1536

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

Integrating KNX and OPC UA Information
Model

Salvatore Cavalieri, Ferdinando Chiacchio and Alberto Di Savia Puglisi
University of Catania, Department of Electrical Electronic and Computer Engineering, Catania, Italy
Email: salvatore.cavalieri@dieei.unict.it, chiacchio@dmi.unict.it, disalberto@gmail.com

Abstract—Interoperability in all the levedls of a
communication architecture for automation applications
cannot be easly satisfied because control devices are
generally based on different technologies and
communication protocols. This paper deals with the
interoperability of a well-known communication standard
for home and building automation, i.e. the KNX. Current
literature presents several papers demonstrating that OPC
Unified Architecture (OPC UA) can provide a cohesive,
secure and reliable cross platform framework for
interoperability in automation environment; some
approaches propose the use of OPC UA to achieve
interoperability of KNX. Starting from the current
proposals, in this paper the authors propose further
improvements always aimed to integrate KNX and OPC UA
information model.

Index Terms—OPC UA, KNX, inter oper ability

1. INTRODUCTION

Home and building automation is rapidly entering in
our houses, thanks to a wide variety of commercial offers
by both producers and installers. KNX is a worldwide
standard for home and building control and represents
one of the most important actor of this process of
modernization [1][2][3].

KNX is not the only communication standard used for
home and building automation and generally at the field
level of the automation systems. Typical scenarios of a
generic automation system (including home and building
environment) feature the presence of different standards,
causing problems of interoperability.

The main problems limiting the interoperability are
present at the information level. Generally, data under
control of dedicated devices are represented in different
ways since each technology defines its own interworking
model. This concerns how the data are modelled (i.e., the
structure of data and the distribution to the devices) as
well as the semantics (i.e., encoding, data types and other
meta-data like engineering units, quality of data). For this
reason interoperability has been always achieved by the
adoption of expensive proprietary mapping.

OPC Unified Architecture (OPC UA) [4] can provide a
cohesive, secure and reliable cross platform framework
for interoperability, resulting a very good solution to

Manuscript received July 29, 2013; revised August 25, 2013;
accepted September 25, 2013.

Corresponding author: S. Cavalieri, University of Catania,

salvatore.cavalieri@dieei.unict.it

©2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.7.1536-1541

perform the integration of different communication
systems in automation environment.

Current literature presents some results achieved in this
direction; in [5][6] and [7], an OPC UA-based
interworking model is defined to make interoperable the
KNX with other communication systems.

Starting from these proposals (i.e., [5][6] and [7]), in
this paper the authors propose further improvements for
the integration of KNX interworking model into OPC UA;
they are mainly based on the definition of different ways
to represent KNX functions and data structures into OPC
UA information model. The main features of the novel
proposal will be deeply described, pointing out the
difference with the current literature. In order to better
understand the proposal here presented, a simple case
study will be shown and the relevant implementation of
the KNX/OPC UA integration will be proposed. As it
will be pointed out, it has been based on OPC UA .Net
stack implementation made available by OPC Foundation

(8].

II. KNX

KNX is one of the most worldwide used and known
standards for home and building automation [9]. KNX
communication stack allows exchanging of KNX
telegrams through Physical, Data Link [10], Network,
Transport and Application [11] layers.

KNX systems are typically distributed and based on
Functional Blocks (FBs), representing key components in
the KNX interworking model; they are distributed in
different devices and, in order to exchange data, are
connected each other via the KNX network. Each device
can accommodate multiple FBs.

FBs are mainly made up by DataPoints; it is possible
to distinguish input, output and parameter DataPoints.
Each DataPoint is characterized by a well-defined
DataPoint Type (DPT). Any DPT standardizes one
combination of format (bit length), encoding, range
(upper and lower limits) and unit [12]. A DPT is uniquely
identified by a main and a sub number; the main number
defines the format and encoding of DPT while the sub
number concerns range and unit [12].

