
A Parallel Clustering Algorithm with MPI –
MKmeans

Jing Zhang

School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
hfzjwjl@gmail.com

Gongqing Wu, Xuegang Hu, Shiying Li and Shuilong Hao

School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
Email: {wugq, jsjxhuxg}@hfut.edu.cn, {hfutlsy, virtualsky607}@gamil.com

Abstract—Clustering is one of the most popular methods for
exploratory data analysis, which is prevalent in many
disciplines such as image segmentation, bioinformatics,
pattern recognition and statistics etc. The most famous
clustering algorithm is K-means because of its easy
implementation, simplicity, efficiency and empirical success.
However, the real-world applications produce huge volumes
of data, thus, how to efficiently handle of these data in an
important mining task has been a challenging and
significant issue. In addition, MPI (Message Passing
Interface) as a programming model of message passing
presents high performances, scalability and portability.
Motivated by this, a parallel K-means clustering algorithm
with MPI, called MKmeans, is proposed in this paper. The
algorithm enables applying the clustering algorithm
effectively in the parallel environment. Experimental study
demonstrates that MKmeans is relatively stable and
portable, and it performs with low overhead of time on large
volumes of data sets.

Index Terms—clustering, K-means algorithm, MPI, parallel
computing

I. INTRODUCTION

Clustering is a method of unsupervised learning and a
common technique for data analysis used in many
disciplines, including image segmentation, bioinformatics,
pattern recognition and statistics etc [1].

Clustering is the process of grouping objects into
subsets that have meaning in the context of a specific
problem. Unlike classification, clustering does not rely on
predefined classes, and no information is provided about
the "right answer". K-means is a well-known clustering
algorithm for its simplicity and easy implementation. K-
means was ranked second of top 10 algorithms in data
mining by the ICDM Conference in October 2006, while
C4.5 was ranked first [2]. Compared with other clustering
algorithms, K-means algorithm has three major
advantages covering simple implementation, efficient
when handling a large data sets and a solid theoretical
foundation based on the greedy optimization of Voronoi
partition [3].

With the development of information technology, data
volumes are becoming increasingly mass, which makes

clustering large-scale and complicated data a challenging
problem. Efficient parallel clustering algorithms and
implementation techniques are the key to meet the
scalability and performance requirements entailed in such
scientific data analysis. Cloud computing is a form of
technology that uses the Internet to maintain data and
application. It is based on the development of distributed
computing, parallel computing and grid computing [4].
Meanwhile, “Top 10 obstacles and opportunities for
Cloud Computing” are presented in [5], which predict
that cloud computing will grow and believe that
computing, storage and networking must all focus on the
horizontal scalability of virtualized resources rather than
the performance of single node.

MPI is a library specification for message passing,
which is proposed as a standard programming model. MPI
is an application programmer interface of message passing,
together with protocol and semantic specifications for how
its features must behave in any implementation [6]. The
MPI interface is used to provide essential virtual topology,
synchronization, and communication functionality
between a set of processes in a language-independent way.
MPI is an API library consisting of hundreds of function
interfaces called by computers such as computer clusters
communicate with one another in the parallel
development environment. MPI aims to maintain the high
performance, scalability and portability, and it remains the
dominate model for high-performance computing today.

Many scholars focus on the studies in the fields of
parallel and distributed clustering. More specifically, (1)
Rasmussen et al. [7] suggested that the parallel
processing using an array processor like the DAP
(Distributed Array Processor) can provide significant
speedups over serial processing for the hierarchic
agglomerative cluster analysis of large data sets. (2)
Olson et al. [8] considered parallel algorithms for
hierarchical clustering using several inter-cluster distance
metrics and parallel computer architectures. (3) Zhao et al.
[9] proposed a fast parallel K-means clustering algorithm
based on MapReduce. The proposed algorithm can scale
well and efficiently to process large data sets on
commodity hardware.

However, our contributions in this paper are as follows:

10 JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.1.10-17

• MKmeans, a parallel K-means clustering
algorithm with MPI, is proposed.

