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Abstract—Clustering is one of the most popular methods for 
exploratory data analysis, which is prevalent in many 
disciplines such as image segmentation, bioinformatics, 
pattern recognition and statistics etc. The most famous 
clustering algorithm is K-means because of its easy 
implementation, simplicity, efficiency and empirical success. 
However, the real-world applications produce huge volumes 
of data, thus, how to efficiently handle of these data in an 
important mining task has been a challenging and 
significant issue. In addition, MPI (Message Passing 
Interface) as a programming model of message passing 
presents high performances, scalability and portability. 
Motivated by this, a parallel K-means clustering algorithm 
with MPI, called MKmeans, is proposed in this paper. The 
algorithm enables applying the clustering algorithm 
effectively in the parallel environment. Experimental study 
demonstrates that MKmeans is relatively stable and 
portable, and it performs with low overhead of time on large 
volumes of data sets.  
 
Index Terms—clustering, K-means algorithm, MPI, parallel 
computing 
 

I.  INTRODUCTION 

Clustering is a method of unsupervised learning and a 
common technique for data analysis used in many 
disciplines, including image segmentation, bioinformatics, 
pattern recognition and statistics etc [1].  

Clustering is the process of grouping objects into 
subsets that have meaning in the context of a specific 
problem. Unlike classification, clustering does not rely on 
predefined classes, and no information is provided about 
the "right answer". K-means is a well-known clustering 
algorithm for its simplicity and easy implementation. K-
means was ranked second of top 10 algorithms in data 
mining by the ICDM Conference in October 2006, while 
C4.5 was ranked first [2]. Compared with other clustering 
algorithms, K-means algorithm has three major 
advantages covering simple implementation, efficient 
when handling a large data sets and a solid theoretical 
foundation based on the greedy optimization of Voronoi 
partition [3]. 

With the development of information technology, data 
volumes are becoming increasingly mass, which makes 

clustering large-scale and complicated data a challenging 
problem. Efficient parallel clustering algorithms and 
implementation techniques are the key to meet the 
scalability and performance requirements entailed in such 
scientific data analysis. Cloud computing is a form of 
technology that uses the Internet to maintain data and 
application. It is based on the development of distributed 
computing, parallel computing and grid computing [4]. 
Meanwhile, “Top 10 obstacles and opportunities for 
Cloud Computing” are presented in [5], which predict 
that cloud computing will grow and believe that 
computing, storage and networking must all focus on the 
horizontal scalability of virtualized resources rather than 
the performance of single node. 

MPI is a library specification for message passing, 
which is proposed as a standard programming model. MPI 
is an application programmer interface of message passing, 
together with protocol and semantic specifications for how 
its features must behave in any implementation [6].  The 
MPI interface is used to provide essential virtual topology, 
synchronization, and communication functionality 
between a set of processes in a language-independent way.  
MPI is an API library consisting of hundreds of function 
interfaces called by computers such as computer clusters 
communicate with one another in the parallel 
development environment. MPI aims to maintain the high 
performance, scalability and portability, and it remains the 
dominate model for high-performance computing today. 

Many scholars focus on the studies in the fields of 
parallel and distributed clustering. More specifically, (1) 
Rasmussen et al. [7] suggested that the parallel 
processing using an array processor like the DAP 
(Distributed Array Processor) can provide significant 
speedups over serial processing for the hierarchic 
agglomerative cluster analysis of large data sets. (2) 
Olson et al. [8] considered parallel algorithms for 
hierarchical clustering using several inter-cluster distance 
metrics and parallel computer architectures. (3) Zhao et al. 
[9] proposed a fast parallel K-means clustering algorithm 
based on MapReduce. The proposed algorithm can scale 
well and efficiently to process large data sets on 
commodity hardware. 

However, our contributions in this paper are as follows: 
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• MKmeans, a parallel K-means clustering 
algorithm with MPI, is proposed. 