III. OPCUA

The OPC UA specifications are currently made up by
11 parts [13][14]. OPC UA allows applications to
exchange information on the basis of a client/server

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

model. OPC UA defines information model to represent
data and communication services to realize the data
exchange.

Inside an OPC UA Server, particular objects, called
Nodes, are used to represent any kind of information,
including the representation of data instances and the
definition of data types. The set of nodes inside an OPC
UA Server is called AddressSpace [13]. Each node
belongs to exactly one of the following node classes:

e Base NodeClass, representing the base class from

which all other node classes are derived.

e Object NodeClass, representing real-world entities
like system components, hardware and software
components, or even whole system.

e ObjectType NodeClass, holding type definition for
objects. OPC UA defines a type model for objects
supporting an object-oriented type hierarchy [13]
(OPC UA Part 3 & Part 5). OPC UA standard allows
extending the standard ObjectTypes [13] with
additional components. The BaseObjectType is the
base ObjectType and all other ObjectTypes shall either
directly or indirectly inherit from it.

Variable NodeClass, modeling values of the system.
OPC UA distinguishes between data variables (e.g.,
representing physical values of the process under
control) and properties (e.g., meta-data that further
describe nodes).

VariableType NodeClass, used to provide type
definition for variables. Like ObjectType, OPC UA
defines a type model for variables supporting an
object-oriented type hierarchy [13] (OPC UA Part 3 &
Part 5). The BaseVariableType is the abstract base
type and all other VariableTypes shall inherit from it.
The BaseDataVariableType is a subtype of the
BaseVariableType. It is used as the type definition
whenever there is a DataVariable having no more
concrete type definition available.

DataType NodeClass, used to provide type definitions
for the values of variables. The BaseDataType is the
abstract base type and all other Data Types shall
inherit from it; among them there is the Structure data
type.

o ReferenceType NodeClass, used to define different
reference types.

e Method NodeClass, modeling callable functions that
initiate actions within a server.

¢ View NodeClass, allowing OPC UA Servers to subset
the AddressSpace into Views to simplify Client
access.

Each Node has several attributes that describe it. Some
attribute are common to all nodes (like Nodeld,
NodeClass and DisplayName). Other attributes are
available only for some node classes; considering
variables, examples of this kind of attributes are Value
(representing the value of the variable) and DataType
(indicating the data type of the Value attribute). Particular
relations may be defined between nodes; they are called
References. References are always defined from one node
to another. References can be defined in a symmetric or
asymmetric way and further be divided into hierarchical
or non-hierarchical. Hierarchical references can be used
to introduce topologies and hierarchies within the model;

©2014 ACADEMY PUBLISHER

1537

typical examples of standard OPC UA hierarchical
references are Organizes (used to introduce a general
hierarchy of nodes) and HasComponent (used to
reference a complex type to its sub nodes). Example of
OPC UA non-hierarchical references are HasEncoding
(specifying the encoding of a structured data type),
HasDescription (specifying the description within the
encoding object) and HasTypeDefinition (allowing
referencing an object or variable to its type definition).

To promote interoperability of Clients and Servers, the
OPC UA AddressSpace is structured hierarchically with
the same top levels for all OPC UA Servers [13] (OPC
UA Part 1).

Nodes are accessible by Clients using OPC UA
Services (interfaces and methods). Client and server
applications use OPC UA Client and Server Application
Programming Interface (API) to exchange data,
respectively. OPC UA Client/Server API is an internal
interface that isolates the Client/Server application code
from an OPC UA Communication Stack. Implementation
of the OPC UA Communication Stack is not linked to
any specific technology; this allows OPC UA to be
mapped to future technologies as necessary, without
negating the basic design.