• A simple merging algorithm in MKmeans, used to
merge the generated centroid sets into a final
centroid set with a greedy style, is proposed.

• The configuration of MPI parallel development
platform based on open resource project Eclipse
and MPICH2 in Windows is implemented. Our
method can be ported to Linux or other platforms.

• Experimental results illustrate that our MKmeans
algorithm is relatively stable and portable, it
improves the time performance of clustering on
large data sets. Meanwhile, MPI is quite
appropriate for the parallel and distributed
computing environment.

The rest of this paper is organized as follows. Section
II gives the related work. Section III mainly presents our
MKmeans algorithm in detail. Section IV shows our
experimental results and performance evaluation. Finally,
Section V concludes the paper and outlines our future
work.

II. RELATED WORK

Related work including K-means clustering algorithm,
MPI and Weka are involved in this section. More
precisely, an outline on K-means is summarized in
Section A, the concept of MPI is given in Section B, brief
introduction of MPI functions is given in Section C, the
messing passing process of MPI is described in Section D
and a classical experimental tool Weka is described in
Section E.

A. K-means Algorithm
The most popular and the simplest partitional

algorithm is K-means [10]. K-means has a rich and
diverse history as it was independently discovered in
different scientific fields by Steinhaus (1956), Lloyd
(proposed in 1957, published in 1982), Ball and Hall
(1965), and MacQueen (1967) [1]. K-means is a method
of data analysis, which is easy to implement and apply
even on large data sets. As such, it has been successfully
used in various fields, ranging from computer vision,
statistics to market segmentation.

K-means clustering algorithm is simple and fairly fast.
It is initialized from some random and approximate
solution. The K-means clustering is to find cluster centers
that minimize the sum of squared distances from each
data point being clustered to its closest cluster center. The
objective is to partition N data objects into K clusters
(K<N) such that the objects in the same cluster are as
similar as possible and as dissimilar as possible in
different clusters. K-Means algorithm inputs parameter K,
and then divides data objects N into K clusters to make
the obtained clustering to meet the conditions, which the
similarity degree of the same clustering objects is higher,
and that of the different clustering objects is lower.
Clustering similarity degree is calculated by "central
object" (gravity center) to be obtained by the mean of
objects in each cluster. The resulting clusters have high
explanatory and precision.

Given a set of N objects, then partition N objects into K
clusters, the time complexity of K-means algorithm is
O(NKt), where t is the number of iterations, generally,
K<<N, t<<N.

Main steps of the K-means algorithm are described by
Jain and Dubes [11] as follows:

1) Select an initial partition with K clusters; repeat
steps 2 and 3 until cluster memberships stabilize.

2) Generate a new partition by assigning each pattern
to its closest cluster center.

3) Compute new cluster centers.
In recent years, with the development of computer

technology, some methods of cluster analysis are
developed quickly and applied broadly. There are several
variations of K-means algorithm:

• The fuzzy C-means clustering is a soft version of
K-means, where each point has a degree of
belonging to cluster, as in fuzzy logic.

• The EM (expectation-maximization) algorithm is a
generalization of K-means, which is an iterative
method to maintain probabilistic assignments to
clusters, instead of deterministic assignments in K-
means.

• Some seeding methods are proposed for choosing
the initial values (seeds) for the K-means
clustering algorithm. K-means++ [12] is one of the
methods to successfully overcome the problems
associated with the sometimes poor clustering
results by the standard K-means clustering
algorithm.

• The kd-tree (k-dimensional tree) is a space-
partitioning data structure for organizing points in
a k-dimensional space. Kanungo et al. [13] present
a simple and efficient implementation of K-means
clustering algorithm, called the filtering algorithm.
This algorithm is easy to implement, requiring a
kd-tree as the only major data structure, which can
speed up each step of K-means.

• The coreset is a small weighted set of points that
approximates the original point set with respect to
the considered problem. Frahling et al. [14]
develop an efficient implementation for a K-
means clustering algorithm. It uses coresets to
speed up the algorithm. The main strength of the
algorithm is that it can quickly determine clusters
of the same point set for many values of K. This is
necessary in many applications, since, typically,
one does not know a good value for K in advance.