• A simple merging algorithm in MKmeans, used to 
merge the generated centroid sets into a final 
centroid set with a greedy style, is proposed. 

• The configuration of MPI parallel development 
platform based on open resource project Eclipse 
and MPICH2 in Windows is implemented. Our 
method can be ported to Linux or other platforms. 

• Experimental results illustrate that our MKmeans 
algorithm is relatively stable and portable, it 
improves the time performance of clustering on 
large data sets. Meanwhile, MPI is quite 
appropriate for the parallel and distributed 
computing environment. 

The rest of this paper is organized as follows.  Section 
II gives the related work. Section III mainly presents our 
MKmeans algorithm in detail. Section IV shows our 
experimental results and performance evaluation. Finally, 
Section V concludes the paper and outlines our future 
work. 

II.  RELATED WORK 

Related work including K-means clustering algorithm, 
MPI and Weka are involved in this section. More 
precisely, an outline on K-means is summarized in 
Section A, the concept of MPI is given in Section B, brief 
introduction of MPI functions is given in Section C, the 
messing passing process of MPI is described in Section D 
and a classical experimental tool Weka is described in 
Section E. 

A.  K-means Algorithm 
The most popular and the simplest partitional 

algorithm is K-means [10]. K-means has a rich and 
diverse history as it was independently discovered in 
different scientific fields by Steinhaus (1956), Lloyd 
(proposed in 1957, published in 1982), Ball and Hall 
(1965), and MacQueen (1967) [1]. K-means is a method 
of data analysis, which is easy to implement and apply 
even on large data sets. As such, it has been successfully 
used in various fields, ranging from computer vision, 
statistics to market segmentation. 

K-means clustering algorithm is simple and fairly fast. 
It is initialized from some random and approximate 
solution. The K-means clustering is to find cluster centers 
that minimize the sum of squared distances from each 
data point being clustered to its closest cluster center. The 
objective is to partition N data objects into K clusters 
(K<N) such that the objects in the same cluster are as 
similar as possible and as dissimilar as possible in 
different clusters. K-Means algorithm inputs parameter K, 
and then divides data objects N into K clusters to make 
the obtained clustering to meet the conditions, which the 
similarity degree of the same clustering objects is higher, 
and that of the different clustering objects is lower. 
Clustering similarity degree is calculated by "central 
object" (gravity center) to be obtained by the mean of 
objects in each cluster. The resulting clusters have high 
explanatory and precision. 

Given a set of N objects, then partition N objects into K 
clusters, the time complexity of K-means algorithm is 
O(NKt), where t is the number of iterations, generally, 
K<<N, t<<N. 

Main steps of the K-means algorithm are described by 
Jain and Dubes [11] as follows: 

1) Select an initial partition with K clusters; repeat     
steps 2 and 3 until cluster memberships stabilize. 

2) Generate a new partition by assigning each pattern 
to its closest cluster center. 

3) Compute new cluster centers. 
In recent years, with the development of computer 

technology, some methods of cluster analysis are 
developed quickly and applied broadly. There are several 
variations of K-means algorithm:  

• The fuzzy C-means clustering is a soft version of 
K-means, where each point has a degree of 
belonging to cluster, as in fuzzy logic. 

• The EM (expectation-maximization) algorithm is a 
generalization of K-means, which is an iterative 
method to maintain probabilistic assignments to 
clusters, instead of deterministic assignments in K-
means. 

• Some seeding methods are proposed for choosing 
the initial values (seeds) for the K-means 
clustering algorithm. K-means++ [12] is one of the 
methods to successfully overcome the problems 
associated with the sometimes poor clustering 
results by the standard K-means clustering 
algorithm. 

• The kd-tree (k-dimensional tree) is a space-
partitioning data structure for organizing points in 
a k-dimensional space. Kanungo et al. [13] present 
a simple and efficient implementation of K-means 
clustering algorithm, called the filtering algorithm. 
This algorithm is easy to implement, requiring a 
kd-tree as the only major data structure, which can 
speed up each step of K-means. 