IV. INTEGRATING KNX INTO OPC UA

Integration of KNX interworking model within OPC
UA information model can be realized mapping the
following main KNX elements into the address space of
OPC UA: Function Blocks (FBs), DataPoints, KNX
Addresses and their corresponding type definitions.
Indeed, OPC UA standard offers many elements that can
be used to perform such translation. In this section, this
mapping will be shown. Although the basic ideas come
from [5][6][7], a novel approach to map KNX DataPoint
Types (DPTs) (based on main and sub number of the
corresponding identifiers) will be presented and described
in the following.

A. Function Block Modeling

In order to model FBs it is possible to adopt two
solutions, as pointed out in [5] and [6]. The first one is to
map a FB with an OPC UA complex variable; in this case,
DataPoints can be modeled as a part of the complex
variable representing the FB. The second option is to use
OPC UA complex objects, as described in [5] and
realized in [6]; basically, according to this approach,
KNX FBs are modeled extending the OPC object type
BaseObjectType.

The proposal here presented will use this second
approach, as the first one seems to show several
drawbacks, among which the intrinsic limitation of
complex variable to include methods and objects.

B. DataPoint Modeling

As described in [5][6] and [7], a DataPoint of a FB can
be modeled as simple OPC UA variable, inside the object
type of the FB. In this paper, the authors have adopted
this way of modeling but introducing a higher convenient
level of abstraction as explained in the following.

1538

In the earlier approaches [5][6] and [7], KNX DPTs
specialized directly the KNXDataPointType which was an
extension of the OPC BaseDataVariableType. In this way,
any new definition of a DPT would have required to
include from scratch all the properties and attributes
inside the XML of the OPC UA Information Model.
Figure 1 helps to clarify this statement. It shows the UML
diagram for the examples of KNX DPTs used in [5]; it is
possible to notice that any new subtype of DPT which
specializes the KNXDataPointType (in the example we
have the RelativeSetValueControlType DPT, the
InfoONOFffType DPT and the SwitchOnOffType DPT) has
to contain all the attributes qualifying the DPT. Now,
let’s consider InfoOnOffType and SwitchOnOffType DPT;
we can notice that they are characterized by many
common attributes (in fact, they possess the same main
number) hence a lot of information carried in their own
definitions result redundant.

[BaseVariableType |

| BaseDataVariableType

[KNXDataPointType

|

SwitchOnOHTyge

Figure 1. UML Diagram of the KNX DPT presented in [5].

A more efficient way to operate, here proposed by the
authors, is possible if we consider that DPTs are
characterized (hence uniquely identified) by main and sub
numbers, as said in Section II. In particular, the main
number defines the format and encoding of DPT while
the sub number concerns range and unit [12]. Since DPT
with the same main number have the same format and
encoding, it is possible to propose a general mapping
considering subtypes grouped by main number.
Following this approach, the generic
KNXDataPointTypeMNXx variable is defined, where x is
the main number of the DPT.

The main advantage brought is that all the information
about format and encoding are contained inside this super
DPT; hence, there is no need to include such information
inside the definition of a new DPT with the same main
number which specialize it. In this way, a new DPT
(subtype of KNXDataPointTypeMNXx) will differ only by
the sub number that characterizes the information of
range and unit.

Thanks to this approach the effort of integrating the
KNX interworking model within OPC UA information
model results simplified and well structured. In fact,
KNX is based on over than 300 DataPoints and, with this

©2014 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

approach, they can be grouped within about 60 only super
types of KNXDataPointTypeMNx. Moreover, further
DataPoint types specialization can be postponed and
demanded to specific developments, as depending on the
need of specific applications.

Figure 2 shows the modified UML diagram of this
approach in respect to the one of Figure 1; in particular,
the generalized implementation for
KNXDataPointTypeMN1 and KNXDataPointTypeMN3 is
presented. The DPTs InfoOnOffType, SwitchOnOffType
and RelativeSetValueControl Type shown in Figure 1, are
modeled according to our approach in Figure 2.