• The Minkowski metric deals with the problem of
noise features by assigning weights to each feature
for each cluster. Amorim et al. [15] represent
another step in overcoming a drawback of K-
means, its lack of defense against noisy features,
using feature weights in the criterion. The
Weighted K-means method is extended to the
corresponding Minkowski metric for measuring
distances. Under Minkowski metric the feature
weights become intuitively appealing feature
rescaling factors in a conventional K-means
criterion.

JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013 11

© 2013 ACADEMY PUBLISHER

Meanwhile, there are still several drawbacks of those
variation algorithms. Despite its simplicity and its linear
time, the time complexity of a serial K-means algorithm
remains expensive when it is applied to a problem of
large size of multi-dimensional vector. Therefore, it is of
vital importance and urgent necessity to think about how
to apply K-means clustering algorithm to the distributed
environment for large scale of data sets.

B. The Concept of MPI
Most popular high-performance parallel architectures

used in the parallel programming environment are divided
into two classes: message passing and shared storage. The
cost of message passing parallel processing is larger,
suitable for large-grain process-level parallel computing.
Compared with other parallel programming environment,
message passing has good portability, supported by
almost all parallel environments. Meanwhile, it has good
scalability and complete asynchronous communication
function, which can well decompose tasks according to
the requirements of users, organize data exchange
between different processes and is applied to scalable
parallel algorithms.

MPI is an interface mode widely used in various
parallel clusters and network environments based on a
variety of reliable message passing libraries.

MPI is a message passing parallel programming
standard used to build highly reliable, scalable and
flexible distributed applications, such as workflow,
network management, communication services.

MPI is a language-independent communications
protocol. FORTRAN, C and C++ can directly call the
API library. The goals of MPI are high performance,
scalability and portability.

MPI is a library specification for message passing, not a
language. Message Passing Interface is a standard
developed by the Message Passing Interface Forum
(MPIF). MPI is a standard library specification designed
to support parallel computing in a distributed memory
environment. The first version (MPI-1) was published in
1994 and the second version (MPI-2) was published in
1997 [16]. Both point-to-point and collective
communication are supported.

MPICH is an available and portable implementation of
MPI, a standard for message passing used in parallel
computing. MPI has become the most popular message
passing standard for parallel programming. There are
several MPI implementations among which MPICH is the
most popular one. MPICH1 is the original
implementation of MPICH that implements the MPI-
1standard. MPICH2 is a high-performance and widely
portable implementation of the MPI standard (both MPI-1
and MPI-2). The goals of MPICH2 are to provide an
implementation of MPI that efficiently supports different
computation and communication platforms including
commodity clusters, high-speed networks and proprietary
high-end computing systems.

The standards of MPI are as follows [17]:
• Point-to-point communication
• Collective operations

• Process groups.
• Communication contexts
• Process topologies
• Bindings for FORTRAN 77 and C
• Environmental management and inquiry
• Profiling interface

C. MPI Functions
MPI is a library with hundreds of function-calling

interfaces, and FORTRAN, C language and C++ can
directly call these functions. Many parallel programs
can be written with just six basic functions, almost
complete all of the communication functions.

Table I illustrates the basic functions. MPI_Init()
initializes the MPI environment and assigns all spawned
processes; MPI_Finalize() terminates the MPI
environment; MPI_Comm_size() finds the number of
processes in a communication group; MPI_Comm_rank()
gives the identification number of a process in a
communication group; MPI_Send() sends message to the
destination process of rank dest and MPI_Recv() receives
message from the specified process of rank source.

D. The Messing Passing Process of MPI
MPI is a parallel programming standard based on

message passing, whose function is to exchange
information, coordinate and control the implementation
steps with the definition of program grammar and
semantics in the core library by sending messages
between the concurrent execution parts.

First all of the MPI programs contain “mpi.h” header
file, and then complete the initialization of the program
by MPI_Init(), after that, establish process topology
structure and new communicator and call the functions
and applications to be used for each process, finally use
MPI_Finalize() to terminate each process.

The parallel program design flow of message passing
process is shown in Fig. 1.

