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Abstract—Interoperability in all the levels of a 
communication architecture for automation applications 
cannot be easily satisfied because control devices are 
generally based on different technologies and 
communication protocols. This paper deals with the 
interoperability of a well-known communication standard 
for home and building automation, i.e. the KNX. Current 
literature presents several papers demonstrating that OPC 
Unified Architecture (OPC UA) can provide a cohesive, 
secure and reliable cross platform framework for 
interoperability in automation environment; some 
approaches propose the use of OPC UA to achieve 
interoperability of KNX. Starting from the current 
proposals, in this paper the authors propose further 
improvements always aimed to integrate KNX and OPC UA 
information model. 
 
Index Terms—OPC UA, KNX, interoperability 

I.  INTRODUCTION 

Home and building automation is rapidly entering in 
our houses, thanks to a wide variety of commercial offers 
by both producers and installers. KNX is a worldwide 
standard for home and building control and represents 
one of the most important actor of this process of 
modernization [1][2][3]. 

KNX is not the only communication standard used for 
home and building automation and generally at the field 
level of the automation systems. Typical scenarios of a 
generic automation system (including home and building 
environment) feature the presence of different standards, 
causing problems of interoperability. 

The main problems limiting the interoperability are 
present at the information level. Generally, data under 
control of dedicated devices are represented in different 
ways since each technology defines its own interworking 
model. This concerns how the data are modelled (i.e., the 
structure of data and the distribution to the devices) as 
well as the semantics (i.e., encoding, data types and other 
meta-data like engineering units, quality of data). For this 
reason interoperability has been always achieved by the 
adoption of expensive proprietary mapping. 

OPC Unified Architecture (OPC UA) [4] can provide a 
cohesive, secure and reliable cross platform framework 
for interoperability, resulting a very good solution to 

perform the integration of different communication 
systems in automation environment. 

Current literature presents some results achieved in this 
direction; in [5][6] and [7], an OPC UA-based 
interworking model is defined to make interoperable the 
KNX with other communication systems.  

Starting from these proposals (i.e., [5][6] and [7]), in 
this paper the authors propose further improvements for 
the integration of KNX interworking model into OPC UA; 
they are mainly based on the definition of different ways 
to represent KNX functions and data structures into OPC 
UA information model. The main features of the novel 
proposal will be deeply described, pointing out the 
difference with the current literature. In order to better 
understand the proposal here presented, a simple case 
study will be shown and the relevant implementation of 
the KNX/OPC UA integration will be proposed. As it 
will be pointed out, it has been based on OPC UA .Net 
stack implementation made available by OPC Foundation 
[8]. 

II.  KNX 

KNX is one of the most worldwide used and known 
standards for home and building automation [9]. KNX 
communication stack allows exchanging of KNX 
telegrams through Physical, Data Link [10], Network, 
Transport and Application [11] layers. 

KNX systems are typically distributed and based on 
Functional Blocks (FBs), representing key components in 
the KNX interworking model; they are distributed in 
different devices and, in order to exchange data, are 
connected each other via the KNX network. Each device 
can accommodate multiple FBs. 

FBs are mainly made up by DataPoints; it is possible 
to distinguish input, output and parameter DataPoints. 
Each DataPoint is characterized by a well-defined 
DataPoint Type (DPT). Any DPT standardizes one 
combination of format (bit length), encoding, range 
(upper and lower limits) and unit [12]. A DPT is uniquely 
identified by a main and a sub number; the main number 
defines the format and encoding of DPT while the sub 
number concerns range and unit [12]. 

III.  OPC UA 

The OPC UA specifications are currently made up by 
11 parts [13][14]. OPC UA allows applications to 
exchange information on the basis of a client/server 
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model. OPC UA defines information model to represent 
data and communication services to realize the data 
exchange. 

Inside an OPC UA Server, particular objects, called 
Nodes, are used to represent any kind of information, 
including the representation of data instances and the 
definition of data types. The set of nodes inside an OPC 
UA Server is called AddressSpace [13]. Each node 
belongs to exactly one of the following node classes: 

• Base NodeClass, representing the base class from 
which all other node classes are derived. 