In particular, KNXDataPointTypeMN1 is the super
type of InfoOnOffType and SwitchOnOffType while the
KNXDataPointTypeMN3 is the super type of
RelativeSetVValueControl Type.

BaseVaria b[ﬂ\rpc]

[BaseDataVariableType]

-

KNXDataPointType

Attributes

Attributes
* DataType=DPT_XNXData
tMN1_DataType

s
+ Resalution = J

/ infoDnOtfType ™,/ SwitchOnOfiType

PT ats

Figure 2. UML Diagram of Figure 1 revised according to the novel
approach here presented.

As shown by both Figures 1 and 2, the KNX DPTs
feature among attributes, the description of the DataType
each DPT refers to; in Figure 2 it’s possible to point out
the DPT_KNXDatapointMN1_DataType (for the DPTs
INfoOnOffType and SwitchOnOffType) and the
DPT_KNXDatapointMN3_DataType (for the DPT
RelativeSetValueControl Type). This means that in both
cases, the definition of those data types must be realized
inside OPC UA.

Figure 3 shows the definition of each data type as
presented in [5]. KNXDataPointTypeDataType is a
subtype of Structure DataType. According to the
previous explanation, DataType of a KNX DPT extends
the KNXDataPointTypeDataType which, in turn, is a
subtype of the OPC Structure.

Figure 4 depicts how the DataTypes of Figure 2 are
modeled according to the proposal here presented. Figure
4 shows the specific DataType modeling, for
KNXDataPointTypeMN1 and KNXDataPointTypeMN3
shown in Figure 2.

Comparing Figures 3 and 4, it’s possible to point out
the different definition, which is due to the different
hypothesis adopted by the authors, as described before.

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

—_—
< Structure)

i

KNXDataPointTypeDataType :}
N ol i J

DPT_Control_Dimming)

(ormswich) {
| W —

——————————
|/ DPT_Switch_Description::)

DataTypeDescriptionType |

Attributes
D
. W

DataTypeDescriptionType |
Attributes
* DataType= ByteString

Vi

- Value= [“DPT_Control_Dimming™}
L5 i J
R |
pr—
fDPT_Dictionary:: 3\
DataTypeDictionaryType|
Attribu i
/

DataTypeSystemType |

Figure 3. Definition of the Data Type used in [5].

< KNXDataPointTypeDataType >

i

< DPT_KNXDataPointTypeMN1 >

DefaultBinary:
DataTypeEncoding

HasDescription

< DPT_KNXDataPointTypeMN3 >
T

v o
DPT_KNXDataPointTypeMN1_Description:: DPT_KNXDataPointTypeMN3_Description::
DataTypeDescriptionType DataTypeDescriptionType

Attributes Attributes
* DataType= ByteString

* DataTypes ByteString
* Values= {"DPT_KNXDataPointTypeMN1"} + Value= {"DPT_KNXDataPointTypeMN3"'}

HaaComponent Hasomponent

r’UPT_Dictionar-,n : DataTypeDictionaryTyvpe \]

Attributes

* DataType= ByteString

+ Value=s {"<7xml."}

T St
OPCBinary::
DataTypeSystemType
Figure 4. Definition of the Data Type shown in Figure 3, revised
according the proposal here presented.

In OPC UA, each DataType can have several
DataTypeEncoding (for example “Default”, “UA Binary”
and “XML” encoding) but it is not permitted for two
DataTypes to point to the same DataTypeEncoding. As
shown in the same Figures 3 and 4, a DataTypeEncoding
object points to one variable of type
DataTypeDescriptionType. This variable belongs to a
DataTypeDictionary variable. DataTypeDictionary
describes a set of DataTypes in sufficient detail to allow
clients to parse/interpret variable values both in receiving
and sending to/from the server. The DataTypeDictionary
is represented as a variable of type
DataTypeDictionaryType in the Address Space of the
server and the description about the DataTypes is
contained in its Value attribute. DataTypeDictionaries are
complex variables which expose their
DataTypeDescriptions as variables using HasComponent
references. A DataTypeDescription provides the
information necessary to find the formal description of a
DataType within the DataTypeDictionary [13] (OPC UA
Part 5). On the basis of what said, for each new defined
DataType a relevant description has to be inserted in the
DataTypeDictionary variable, as done by the authors.