TABLE I
MPI BASIC FUNCTIONS

Function Functionalities

MPI_Init Initialization

MPI_Finalize Termination

MPI_Comm_size Access to the number of processes

MPI_Send Send

MPI_Recv Receive

MPI_Comm_rank
Access to the identification number

of a process

12 JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

SKmeans algorithm
Input: number of clusters K, number of data objects

N
Output: K centroids

1: Read N objects from the file;
2: Randomly select K points as the initial cluster

centroids, denoted as kμ (1≤k≤K);
3: Calculate J in Formula (1), denoted by J’;
4: Assign each object n (1≤n≤N) to the closest

cluster;
5: Calculate new centroid of each cluster kμ in

Formula (2) ;
6: Recalculate J in Formula (1);
7: Repeat steps 3-6 until J’- J < threshold;
8: Output the clustering results: K centroids;

Figure 2. SKmeans clustering algorithm

Figure 1. Flow of message passing process

E. Weka
Weka (Waikato Environment for Knowledge Analysis)

is a comprehensive suite of Java class libraries that
implement many state-of-the-art machine learning and
data mining algorithms [18]. Weka contains
implementations of algorithms for classification,
clustering, association rule mining, along with graphical
user interfaces and visualization utilities for the data
exploration and algorithm evaluation. Weka is a
significant tool to bring machine learning technology into
the workplace.

Methods of clustering do not seek rules that predict a
particular class, but rather try to divide the data into
natural groups of “clusters”. K-means algorithm is the
most widely used clustering algorithm. SimpleKMeans
from Weka is a simplified version of K-means [19].
Clustering data using the K-means algorithm can use
either the Euclidean distance (default) or the Manhattan
distance. If the Manhattan distance is used, centroids are
calculated as the component-wise median rather than the
mean.

III. MKMEANS–A PARALLEL K-MEANS ALGORITHM
WITH MPI

In this section, we will propose an implementation of a
parallel K-means algorithm based on MPI, called
MKmeans. Before introducing our MKmeans algorithm,
we first give a short description of the SKmeans
(Sequential K-means) algorithm in Section A, because
MKmeans is composed of SKmeans and MPI, and then
we give the detailed description of MKmeans in Section
B, Merge function is shown in Section C.

A. SKmeans Algorithm
The clustering algorithm K-means is one of the most

popular partitioning clustering algorithms. The main idea
in the algorithm is to define K centroids (one for each
cluster). These centroids should be placed in a cunning
way because different locations cause different results [3].
In the SKmeans algorithm, the objective function J is

defined as in (1). SKmeans aims to minimize the
objective function, i.e., a squared error function. In (1), J
refers to the distance index of N data objects from the
corresponding cluster centroids, nx (1≤n≤N) indicates

a data point, and kc (1≤k≤K) specifies the cluster

centroid.
2

n kx c− is the distance measure between nx

and kc . In (2), kμ (1≤k≤K) refers to the mean of data
points that belong to cluster k, and kN indicates the
number of objects belong to cluster k.

 In our SKmeans algorithm, the number of clusters K is
a user-specified parameter. First, read N objects from the
input file. The initial K-centroids are randomly selected,
defined as kμ (1 ≤ k ≤ K). Second, the SKmeans
algorithm iteratively assigns each object into the
corresponding cluster by the minimum distance. When all
objects are assigned, update the K centroids. This process
will be repeated until the user-specified threshold is met.
The SKmeans algorithm is shown in Fig. 2.

 ∑ ∑
= =

−=
N

n

K

k
kn cxJ

1 1

2 . (1)

 ∑
∈

=
kcn

n
k

k x
N
1μ . (2)

B. MKmeans Algorithm
Fig. 3 shows the processing flow of our MKmeans

algorithm, which is the key algorithm in our work. This
algorithm utilizes K-means and the MPI parallel
framework, it is hence simple and portable.