• The coreset is a small weighted set of points that 
approximates the original point set with respect to 
the considered problem. Frahling et al. [14] 
develop an efficient implementation for a K-
means clustering algorithm. It uses coresets to 
speed up the algorithm. The main strength of the 
algorithm is that it can quickly determine clusters 
of the same point set for many values of K. This is 
necessary in many applications, since, typically, 
one does not know a good value for K in advance. 

• The Minkowski metric deals with the problem of 
noise features by assigning weights to each feature 
for each cluster. Amorim et al. [15] represent 
another step in overcoming a drawback of K-
means, its lack of defense against noisy features, 
using feature weights in the criterion. The 
Weighted K-means method is extended to the 
corresponding Minkowski metric for measuring 
distances. Under Minkowski metric the feature 
weights become intuitively appealing feature 
rescaling factors in a conventional K-means 
criterion.  
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Meanwhile, there are still several drawbacks of those 
variation algorithms. Despite its simplicity and its linear 
time, the time complexity of a serial K-means algorithm 
remains expensive when it is applied to a problem of 
large size of multi-dimensional vector. Therefore, it is of 
vital importance and urgent necessity to think about how 
to apply K-means clustering algorithm to the distributed 
environment for large scale of data sets. 

B.  The Concept of MPI 
Most popular high-performance parallel architectures 

used in the parallel programming environment are divided 
into two classes: message passing and shared storage. The 
cost of message passing parallel processing is larger, 
suitable for large-grain process-level parallel computing. 
Compared with other parallel programming environment, 
message passing has good portability, supported by 
almost all parallel environments. Meanwhile, it has good 
scalability and complete asynchronous communication 
function, which can well decompose tasks according to 
the requirements of users, organize data exchange 
between different processes and is applied to scalable 
parallel algorithms. 

MPI is an interface mode widely used in various 
parallel clusters and network environments based on a 
variety of reliable message passing libraries. 

MPI is a message passing parallel programming 
standard used to build highly reliable, scalable and 
flexible distributed applications, such as workflow, 
network management, communication services. 

MPI is a language-independent communications 
protocol. FORTRAN, C and C++ can directly call the 
API library. The goals of MPI are high performance, 
scalability and portability. 

MPI is a library specification for message passing, not a 
language. Message Passing Interface is a standard 
developed by the Message Passing Interface Forum 
(MPIF). MPI is a standard library specification designed 
to support parallel computing in a distributed memory 
environment. The first version (MPI-1) was published in 
1994 and the second version (MPI-2) was published in 
1997 [16]. Both point-to-point and collective 
communication are supported.   

MPICH is an available and portable implementation of 
MPI, a standard for message passing used in parallel 
computing. MPI has become the most popular message 
passing standard for parallel programming. There are 
several MPI implementations among which MPICH is the 
most popular one. MPICH1 is the original 
implementation of MPICH that implements the MPI-
1standard. MPICH2 is a high-performance and widely 
portable implementation of the MPI standard (both MPI-1 
and MPI-2). The goals of MPICH2 are to provide an 
implementation of MPI that efficiently supports different 
computation and communication platforms including 
commodity clusters, high-speed networks and proprietary 
high-end computing systems. 

The standards of MPI are as follows [17]: 
• Point-to-point communication 
• Collective operations 

• Process groups. 
• Communication contexts 
• Process topologies 
• Bindings for FORTRAN 77 and C 
• Environmental management and inquiry 
• Profiling interface 

C.  MPI Functions 
MPI is a library with hundreds of function-calling 

interfaces, and FORTRAN, C language and C++ can 
directly call these functions. Many parallel programs 
can be written with just six basic functions, almost 
complete all of the communication functions. 