©2014 ACADEMY PUBLISHER

1539

C. Assignment of a DataPoint to FB

A very important item to point out in the KNX-OPC
UA integration is how DataPoints can be linked to a
specific FB. As done in [5][6], the authors realize the
assignment of a DataPoint to a FB within the OPC UA
information model, with the Reference.

In particular, three reference types have been defined
as subtypes of HasComponent type, a built-in type of
OPC UA. They are HaslnputDataPoint and
HasOutputDataPoint (connecting FBs respectively to
input and output DataPoints), and HasParameter used to
connect a FB to a parameter DP. Further details can be
found in [5] and [6].

D. Data Point Address Modeling

In KNX applications, read and write operations of
DataPoints and parameters are performed assigning them
an address. For example, if a FB needs to send something
to another FB, it uses its output DataPoint. The address of
this output DataPoint is the same of the corresponding
input DataPoint of the receiver FB. Thus DataPoints are
linked by common addresses and FBs are linked in a
network.

The same approach proposed in [5][6] and [7] has been
adopted to model DataPoint address into OPC UA. In
particular, association of an address to a DataPoint is
made up by using an ad-hoc Reference called
HaskKNXAddress; it has been defined as a subtype of OPC
UA NonHierarchical References.

V. SOFTWARE IMPLEMENTATION

The aim of this section is to present the software
implementation of the proposed integration among KNX
and OPC UA; description will mainly focus on the
implementation of DataPoint model according to the
proposal presented in Section ['V.B.

Description will be done using a simple case study; it
will be assumed to integrate a KNX FB into OPC UA
information model. The KNXActuatorType FB will be
defined and its simple functionalities will be pointed out;
among other DataPoints, it will include the
KNXAlarmSensor DataPoint. Its definition and the
definition of the relevant DataPointType
(KNXAlarmSensor Type) will be shown in the following,
applying the novel hierarchical methodology proposed in
this paper (see Section IV.B).

This work has been completely realized by making use
of OPC UA 1.0.2 Stack Source Code .NET developed by
OPC Foundation [8], avoiding to use any proprietary
development framework as done in [5][6] and [7]; this
represents another valuable difference from these
solutions. Integration has been performed by editing the
XML file of the OPC UA Information Model. The
resulting Information Model was integrated into a
standard OPC UA Server.

In order to perform the integration of the information
model, four reference types, are defined to deal with
DataPoints. Among them, three references are subtypes
of HasComponent type, a built-in type of OPC UA; they
constitute the reference types which link DataPoints to

1540

KNX FBs. They are HaslnputDataPoint and
HasOutputDataPoint (connecting FBs respectively to
input and output DataPoints), and HasParameter used to
connect a FB to a parameter DP; Section IV.C has dealt
with this type of references. The last reference type,
HasKNXAddress, is a subtype of OPC UA
NonHierarchicalReferences and it is used to associate
one address to one DataPoint, as explained in Section
IV.D. All these reference types are symmetrical, namely
for each of them it is possible to consider the
InverseName which represents the reference type as seen
by the target node. Figure 5 shows the integration of the
previous four KNX Reference types inside the XML file;
the same figure shows the names assigned for the
InverseName (IsParameter Of).