All initialization is implemented by the MPI_Init
function, which is the first call of MPI program. It is the
first executable statement of the MPI program. To start the
MPI environment, it means the beginning of the parallel

JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013 13

© 2013 ACADEMY PUBLISHER

MKmeans algorithm
Input: number of clusters K, number of data objects

N
Output: K centroids

1: MPI_Init// start the procedure;
2: Read N objects from the file;
3: Partition N data objects evenly among all

processes, and assume that each process has
N’ data objects;

4: For each process, install steps 5-11;
5: Randomly select K points as the initial

cluster centroids, denoted as kμ (1≤k≤K);
6: Calculate J in (1), denoted as J’;
7: Assign each object n (1≤ n≤N) to the

closest cluster;
8: Calculate the new centroid of each

cluster kμ in (2) ;
9: Recalculate J in (1);
10: Repeat steps 6-9 until J’- J < threshold;
11: Generate the cluster id for each data object;
12: Generate new cluster centroids according to

the clustering results of all processes at the
end of each iteration;

13: Generate a final centroid set Centroid by
Function Merge and output the clustering
results: K centroids;

14: MPI_Finalize// finish the procedure;
Figure 3. MKmeans clustering algorithm

Function Merge
Input: n centroid sets from Centroid1 to Centroidn

(n*K centroids)
Output: a centroid set Centroid (K centroids)

1: Initialize a centroid set Centroid as empty;
2: If any centroid set Centroidi (i=1,…,n) is

empty, exit and the final centroid set is
Centroid, otherwise, go to step 3;

3: Find a vector of centroids (c1,…, cK) with
the minimum inner distance, which is
defined as in (3), and then delete ci from
Centroidi, in addition, add c into Centroid.
Go to step 2;

4: Output K centroids;
Figure 4. Merge function

codes. The MPI_Finalize function is the last call of MPI
program, and it ends the running of MPI program. It is the
last executable statement of MPI program, otherwise,
results of the procedure is unpredictable. MPI_Finalize
symbolizes the end of the parallel codes.

In the first step, read N objects from the input file, and
partition N data objects evenly among all processes,
randomly select K points as the initial cluster centroids,
and then iteratively assigns each object into the
corresponding cluster by the minimum distance according
to (1). This process will be repeated until the user-
specified threshold is met. When all objects are assigned,
generate a final centroid set Centroid by Function Merge
and output the clustering results.

In our MKmeans algorithm, the parallelism is
implemented by the data parallelism. The parallel
processing in MKmeans is consistent with that of
SKmeans. Data objects are evenly partitioned in all
processes and cluster centroids are replicated. The global
operation for all cluster centroids is performed at the end
of each iteration in order to generate new cluster centroids.
Finally, output the clustering results: K centroids, I/O time
and clustering time.

C. Merge Function
We assume that processes are n, which MKmeans

generates n new data sets from the original data set. Since
each data set uses K-means algorithm to generate K
centroids, we can get n centroid sets from Centroid1 to
Centroidn. Therefore, our goal is to merge the n centroid
sets into a final centroid set. In our MKmeans algorithm, a
simple merging algorithm is applied to ensemble with a
greedy style, shown in Fig. 4.

The Function Merge aims to find a vector of centroids
(c1,…, Kc) with the minimum inner distance. In addition,
the Euclidean distance is used to calculate the inner
distance, denoted as Distance. In (3), ic comes from

centroid set iC entroid (i=1,…,K) and c is the centroid.

 ∑
=

−

=
K

i
iK1 c,c Distancec,...,cD

1
)()(. (3)

The merging process is shown in Fig. 5. At first,
initialize the finally centroid set Centroid as empty, that
is to record the results of K centroids, if Centroidi
(i=1,…,n) is empty, the algorithm exits and the final
centroid set is Centroid, otherwise, find a vector of
centroids (c1,…, Kc) with the minimum inner distance
according to (3), and then delete ci from Centroidi, in
addition, add c into Centroid, finally, output the centroid
set Centroid.

It is obvious that the calculation of each inner distance
is independent. Therefore, all calculations can be
performed in parallel. The Function Merge merges n*K
centroids into new K centroids, which are the final
centroids.

14 JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

Figure 5. Merging process

IV. EXPERIMENTS

In this section, we first give the experimental
environment in Section A. Second, we give the
description of experimental data sets in Section B. Last,
we give the experimental results and analysis in Section
C.