• Object NodeClass, representing real-world entities 
like system components, hardware and software 
components, or even whole system. 

• ObjectType NodeClass, holding type definition for 
objects. OPC UA defines a type model for objects 
supporting an object-oriented type hierarchy [13] 
(OPC UA Part 3 & Part 5). OPC UA standard allows 
extending the standard ObjectTypes [13] with 
additional components. The BaseObjectType is the 
base ObjectType and all other ObjectTypes shall either 
directly or indirectly inherit from it. 

• Variable NodeClass, modeling values of the system. 
OPC UA distinguishes between data variables (e.g., 
representing physical values of the process under 
control) and properties (e.g., meta-data that further 
describe nodes). 

• VariableType NodeClass, used to provide type 
definition for variables. Like ObjectType, OPC UA 
defines a type model for variables supporting an 
object-oriented type hierarchy [13] (OPC UA Part 3 & 
Part 5). The BaseVariableType is the abstract base 
type and all other VariableTypes shall inherit from it. 
The BaseDataVariableType is a subtype of the 
BaseVariableType. It is used as the type definition 
whenever there is a DataVariable having no more 
concrete type definition available. 

• DataType NodeClass, used to provide type definitions 
for the values of variables. The BaseDataType is the 
abstract base type and all other Data Types shall 
inherit from it; among them there is the Structure data 
type. 

• ReferenceType NodeClass, used to define different 
reference types. 

• Method NodeClass, modeling callable functions that 
initiate actions within a server. 

• View NodeClass, allowing OPC UA Servers to subset 
the AddressSpace into Views to simplify Client 
access. 

Each Node has several attributes that describe it. Some 
attribute are common to all nodes (like NodeId, 
NodeClass and DisplayName). Other attributes are 
available only for some node classes; considering 
variables, examples of this kind of attributes are Value 
(representing the value of the variable) and DataType 
(indicating the data type of the Value attribute). Particular 
relations may be defined between nodes; they are called 
References. References are always defined from one node 
to another. References can be defined in a symmetric or 
asymmetric way and further be divided into hierarchical 
or non-hierarchical. Hierarchical references can be used 
to introduce topologies and hierarchies within the model; 

typical examples of standard OPC UA hierarchical 
references are Organizes (used to introduce a general 
hierarchy of nodes) and HasComponent (used to 
reference a complex type to its sub nodes). Example of 
OPC UA non-hierarchical references are HasEncoding 
(specifying the encoding of a structured data type), 
HasDescription (specifying the description within the 
encoding object) and HasTypeDefinition (allowing 
referencing an object or variable to its type definition).  

To promote interoperability of Clients and Servers, the 
OPC UA AddressSpace is structured hierarchically with 
the same top levels for all OPC UA Servers [13] (OPC 
UA Part 1). 

Nodes are accessible by Clients using OPC UA 
Services (interfaces and methods). Client and server 
applications use OPC UA Client and Server Application 
Programming Interface (API) to exchange data, 
respectively. OPC UA Client/Server API is an internal 
interface that isolates the Client/Server application code 
from an OPC UA Communication Stack. Implementation 
of the OPC UA Communication Stack is not linked to 
any specific technology; this allows OPC UA to be 
mapped to future technologies as necessary, without 
negating the basic design. 

IV.  INTEGRATING KNX INTO OPC UA 

Integration of KNX interworking model within OPC 
UA information model can be realized mapping the 
following main KNX elements into the address space of 
OPC UA: Function Blocks (FBs), DataPoints, KNX 
Addresses and their corresponding type definitions. 
Indeed, OPC UA standard offers many elements that can 
be used to perform such translation. In this section, this 
mapping will be shown. Although the basic ideas come 
from [5][6][7], a novel approach to map KNX DataPoint 
Types (DPTs) (based on main and sub number of the 
corresponding identifiers) will be presented and described 
in the following. 