—n

opc:ReferenceType SymbolicName="HasInputDataPoint" BaseType="ua:HasComponent">
<ope:Description>Reference connecting KNX FB with input DP. </opc:Description>
<opc:InverseName>IsInputDataPointOf</opc:InverseName>
[</opc:ReferenceType>

<opc:ReferenceType SymbolicName="HasOutputDataPoint" BaseType="ua:HasComponent">
<opc:Description> Reference connecting KNX FB with output DP. </opc:Description>
<opc:InverseName>IsOutputDataPointOf</opc:InverseName>
/opc:ReferenceType>

[<opc:ReferenceType SymbolicName="HasParameter" BaseType="ua:HasComponent">
<opc:Description>Reference connecting a KNX FB with parameter DP. </opc:Description>
<opc:InverseName> IsParameterOf </opc:InverseName>

[</opc:ReferenceType>

[<opc:ReferenceType SymbolicName="HasKNXAddress"
BaseType="ua:NonHierarchicalReferences">
<opc:Description> Reference connecting a DP with its address. </opc:Description>
<opc:InverseName> [sParameterOf </opc:InverseName>
/opc:ReferenceType>

Figure 5. Implementation of Reference Types.

As said in Section IV.A, a KNX function block is
modeled extending the OPC object type BaseObjectType.
Figure 6 shows the implementation of the simple FB used
for this case study; it has been called KNXActuator Type.

[<opc:ObjectType SymbolicName="KNXActuatorType"

BaseType="ua:BaseObjectType">
<ope:Description>A simple KNX FB used in the case study</opc:Description>
<opc:Children>

<opc:Variable SymbolicName="KNXAlarmSensor"
TypeDefinition="KNXAlarmSensorType"/>
<opc:Variable SymbolicName="SwitchOnOff" TypeDefinition="SwitchOnOffType"/>

</opc:Children>
<opc:References>
<opc:Reference>
<opc:ReferenceType>HasInputDataPoint</opc:Reference Type>
<opc:Targetld>GenericKNXSensorType_ KNXAlarmSensor </opc:Targetld>
</opc:Reference>
<opc:Reference>
<opc:ReferenceType>HasOutputDataPoint </opc:ReferenceType>
<opc:Targetld>GenericKNXSensorType_SwitchOnOff </opc:Targetld>
</opc:Reference>
</opc:References>
[</opc:ObjectType>

Figure 6. Implementation of KNXActuatorType FB.

It has been assumed that this FB receives a digital
input and according to its state, it sends an on/off
command to an actuator. As shown by Figure 6, inside its
definition, it is possible to highlight the input and output
DataPoints. One of this DataPoint is called
KNXAlarmSensor, defined as an instance of the

KNXAlarmSensor Type DPT,; it represents the digital input.

The other DataPoint is called SwitchOnOff and realizes
the output of the on/off command. On the basis of what

©2014 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

said, Figure 6 points out that KNXAlarmSensor is defined
as an input DataPoint, through the reference type
HaslnputDataPoint; SwitchOnOff is defined as an output
DataPoint using the reference type HasOutputDataPoint.
As it can be seen, references are specified by constructing
the Symbolic Id for the components by inserting a « ”
between each Symbolic Name. In the following, only the
implementation of the KNXAlarmSensorType DPT will
be given.

As already explained in Section IV.B, according to our
proposal of integration (see Figure 2), DPTs modeling is
based on the definition of KNXDataPointType. As
already explained KNXDataPointType extends
BaseDataVariableType and contains all the information
about the generic DPT: main and sub number, range, unit
and resolution. KNXDataPointTypeMNx is a subtype,
where “x” corresponds to the main number of the KNX
DataPoint type. Considering the simple case study here
taken into account, only the use of KNXDataPointType
with main number 1 will be shown in the following for
the definition of KNXAlarmSensor DataPoint.