A. Experimental Environment
The hardware platform in this paper uses a PC with the

configuration: Intel Xeon 5110 dual-core processor, 2GB
RAM, 250GB hard driver; the software environment uses
the following configuration: the operation system is
Windows XP Professional Service Pack 3, the parallel
and distributed environment is the Windows version of
MPICH2, Java development platform is the JDK 1.6;
Network environment is 100M- LAN.

In terms of aforementioned platform, eclipse SDK
3.2.1 is used to develop procedures. Considering the
fairness of comparison, the configuration of MPI parallel
development platform is based on open resource project
Eclipse in Windows, and the experimental platform has a
C/C++ complier based on MinGW (Minimalist GNU for
Windows).

B. Data Sets
All experimental data sets are selected from the UCI

Machine Learning Dataset Repository [20]. The
information of all data sets is illustrated as shown in
Table II.

In this table, seven testing data sets are listed
corresponding to the number of instances. As the number
of instances increases, the space consumption of data sets
also increases, denoted as size.

C. Experimental Results and Analysis
In our experiments, the time cost is the key

performance. The I/O time and clustering time are
calculated respectively in MKmeans and SKmeans. To

TABLE II
DESCRIPTION OF DATA SETS

Code

Number

of Data

Sets

Name of Data

Sets(.arff)
Size(KB)

Number of

Instances

1 zoo 14.0 101

2 breast-cancer 28.7 286

3 credit-a 33.5 690

4 vowel 90 990

5 segment 298 2310

6 hypothyroid 303 3772

7 letter 703 20000

TABLE IV
SPEEDUP IN SKMEANS AND MKMEANS

Code

Number

of Data

Sets

MKmeans(ms) SKmeans(ms) Speedup

1 0.2 0.0 0

2 0.2 0.0 0

3 7.6 0.0 0

4 8.8 15.6
1.7

73

5 45.4 46.9
1.0

33

1.0

TABLE III
COMPARISON RESULTS BETWEEN MKMEANS AND SKMEANS

Code

Number

of Data

Sets

MKmeans(ms) SKmeans(ms)

I/O
Cluster

ing
Total I/O

Cluster

ing
Total

1 12.5 0.2 12.7 0.0 0.0 0.0

2 22.2 0.2 22.4 0.0 0.0 0.0

3 48.6 7.6 56.2 15.6 0.0 15.6

4 72.0 8.8 80.8 15.6 15.6 31.2

5 179.3 45.4 224.7 46.9 46.9 93.8

6 251.3 57.9 309.2 31.3 62.5 93.8

7 1268.2 268.8 1537.0 171.9 281.3 453.2

JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013 15

© 2013 ACADEMY PUBLISHER

0

50

100

150

200

250

300

1 2 3 4 5 6 7

Code Number of Data Sets

c
lu

st
e
ri

ng
 t

im
e
(m

s)

MKmeans(ms)

SKmeans(ms)

Figure 6. Clustering time of MKmeans and SKmeans

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7

Code Number of Data Sets

to
t
a
l

t
i
m
e(

m
s
)

SKmeans(ms)

WKmeans(ms)

Figure 7. The total time overheads of SKmeans and WKmeans

reflect the fairness and authenticity of the proposed
algorithms, the number of processes is 1 in MKmeans.

Table III reports the results of the aforementioned two
algorithms, including the I/O time, the clustering time
and the total running time. Fig. 6 compares the clustering
running time of seven data sets in our algorithm with
other different algorithms directly. From this figure, we
can see that with the increasing of the size of data sets,
the clustering time of MKmeans is slightly lower than
that of SKmeans. However, the total time cost of
MKmeans is higher than that of SKmeans on each testing
data set, a preliminary analysis is that the I/O time
occupies a large proportion. If our algorithm MKmeans is
run in a large cluster, or as the number of processes
increases, the experimental results will be more
significant. In sum, we conclude that our MKmeans
algorithm enables improving the time performance of
clustering on large-scale data sets and MPI is quite
appropriate for the parallel and distributed computing
environment.

