 
59.6843     0.3570     0.6661     0.2552     0.4174     0.3198     1.2386 
63.7880     0.3675     0.6761     0.3056     0.4934     0.4082     1.2467 
60.2029     0.3340     0.6382     0.2389     0.3985     0.2988     1.2816 
62.6607     0.4223     0.7083     0.3253     0.5027     0.4159     1.1388 
66.8997     0.4383     0.7198     0.3238     0.5031     0.4165     1.1538 
53.7317     0.3685     0.6543     0.2781     0.4515     0.3542     1.2412 

 
The performance of an algorithm is one important 

aspect and the computational complexity is another 
important aspect of the algorithm. So the computational 
complexities of the proposed combination model FMV, 
Voting[9] and ALS[10] are also compared in terms of 
CPU times. The comparative results listed in Table 10 
show that Voting[9] is of the cheapest computation and 
FMV is a little more expensive computation than 
ALS[10]. 
Table 10 Computation Complexity of Three Combination Methods 

Data set CPU time (second) 
FMV          ALS           voting 

ionosphere 
svmguide3 

diabetes  
Sat. image 

0.110129    0.082110     0.026875
0.299652    0.113652     0.067559
0.167901    0.137785     0.045441
3.086964    2.117051     0.790977

The computer system is of Genuine Intel ® CPU 2140, 1.60GHz and 1.60GHz, 1GB 
memory. CPU time is only composed of the running time of FMV, ALS and voting, but 

not that of any individual fuzzy clustering algorithm. 
 

VII CONCLUSIONS 

This paper generalizes the traditional majority voting 
rule to the fuzzy majority voting rule and proposes a 
cluster matching algorithm, based on which a 
combination model of fuzzy partitions is developed. We 

compare our combination method with other two 
combination methods－ voting [9] and ALS [10] and 
individual fuzzy partitions. Comparative results show 
that our combination method outperforms voting [9] and 
ALS [10] in terms of all evaluation indexes used in this 
paper. The reason may be that both voting [9] and ALS 
[10] aim to find the consensus fuzzy partition that 
optimally represents and closely fits the set of 
component fuzzy partitions, and the optimal 
representation and fitting of a set of fuzzy partitions do 
not equal the optimal representation of the real structure 
of the data set, that is, if the consensus fuzzy partition 
optimally represents or fits a collection of fuzzy 
partitions, it does not guarantee to represent the real 
structure of the data set. We also find that voting [9] and 
ALS [10] are a little worse than some of the component 
individual fuzzy partitions, while FMV is at least 
comparable to the best one of the component individual 
fuzzy partitions in all cases. This confirms that FMV is 
able to foster strengths and circumvent weaknesses of 
component fuzzy partitions, while voting [9] and ALS 
[10] can not. In a word, FMV is not only superior to 
voting [9] and ALS [10], but also more stable and reliable 
than any individual fuzzy partition in some cases. 
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It is still important for the consensus fuzzy partition to 
be comparable to, but not sure to outperform, the best 
component fuzzy partition in any cases, for no fuzzy 
clustering algorithm can generates good partitions in all 
cases and we do not know which fuzzy clustering 
algorithm may produce a good clustering over a given 
data set in advance. Furthermore, when no information 
about the data set is available, it is hard to us accurately 
evaluate the fuzzy partition, much less pick out the best 
individual fuzzy partition. In this sense, the consensus 
fuzzy partition is more stable and reliable than any 
component individual fuzzy partition, for it is able to 
combine multiple fuzzy partitions into a consolidate one 
that is at least comparable to the best component fuzzy 
partitions in any cases. 
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