A.  Function Block Modeling  
In order to model FBs it is possible to adopt two 

solutions, as pointed out in [5] and [6]. The first one is to 
map a FB with an OPC UA complex variable; in this case, 
DataPoints can be modeled as a part of the complex 
variable representing the FB. The second option is to use 
OPC UA complex objects, as described in [5] and 
realized in [6]; basically, according to this approach, 
KNX FBs are modeled extending the OPC object type 
BaseObjectType. 

The proposal here presented will use this second 
approach, as the first one seems to show several 
drawbacks, among which the intrinsic limitation of 
complex variable to include methods and objects. 

B.  DataPoint Modeling 
As described in [5][6] and [7], a DataPoint of a FB can 

be modeled as simple OPC UA variable, inside the object 
type of the FB. In this paper, the authors have adopted 
this way of modeling but introducing a higher convenient 
level of abstraction as explained in the following.  
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KNX FBs. They are HasInputDataPoint and 
HasOutputDataPoint (connecting FBs respectively to 
input and output DataPoints), and HasParameter used to 
connect a FB to a parameter DP; Section IV.C has dealt 
with this type of references. The last reference type, 
HasKNXAddress, is a subtype of OPC UA 
NonHierarchicalReferences and it is used to associate 
one address to one DataPoint, as explained in Section 
IV.D. All these reference types are symmetrical, namely 
for each of them it is possible to consider the 
InverseName which represents the reference type as seen 
by the target node. Figure 5 shows the integration of the 
previous four KNX Reference types inside the XML file; 
the same figure shows the names assigned for the 
InverseName (IsParameterOf). 

 

 
Figure 5.  Implementation of Reference Types. 

As said in Section IV.A, a KNX function block is 
modeled extending the OPC object type BaseObjectType. 
Figure 6 shows the implementation of the simple FB used 
for this case study; it has been called KNXActuatorType.  

 

 
Figure 6.  Implementation of KNXActuatorType FB. 

It has been assumed that this FB receives a digital 
input and according to its state, it sends an on/off 
command to an actuator. As shown by Figure 6, inside its 
definition, it is possible to highlight the input and output 
DataPoints. One of this DataPoint is called 
KNXAlarmSensor, defined as an instance of the 
KNXAlarmSensorType DPT; it represents the digital input. 
The other DataPoint is called SwitchOnOff and realizes 
the output of the on/off command. On the basis of what 

said, Figure 6 points out that KNXAlarmSensor is defined 
as an input DataPoint, through the reference type 
HasInputDataPoint; SwitchOnOff is defined as an output 
DataPoint using the reference type HasOutputDataPoint. 
As it can be seen, references are specified by constructing 
the Symbolic Id for the components by inserting a “_” 
between each Symbolic Name. In the following, only the 
implementation of the KNXAlarmSensorType DPT will 
be given. 

As already explained in Section IV.B, according to our 
proposal of integration (see Figure 2), DPTs modeling is 
based on the definition of KNXDataPointType. As 
already explained KNXDataPointType extends 
BaseDataVariableType and contains all the information 
about the generic DPT: main and sub number, range, unit 
and resolution. KNXDataPointTypeMNx is a subtype, 
where “x” corresponds to the main number of the KNX 
DataPoint type. Considering the simple case study here 
taken into account, only the use of KNXDataPointType 
with main number 1 will be shown in the following for 
the definition of KNXAlarmSensor DataPoint. 

Figure 7 shows the definition of both 
KNXDataPointType and KNXDataPointTypeMN1. In the 
same figure, the definition of KNXAlarmSensorType is 
also codified. It inherits from KNXDataPointTypeMN1; 
as clearly shown in the figure, it has sub number 5 and is 
characterized by a property of access (“AccessLevel”) 
specifying what operations are allowed by the server 
level (in this case both read and write). As it can be seen, 
the DataType of the KNXAlarmSensorType is defined as 
KNXDatapointTypeMN1DataType. 

 

 
Figure 7.  Implementation of KNXAlarmSensorType DPT. 