Figure 7 shows the definition of both
KNXDataPointType and KNXDataPointTypeMNL1. In the
same figure, the definition of KNXAlarmSensorType is
also codified. It inherits from KNXDataPointTypeMN1,;
as clearly shown in the figure, it has sub number 5 and is
characterized by a property of access (“ AccessLevel”)
specifying what operations are allowed by the server
level (in this case both read and write). As it can be seen,
the DataType of the KNXAlarmSensor Type is defined as
KNXDatapointTypeMN1DataType.

opc:VariableType SymbolicName="KNXDataPointType"
BaseType="ua:BaseDataVariableType">
<opc:Children>
<opc:Property SymbolicName="MainNumber" DataType="ua:Integer" />
<opc:Property SymbolicName="SubNumber" DataType="ua:Integer" />
<opc:Property SymbolicName="Range" DataType="ua:Range" ValueRank="Scalar"/>
<opc:Property SymbolicName="Unit" DataType="ua:Double" ValueRank="Scalar" />
<opc:Property SymbolicName="Resolution" DataType="ua:Double"
ValueRank="Scalar"/>
</opc:Children>
/opc:VariableType>

opc: VariableType SymbolicName="KNXDataPointTypeMN1"
BaseType="KNXDataPointType" MainNumber = "1"/>

opc: VariableType SymbolicName="KNXAlarmSensorType"
BaseType="KNXDataPointTypeMN1"
DataType= "KNXDataPointTypeMN1DataType"
SubNumber = "5" AccessLevel="ReadWrite"/>
Jopc:VariableType>

Figure 7. Implementation of KNXAlarmSensorType DPT.

As explained in Section IV.B, the Sructure DataType
has been chosen to model the type of the present value of
a DataPoint. Figure 8 shows an example of such
implementation, with the definition of the
KNXDataPointMN1TypeDataType used in Figure 7
inside the implementation of DataPoint. As shown,
KNXDataPointTypeMN1DataType derives from the
KNXDataPointTypeDataType that, in turns, derives from
the base type Sructure. As shown in Figure 8, the
encoding of KNXDataPointTypeMN1DataType
(KNXDataPointTypeMN1Encoding) is referred by a
reference of the type HasEncoding. This encoding
includes the variable KNXDataPointMN1Description of

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

type DataTypeDescriptionType whose value field is
KNXDataPointTypeMN1. It is possible to access the
semantics within the dictionary referring to this field. The
description is linked to the encoding through the OPC UA
reference of type HasDescription.

opc:DataType SymbolicName="KNXDataPointTypeDataType" BaseType="ua:Structure" />
opc:DataType SymbolicName="KNXDataPointTypeMN1DataType"
BaseType="KNXDataPointTypeDataType "/>
<opc:References>
<opc:Reference>
<opc:ReferenceType>ua:HasEncoding</opc:Reference Type>
<opc:Targetld>KNXDataPointTypeMN1Encoding </opc:Targetld>
</opc:Reference>
<opc:References>
/opc:DataType>

opc:Object SymbolicName="KNXDataPointTypeMN1Encoding"
TypeDefinition="ua:DataTypeEncodingType">
<opc:Children>
<opc:Variable SymbolicName="KNXDataPointTypeMN1Description"
BaseType="ua:DataTypeDescriptionType" Value="KNXDataPointTypeMN1"/>
</opc:Children>
<opc:References>
<opc:Reference>
<opc:ReferenceType>ua:HasDescription</opc:ReferenceType>
<opc:Targetld>
KNXDataPointTypeMN1Encoding KNXDataPointTypeMN1Description
</opc:Targetld>
</opc:Reference>
</opc:References>
/opc:Object>

Figure 8. Implementation of the KNXDataPointDataType by using the
Structure Data Type of OPC UA.