Table IV illustrates speedup according to MKmeans
and SKmeans for comparing the time performance.
Speedup can be calculated in (4), which MCTi indicates
the clustering cost time of running MKMeans in data set i
(1≤ i≤7), SCTi indicates the clustering cost time of
running SKMeans in data set i. From this table we can see
that with the size of data set increasing, the time
performance of MKmeans is better than that of SKmeans.
In addition, if the scale of data set is small, it is not a good
choice to use MKmeans because the time of dividing the
data set and assigning tasks into each process occupies a
certain proportion.

 i

i

SCTspeedup
MCT

= . (4)

Table V illustrates the total time overheads of
SKmeans and WKmeans. To make a convenient
comparison in the experiments, WKmeans is based on the
SimpleKMeans algorithm from Weka. In Fig. 7, we can
see that the time cost of WKmeans is significantly higher
than that of SKmeans, and SKmeans performs much
more stable on the overhead of time in the large data sets

compared to WKmeans. MKmeans and SKmeans share
the similar idea, it is hence to conclude that MKmeans is
also a stable clustering algorithm.

V. CONCLUSIONS

We proposed a parallel K-means algorithm based on
MPI (called MKmeans) in this paper. Meanwhile, the
configuration of MPI parallel development platform based
on open resource project Eclipse and MPICH in Windows
is implemented, whose ideas and methods can be ported to
Linux or other platforms. Experimental results show that
MKmeans is relatively stable and portable, and it is
efficient in the clustering on large data sets.

However, how to study the cluster validity of
MKmeans with theoretical analysis, how to study the
effect of clustering performance varying with the number
of processes, how to compare the clustering performance
in MPI and Map-Reduce are our future work [21].

ACKNOWLEDGMENT

We wish to thank Peipei Li for her valuable comments
on an earlier draft. This work was supported in part by
the National Basic Research Program of China (973
Program) under grant 2009CB326203 and the Natural
Science Foundation of Anhui Province of China under
grant 090412044.

TABLE V
OVERHEADS OF TIME IN SKMEANS AND WKMEANS

Code

Number of

Data Sets

SKmeans(ms) WKmeans(ms)

1 0.0 78

2 0.0 78

3 15.6 156

4 31.2 219

5 93.8 562

6 93.8 625

7 453.2 6297

16 JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

REFERENCES
[1] A. Jain, “Data clustering: 50 years beyond K-means,”

Pattern Recognition Letters, vol. 31, no. 8, pp. 651–666,
June 2010.

[2] X. Wu, V. Kumar, Ross, J. Ghosh, Q. Yang, H. Motoda, G.
Mclachlan, A. Ng, B. Liu, P. Yu, Z.-H. Zhou, M.
Steinbach, D. Hand, and D. Steinberg, “Top 10 algorithms
in data mining,” Knowledge and Information Systems, vol.
14, no. 1, pp. 1-37, January 2008.

[3] J. MacQueen, “Some Methods for Classification and
Analysis of Multivariate Observations,” Berkeley:
University of California Press, pp. 281-297, 1967.

[4] B. Hayes, “Cloud computing,” Communications of the
ACM, vol. 51, no. 7, pp. 9-11, July 2008.

[5] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A.
Joseph, R. Katz, A. Konwinsli, G. Lee, D. Patterson, A.
Rabkin, “A view of cloud computing,” Communications of
the ACM, vol. 53, no. 4, pp. 50-58, April 2010.

[6] E. Lusk, N. Doss, A. Skjellum, “A High-Performance,
Portable Implementation of the MPI Message Passing
Interface,” Parallel Computing, vol. 22, pp. 789-828, 1996.

[7] E. Rasmussen, P. Willett, “Efficiency of hierarchic
agglomerative clustering using the ICL distributed array
processor,” Journal of Documentation, vol. 45, March
1989.

[8] C. Olson, “Parallel algorithms for hierarchical clustering,”
Parallel Computing, vol. 21, no. 8, pp. 1313-1325, August
1995.