Table I illustrates the basic functions. MPI_Init() 
initializes the MPI environment and assigns all spawned 
processes; MPI_Finalize() terminates the MPI 
environment; MPI_Comm_size() finds the number of 
processes in a communication group; MPI_Comm_rank() 
gives the identification number of a process in a 
communication group; MPI_Send() sends message to the 
destination process of rank dest and MPI_Recv() receives 
message from the specified process of rank source. 

 
 

D.   The Messing Passing Process of MPI 
MPI is a parallel programming standard based on 

message passing, whose function is to exchange 
information, coordinate and control the implementation 
steps with the definition of program grammar and 
semantics in the core library by sending messages 
between the concurrent execution parts. 

First all of the MPI programs contain “mpi.h” header 
file, and then complete the initialization of the program 
by MPI_Init(), after that, establish process topology 
structure and new communicator and call the functions 
and applications to be used for each process, finally use 
MPI_Finalize() to terminate each process. 

The parallel program design flow of message passing 
process is shown in Fig. 1. 

 

TABLE I 
MPI BASIC FUNCTIONS 

Function Functionalities 

MPI_Init Initialization 

MPI_Finalize Termination 

MPI_Comm_size Access to the number of processes 

MPI_Send Send 

MPI_Recv Receive 

MPI_Comm_rank 
Access to the identification number 

of a process 
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SKmeans algorithm 
Input: number of clusters K, number of data objects 

N 
Output: K centroids 

1: Read N objects from the file; 
2: Randomly select K points as the initial cluster

centroids, denoted as kμ  (1≤k≤K);  
3: Calculate J in Formula (1), denoted by J’; 
4: Assign each object n (1≤n≤N) to the closest 

cluster; 
5: Calculate new centroid of each cluster kμ in

Formula (2) ; 
6: Recalculate J in Formula (1); 
7: Repeat steps 3-6 until J’- J < threshold; 
8: Output the clustering results: K centroids; 

Figure 2. SKmeans clustering algorithm 

 
Figure 1. Flow of message passing process 

 

E.  Weka 
Weka (Waikato Environment for Knowledge Analysis) 

is a comprehensive suite of Java class libraries that 
implement many state-of-the-art machine learning and 
data mining algorithms [18]. Weka contains 
implementations of algorithms for classification, 
clustering, association rule mining, along with graphical 
user interfaces and visualization utilities for the data 
exploration and algorithm evaluation. Weka is a 
significant tool to bring machine learning technology into 
the workplace. 

Methods of clustering do not seek rules that predict a 
particular class, but rather try to divide the data into 
natural groups of “clusters”. K-means algorithm is the 
most widely used clustering algorithm. SimpleKMeans 
from Weka is a simplified version of K-means [19]. 
Clustering data using the K-means algorithm can use 
either the Euclidean distance (default) or the Manhattan 
distance. If the Manhattan distance is used, centroids are 
calculated as the component-wise median rather than the 
mean.  

III.  MKMEANS–A PARALLEL K-MEANS ALGORITHM 
WITH MPI 

In this section, we will propose an implementation of a 
parallel K-means algorithm based on MPI, called 
MKmeans. Before introducing our MKmeans algorithm, 
we first give a short description of the SKmeans 
(Sequential K-means) algorithm in Section A, because 
MKmeans is composed of SKmeans and MPI, and then 
we give the detailed description of MKmeans in Section 
B, Merge function is shown in Section C. 

A.  SKmeans Algorithm 
The clustering algorithm K-means is one of the most 

popular partitioning clustering algorithms. The main idea 
in the algorithm is to define K centroids (one for each 
cluster). These centroids should be placed in a cunning 
way because different locations cause different results [3]. 
In the SKmeans algorithm, the objective function J is 

defined as in (1). SKmeans aims to minimize the 
objective function, i.e., a squared error function. In (1), J 
refers to the distance index of N data objects from the 
corresponding cluster centroids, nx  (1≤n≤N) indicates 

a data point, and kc  (1≤k≤K) specifies the cluster 

centroid. 
2

n kx c− is the distance measure between nx  

and kc . In (2), kμ  (1≤k≤K) refers to the mean of data 
points that belong to cluster k,  and kN  indicates the 
number of objects belong to cluster k. 