As explained in Section IV.B, the Structure DataType 
has been chosen to model the type of the present value of 
a DataPoint. Figure 8 shows an example of such 
implementation, with the definition of the 
KNXDataPointMN1TypeDataType used in Figure 7 
inside the implementation of DataPoint. As shown, 
KNXDataPointTypeMN1DataType derives from the 
KNXDataPointTypeDataType that, in turns, derives from 
the base type Structure. As shown in Figure 8, the 
encoding of KNXDataPointTypeMN1DataType 
(KNXDataPointTypeMN1Encoding) is referred by a 
reference of the type HasEncoding. This encoding 
includes the variable KNXDataPointMN1Description of 

<opc:ReferenceType SymbolicName="HasInputDataPoint" BaseType="ua:HasComponent">
<opc:Description>Reference connecting KNX FB with input DP. </opc:Description> 
 <opc:InverseName>IsInputDataPointOf</opc:InverseName> 

</opc:ReferenceType> 
 
<opc:ReferenceType SymbolicName="HasOutputDataPoint" BaseType="ua:HasComponent">
     <opc:Description> Reference connecting KNX FB with output DP. </opc:Description> 
    <opc:InverseName>IsOutputDataPointOf</opc:InverseName> 
</opc:ReferenceType> 
 
<opc:ReferenceType SymbolicName="HasParameter" BaseType="ua:HasComponent"> 
     <opc:Description>Reference connecting a KNX FB with parameter DP. </opc:Description>
    <opc:InverseName> IsParameterOf </opc:InverseName> 
</opc:ReferenceType> 
 
<opc:ReferenceType SymbolicName="HasKNXAddress"  
                                                                             BaseType="ua:NonHierarchicalReferences">
     <opc:Description> Reference connecting a DP with its address. </opc:Description> 
     <opc:InverseName> IsParameterOf </opc:InverseName> 
</opc:ReferenceType> 
 

<opc:ObjectType SymbolicName="KNXActuatorType"  
                                                                       BaseType="ua:BaseObjectType"> 
    <opc:Description>A simple KNX FB used in the case study</opc:Description> 
    <opc:Children> 
        <opc:Variable SymbolicName="KNXAlarmSensor"   
                                                                   TypeDefinition="KNXAlarmSensorType"/> 
        <opc:Variable SymbolicName="SwitchOnOff" TypeDefinition="SwitchOnOffType"/> 
 
  </opc:Children> 
  <opc:References> 
        <opc:Reference> 
            <opc:ReferenceType>HasInputDataPoint</opc:ReferenceType> 
               <opc:TargetId>GenericKNXSensorType_KNXAlarmSensor </opc:TargetId> 
        </opc:Reference> 
        <opc:Reference> 
            <opc:ReferenceType>HasOutputDataPoint </opc:ReferenceType> 
                <opc:TargetId>GenericKNXSensorType_SwitchOnOff </opc:TargetId> 
        </opc:Reference> 
   </opc:References> 
</opc:ObjectType> 
 

<opc:VariableType SymbolicName="KNXDataPointType"   
                                                             BaseType="ua:BaseDataVariableType"> 
     <opc:Children> 
            <opc:Property SymbolicName="MainNumber" DataType="ua:Integer" /> 
            <opc:Property SymbolicName="SubNumber" DataType="ua:Integer" /> 
            <opc:Property SymbolicName="Range" DataType="ua:Range" ValueRank="Scalar"/>
            <opc:Property SymbolicName="Unit" DataType="ua:Double" ValueRank="Scalar" />
            <opc:Property SymbolicName="Resolution" DataType="ua:Double"  
                                                                                                                 ValueRank="Scalar"/> 
     </opc:Children> 
</opc:VariableType> 
 
<opc:VariableType SymbolicName="KNXDataPointTypeMN1" 
                                                           BaseType="KNXDataPointType" MainNumber = "1"/> 
 
<opc:VariableType SymbolicName="KNXAlarmSensorType"  
                                                           BaseType="KNXDataPointTypeMN1"  
                                                           DataType= "KNXDataPointTypeMN1DataType"  
                                                           SubNumber = "5" AccessLevel="ReadWrite"/> 
</opc:VariableType> 
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type DataTypeDescriptionType whose value field is 
KNXDataPointTypeMN1. It is possible to access the 
semantics within the dictionary referring to this field. The 
description is linked to the encoding through the OPC UA 
reference of type HasDescription. 