[9] W. Zhao, H. Ma, Q. He, “Parallel K-Means Clustering
Based on MapReduce,” Cloud Computing, vol. 5931, pp.
674-679, 2009.

[10] S. Kantabutra, A. Couch, “Parallel K-means Clustering
Algorithm on NOWs,” Technical Journal, vol. 1, no. 6,
2000.

[11] A. Jain, R. Dubes, “Algorithms for Clustering Data,”
Prentice Hall, 1988.

[12] D. Arthur, S. Vassilvitskii, “k-means++: the advantages of
careful seeding,” Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 1027-
1035, 2007.

[13] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R.
Silverman, and A. Wu, “An Efficient K-means Clustering
Algorithm: Analysis and Implementation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 7, pp. 881-892, 2002.

[14] G. Frahling, C. Sohler, “A Fast K-means Implementation
Using Coresets,” Proceedings of the Twenty-second
Annual Symposium on Computational Geometry, pp. 135-
143, 2006.

[15] R. Amorim, B. Mirkin, “Minkowski metric, feature
weighting and anomalous cluster initializing in K-Means
clustering,” Pattern Recognition, vol. 45, no. 3, pp. 1061-
1075, 2012.

[16] W. Gropp, E. Lusk, “Implementing MPI: the 1994 MPI
Implementors’ Workshop,” Proceedings of Scalable
Parallel Libraries Conference, pp. 55-59, 2002.

[17] Y. Aoyama, J. Nakano, “RS/6000 SP: Practical MPI
Programming,” International Technical Support
Organization, August 1999.

[18] I. Witten, E. Frank, L. Triqq, M. Hall, G. Holmes, S.
Cunninqham, “Weka: Practical Machine Learning Tools
and Techniques with Java Implementations,” Proceedings
of ICONIP/ ANZIIS/ ANNES99 Future Directions for
Intelligent Systems and Information Sciences, 1999.

[19] E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I.
Witten, L. Trigg, “Weka-A Machine Learning Workbench

for Data Mining,” Data Mining and Knowledge Discovery
Handbook, pp. 1269-1277, 2010.

[20] C. Blake, E. Keogh, C. Merz, “UCI Repository of machine
learning databases,” Department of Information and
Computer Science, University of California, 1998.

[21] J. Zhang, G. Wu, H. Li, X. Hu, X. Wu, “A 2-Tier
Clustering Algorithm with Map-Reduce,” Proceedings of
the 5th ChinaGrid Annual Conference (ChinaGrid’10), pp.
160-166, July 2010.

Jing Zhang, born in 1987. She is
currently a Ph.D. Student led by
Professor X. Hu. She received her B.S.
degree in computer science and
technology from School of Computer
Science and Information, Heifei
University of Technology, China in 2009.
Her main research interests are high-
performance data mining and artificial

intelligence.

Gongqing Wu, born in 1975. He is
currently an associate professor of
School of Computer Science and
Information Engineering at Hefei
University of Technology. He received
his M.S. degree from Department of
Computer Science and Technology,
University of Science and Technology of
China (USTC) in 2003. His main
research interests are data mining and

Web intelligence.

Xuegang Hu, born in 1961. He is
currently a professor of School of
Computer Science and Information
Engineering at Hefei University of
Technology. He received his M.S. and
Ph.D. degrees in computer application
technology from School of Computer
Science and Information, Heifei
University of Technology, China in

1988 and 2000, respectively. His main research interests include
data mining, machine learning, knowledge engineering and
artificial intelligence.

Shiying Li, born in 1986. He is currently
a graduate student led by Professor X.
Hu. He received his B.S. degree in
information and computing science from
School of Mathematics, Heifei
University of Technology, China in 2009.
His main research interests are Web data
mining and user interest modeling.

Shuilong Hao, born in 1986. He is
currently a graduate student led by
Professor X. Hu. He received his B.S.
degree in information and computing
science from School of Mathematics,
Heifei University of Technology, China
in 2009. His main research interests are
data mining and user interest modeling.

JOURNAL OF COMPUTERS, VOL. 8, NO. 1, JANUARY 2013 17

© 2013 ACADEMY PUBLISHER