 In our SKmeans algorithm, the number of clusters K is 
a user-specified parameter. First, read N objects from the 
input file. The initial K-centroids are randomly selected, 
defined as kμ (1 ≤ k ≤ K). Second, the SKmeans 
algorithm iteratively assigns each object into the 
corresponding cluster by the minimum distance. When all 
objects are assigned, update the K centroids. This process 
will be repeated until the user-specified threshold is met. 
The SKmeans algorithm is shown in Fig. 2. 

 ∑ ∑
= =

−=
N

n

K

k
kn cxJ

1 1

2 . (1) 

 ∑
∈

=
kcn

n
k

k x
N
1μ . (2) 

 

B.  MKmeans Algorithm 
Fig. 3 shows the processing flow of our MKmeans 

algorithm, which is the key algorithm in our work. This 
algorithm utilizes K-means and the MPI parallel 
framework, it is hence simple and portable. 

All initialization is implemented by the MPI_Init 
function, which is the first call of MPI program. It is the 
first executable statement of the MPI program. To start the 
MPI environment, it means the beginning of the parallel 
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MKmeans algorithm 
Input: number of clusters K, number of data objects

N 
Output: K centroids  

1: MPI_Init// start the procedure; 
2: Read N objects from the file; 
3: Partition N data objects evenly among all

processes, and assume that each process has
N’ data objects; 

4: For each process, install steps 5-11; 
5: Randomly select K points as the initial

cluster centroids, denoted as kμ  (1≤k≤K);
6: Calculate J in (1), denoted as J’; 
7: Assign each object n (1≤ n≤N) to the

closest cluster; 
8: Calculate the new centroid of each

cluster kμ in (2) ; 
9: Recalculate J in (1); 
10: Repeat steps 6-9 until J’- J < threshold; 
11: Generate the cluster id for each data object;
12: Generate new cluster centroids according to

the clustering results of all processes at the
end of each iteration; 

13: Generate a final  centroid set  Centroid by
Function Merge and output the clustering
results: K centroids; 

14: MPI_Finalize// finish the procedure; 
Figure 3. MKmeans clustering algorithm 

 

 

Function Merge 
Input: n centroid sets from Centroid1 to Centroidn

(n*K centroids) 
Output: a centroid set Centroid (K centroids) 

1: Initialize a centroid set Centroid as empty;
2: If any centroid set Centroidi (i=1,…,n) is

empty, exit and the final centroid set is
Centroid, otherwise, go to step 3;  

3: Find a vector of centroids (c1,…, cK) with
the minimum inner distance, which is
defined as in (3), and then delete ci from
Centroidi, in addition, add c into Centroid.
Go to step 2; 

4: Output K centroids; 
Figure 4. Merge function 

codes. The MPI_Finalize function is the last call of MPI 
program, and it ends the running of MPI program. It is the 
last executable statement of MPI program, otherwise, 
results of the procedure is unpredictable. MPI_Finalize 
symbolizes the end of the parallel codes.  

In the first step, read N objects from the input file, and 
partition N data objects evenly among all processes, 
randomly select K points as the initial cluster centroids, 
and then iteratively assigns each object into the 
corresponding cluster by the minimum distance according 
to (1). This process will be repeated until the user-
specified threshold is met. When all objects are assigned, 
generate a final centroid set  Centroid by Function Merge 
and output the clustering results.  

In our MKmeans algorithm, the parallelism is 
implemented by the data parallelism. The parallel 
processing in MKmeans is consistent with that of 
SKmeans. Data objects are evenly partitioned in all 
processes and cluster centroids are replicated. The global 
operation for all cluster centroids is performed at the end 
of each iteration in order to generate new cluster centroids. 
Finally, output the clustering results: K centroids, I/O time 
and clustering time. 