 

 
Figure 8.  Implementation of the KNXDataPointDataType by using the 

Structure Data Type of OPC UA. 

Figure 9 shows the last part of the XML 
implementation related to the description of the portion of 
dictionary relevant to the case study. The field “Value” 
contains the name given to the dictionary, 
“DPTXML.xml”. The first part of the xml file contains 
the references to the descriptions defined within the 
encodings of KNXDataPointMN1. The last part is the 
definition of the OPC Binary type system that contains 
the DPTDictionary (used in the upper part of the same 
figure) and referred by a HasComponent reference. 
 

 
Figure 9.  Definition of the DPTDictionary and of the OPC Binary 

Data Type. 

FINAL REMARKS 

This paper focuses on the problem to improve 
interoperability in all the levels of a communication 

architecture in an automation environment; here 
equipment are based on different technologies and 
communication protocols avoiding to realize full 
interoperability, which may be achieved through the 
adoption of expensive proprietary mapping.  

Previous literature has presented some proposals 
aiming to use OPC Unified Architecture (OPC UA) to 
provide a cohesive, secure and reliable cross platform 
framework for interoperability. Some of the available 
papers apply this approach to the KNX interworking 
model.  

Starting from these proposals, presented in [5][6] and 
[7], in this paper the authors propose further 
improvements always considering KNX interworking 
model integration. 

The main difference with the current literature is due to 
the different approach adopted to model DataPoints of a 
FB, as described in the paper. This approach may reduce 
the effort of integration of the KNX interworking model 
within OPC UA information model. 
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<opc:DataType SymbolicName="KNXDataPointTypeDataType" BaseType="ua:Structure" />
<opc:DataType SymbolicName="KNXDataPointTypeMN1DataType"        
                                                                            BaseType="KNXDataPointTypeDataType "/>
    <opc:References> 
        <opc:Reference> 
            <opc:ReferenceType>ua:HasEncoding</opc:ReferenceType> 
                <opc:TargetId>KNXDataPointTypeMN1Encoding </opc:TargetId> 
        </opc:Reference> 
    <opc:References> 
</opc:DataType> 
 
<opc:Object SymbolicName="KNXDataPointTypeMN1Encoding"    
                                                                          TypeDefinition="ua:DataTypeEncodingType">
    <opc:Children> 
        <opc:Variable SymbolicName="KNXDataPointTypeMN1Description" 
                   BaseType="ua:DataTypeDescriptionType" Value="KNXDataPointTypeMN1"/> 
    </opc:Children> 
    <opc:References> 
        <opc:Reference> 
            <opc:ReferenceType>ua:HasDescription</opc:ReferenceType> 
                <opc:TargetId>  
                             KNXDataPointTypeMN1Encoding_KNXDataPointTypeMN1Description  
                </opc:TargetId> 
            </opc:Reference> 
    </opc:References> 
</opc:Object> 
 

<opc:Variable SymbolicName="DPTDictionary"  
                        TypeDefinition="ua:DataTypeDictionaryType" DataType="ua:ByteString "  
                        Value="DPTXML.xml"> 
  <opc:References> 
     <opc:Reference> 
       <opc:ReferenceType>ua:HasComponent</opc:ReferenceType> 
         <opc:TargetId>KNXDataPointTypeMN1Encoding_KNXDataPointTypeMN1Description 
     </opc:TargetId> 
    </opc:Reference> 
           <opc:ReferenceType>ua:HasComponent</opc:ReferenceType> 
  </opc:References> 
</opc:Variable> 
 
<opc:Object SymbolicName="OPCBinary" TypeDefinition="ua:DataTypeSystemType"> 
    <opc:BrowseName>OPCBinary</opc:BrowseName> 
        <opc:References> 
            <opc:Reference> 
                <opc:ReferenceType>ua:HasComponent</opc:ReferenceType> 
                <opc:TargetId>DPTDictionary</opc:TargetId> 
           </opc:Reference> 
        </opc:References> 
</opc:Object> 
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