Figure 9 shows the last part of the XML
implementation related to the description of the portion of
dictionary relevant to the case study. The field “Value”
contains the name given to the dictionary,
“DPTXML.xml”. The first part of the xml file contains
the references to the descriptions defined within the
encodings of KNXDataPointMN1. The last part is the
definition of the OPC Binary type system that contains
the DPTDictionary (used in the upper part of the same
figure) and referred by a HasComponent reference.

opc:Variable SymbolicName="DPTDictionary"
TypeDefinition="ua:DataTypeDictionaryType" DataType="ua:ByteString "
Value="DPTXML.xml">
<opc:References>
<opc:Reference>
<opc:ReferenceType>ua:HasComponent</opc:Reference Type>
<opc:Targetld>KNXDataPointTypeMN1Encoding KNXDataPointTypeMN 1 Description|
</opc:Targetld>
</opc:Reference>
<opc:ReferenceType>ua:HasComponent</opc:Reference Type>
</opc:References>
/opc:Variable>

[<opc:Object SymbolicName="OPCBinary" TypeDefinition="ua:DataTypeSystemType">
<opc:BrowseName>OPCBinary</opc:BrowseName>
<opc:References>
<opc:Reference>
<opc:ReferenceType>ua:HasComponent</opc:ReferenceType>
<opc:Targetld>DPTDictionary</opc:Targetld>
</opc:Reference>
</opc:References>
[</opc:Object>

Figure 9. Definition of the DPTDictionary and of the OPC Binary
Data Type.

FINAL REMARKS

This paper focuses on the problem to improve
interoperability in all the levels of a communication

©2014 ACADEMY PUBLISHER

1541

architecture in an automation environment; here
equipment are based on different technologies and
communication protocols avoiding to realize full
interoperability, which may be achieved through the
adoption of expensive proprietary mapping.

Previous literature has presented some proposals
aiming to use OPC Unified Architecture (OPC UA) to
provide a cohesive, secure and reliable cross platform
framework for interoperability. Some of the available
papers apply this approach to the KNX interworking
model.

Starting from these proposals, presented in [5][6] and
[7], in this paper the authors propose further
improvements always considering KNX interworking
model integration.

The main difference with the current literature is due to
the different approach adopted to model DataPoints of a
FB, as described in the paper. This approach may reduce
the effort of integration of the KNX interworking model
within OPC UA information model.

REFERENCES

[1] Cenelec EN 50090, Home and Building Electronic System,
2005.

[2] Cenelec EN 13321-1, Open Data Communication in
Building Automation, Controls and Building Management,
2012.

[3] ISO/IEC 1454-3, HSE Architecture, 2006.

[4] W. Mahnke, S. Leitner, and M. Damm, OPC Unified
Architecture, Springer, 2009.

[5] W. Granzer, W. Kastner, and P. Furtak, “KNX and OPC
UA”, Proceedings of Konnex Scientific Conference,
November 2010.

[6] P.RuB, KNX for OPC UA, Technical Report 183/1-158, A-
Lab @ Automation Systems Group, TU Vienna,
November 2011, available at
https://www.auto.tuwien.ac.at/bib/pdf TR/TR0158.pdf

[71 W. Granzer, and W. Kastner, “Information modelling in
heterogeneous Building Automation Systems”,
Proceedings of 9th IEEE International Workshop on
Factory Communication Systems (WFCS), May 2012.

[8] www.opcfoundation.org

[9] S. Cavalieri, “Modelling and analysing congestion in
KNXnet/IP”, Computer Standards & Interfaces, Volume
34, Issue 3, March 2012, pp. 305-313.

[10] KNX Association, System Specifications, Communication:
Data Link Layer General, Chapter 3/3/2, 2009.

[11] KNX Association, System Specifications, Communication:
Application Layer, Chapter 3/3/7, 2010.

[12] KNX Association, System Specifications, Interworking:
Datapoint Types, Chapter 3/7/2, 2010.

[13] OPC Foundation, OPC Unified Architecture Specification,
Parts 1-11, 2009.

[14] S. Cavalieri, “Evaluating Overheads Introduced by OPC
UA Specification”, Human—Computer Systems Interaction:
Backgrounds and Applications 2, Advances in Intelligent
and Soft Computing, Springer, Vol. 98, 2012, pp. 201-221.