 
 

C.  Merge Function 
We assume that processes are n, which MKmeans 

generates n new data sets from the original data set. Since 
each data set uses K-means algorithm to generate K 
centroids, we can get n centroid sets from Centroid1 to 
Centroidn. Therefore, our goal is to merge the n centroid 
sets into a final centroid set. In our MKmeans algorithm, a 
simple merging algorithm is applied to ensemble with a 
greedy style, shown in Fig. 4. 

 

The Function Merge aims to find a vector of centroids 
(c1,…, Kc ) with the minimum inner distance. In addition, 
the Euclidean distance is used to calculate the inner 
distance, denoted as Distance. In (3), ic comes from 

centroid set iC entroid  (i=1,…,K) and c is the centroid. 

 ∑
=

−

=
K

i
iK1 c,c Distancec,...,cD

1
)()( . (3) 

The merging process is shown in Fig. 5. At first, 
initialize the finally centroid set Centroid as empty, that 
is to record the results of K centroids, if Centroidi 
(i=1,…,n) is empty, the algorithm exits and the final 
centroid set is Centroid, otherwise, find a vector of 
centroids (c1,…, Kc ) with the minimum inner distance 
according to (3), and then delete ci from Centroidi, in 
addition, add c into Centroid, finally, output the centroid 
set Centroid. 

It is obvious that the calculation of each inner distance 
is independent. Therefore, all calculations can be 
performed in parallel. The Function Merge merges n*K 
centroids into new K centroids, which are the final 
centroids. 
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Figure 5. Merging process 
 

 

IV.  EXPERIMENTS 

In this section, we first give the experimental 
environment in Section A. Second, we give the 
description of experimental data sets in Section B. Last, 
we give the experimental results and analysis in Section 
C. 

A.  Experimental Environment 
The hardware platform in this paper uses a PC with the 

configuration: Intel Xeon 5110 dual-core processor, 2GB 
RAM, 250GB hard driver; the software environment uses 
the following configuration: the operation system is 
Windows XP Professional Service Pack 3, the parallel 
and distributed environment is the Windows version of 
MPICH2, Java development platform is the JDK 1.6; 
Network environment is 100M- LAN. 

In terms of aforementioned platform, eclipse SDK 
3.2.1 is used to develop procedures. Considering the 
fairness of comparison, the configuration of MPI parallel 
development platform is based on open resource project 
Eclipse in Windows, and the experimental platform has a 
C/C++ complier based on MinGW (Minimalist GNU for 
Windows). 

B.  Data Sets 
All experimental data sets are selected from the UCI 

Machine Learning Dataset Repository [20]. The 
information of all data sets is illustrated as shown in 
Table II. 

In this table, seven testing data sets are listed 
corresponding to the number of instances. As the number 
of instances increases, the space consumption of data sets 
also increases, denoted as size. 

C.  Experimental Results and Analysis 
In our experiments, the time cost is the key 

performance. The I/O time and clustering time are 
calculated respectively in MKmeans and SKmeans. To 

TABLE II 
DESCRIPTION OF DATA SETS 

Code 

Number 

of Data 

Sets 

Name of Data 

Sets(.arff) 
Size(KB) 

Number of 

Instances 

1 zoo 14.0 101 

2 breast-cancer 28.7 286 

3 credit-a 33.5 690 

4 vowel 90 990 

5 segment 298 2310 

6 hypothyroid 303 3772 

7 letter 703 20000 

TABLE IV 
SPEEDUP IN SKMEANS AND MKMEANS  

Code 

Number 

of Data 

Sets 

MKmeans(ms) SKmeans(ms) Speedup

1 0.2 0.0 0 

2 0.2 0.0 0 

3 7.6 0.0 0 

4 8.8 15.6 
1.7

73 

5 45.4 46.9 
1.0

33 

1.0

TABLE III 
COMPARISON RESULTS BETWEEN MKMEANS AND SKMEANS  

Code 

Number 

of Data 

Sets 

MKmeans(ms) SKmeans(ms) 

I/O 
Cluster

ing 
Total I/O 

Cluster

ing 
Total 

1 12.5 0.2 12.7 0.0 0.0 0.0 

2 22.2 0.2 22.4 0.0 0.0 0.0 

3 48.6 7.6 56.2 15.6 0.0 15.6 

4 72.0 8.8 80.8 15.6 15.6 31.2 

5 179.3 45.4 224.7 46.9 46.9 93.8 

6 251.3 57.9 309.2 31.3 62.5 93.8 

7 1268.2 268.8 1537.0 171.9 281.3 453.2 
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Figure 7. The total time overheads of  SKmeans and WKmeans  

reflect the fairness and authenticity of the proposed 
algorithms, the number of processes is 1 in MKmeans. 

Table III reports the results of the aforementioned two 
algorithms, including the I/O time, the clustering time 
and the total running time. Fig. 6 compares the clustering 
running time of seven data sets in our algorithm with 
other different algorithms directly. From this figure, we 
can see that with the increasing of the size of data sets, 
the clustering time of MKmeans is slightly lower than 
that of SKmeans. However, the total time cost of 
MKmeans is higher than that of SKmeans on each testing 
data set, a preliminary analysis is that the I/O time 
occupies a large proportion. If our algorithm MKmeans is 
run in a large cluster, or as the number of processes 
increases, the experimental results will be more 
significant. In sum, we conclude that our MKmeans 
algorithm enables improving the time performance of 
clustering on large-scale data sets and MPI is quite 
appropriate for the parallel and distributed computing 
environment. 

Table IV illustrates speedup according to MKmeans 
and SKmeans for comparing the time performance. 
Speedup can be calculated in (4), which MCTi indicates 
the clustering cost time of running MKMeans in data set i 
(1≤ i≤7), SCTi indicates the clustering cost time of 
running SKMeans in data set i. From this table we can see 
that with the size of data set increasing, the time 
performance of MKmeans is better than that of SKmeans. 
In addition, if the scale of data set is small, it is not a good 
choice to use MKmeans because the time of dividing the 
data set and assigning tasks into each process occupies a 
certain proportion.  

 i

i

SCTspeedup
MCT

= . (4) 

Table V illustrates the total time overheads of 
SKmeans and WKmeans. To make a convenient 
comparison in the experiments, WKmeans is based on the 
SimpleKMeans algorithm from Weka. In Fig. 7, we can 
see that the time cost of WKmeans is significantly higher 
than that of SKmeans, and SKmeans performs much 
more stable on the overhead of time in the large data sets 

compared to WKmeans. MKmeans and SKmeans share 
the similar idea, it is hence to conclude that MKmeans is 
also a stable clustering algorithm.  

V.  CONCLUSIONS 

We proposed a parallel K-means algorithm based on 
MPI (called MKmeans) in this paper. Meanwhile, the 
configuration of MPI parallel development platform based 
on open resource project Eclipse and MPICH in Windows 
is implemented, whose ideas and methods can be ported to 
Linux or other platforms. Experimental results show that 
MKmeans is relatively stable and portable, and it is 
efficient in the clustering on large data sets. 

However, how to study the cluster validity of 
MKmeans with theoretical analysis, how to study the 
effect of clustering performance varying with the number 
of processes, how to compare the clustering performance 
in MPI and Map-Reduce are our future work [21]. 
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TABLE V 
OVERHEADS OF TIME IN SKMEANS AND WKMEANS 

Code 

Number of 

Data Sets 

SKmeans(ms) WKmeans(ms) 

1 0.0 78 

2 0.0 78 

3 15.6 156 

4 31.2 219 

5 93.8 562 

6 93.8 625 

7 453.2 6297 
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