
Integrating KNX and OPC UA Information
Model

Salvatore Cavalieri, Ferdinando Chiacchio and Alberto Di Savia Puglisi

University of Catania, Department of Electrical Electronic and Computer Engineering, Catania, Italy
Email: salvatore.cavalieri@dieei.unict.it, chiacchio@dmi.unict.it, disalberto@gmail.com

Abstract—Interoperability in all the levels of a
communication architecture for automation applications
cannot be easily satisfied because control devices are
generally based on different technologies and
communication protocols. This paper deals with the
interoperability of a well-known communication standard
for home and building automation, i.e. the KNX. Current
literature presents several papers demonstrating that OPC
Unified Architecture (OPC UA) can provide a cohesive,
secure and reliable cross platform framework for
interoperability in automation environment; some
approaches propose the use of OPC UA to achieve
interoperability of KNX. Starting from the current
proposals, in this paper the authors propose further
improvements always aimed to integrate KNX and OPC UA
information model.

Index Terms—OPC UA, KNX, interoperability

I. INTRODUCTION

Home and building automation is rapidly entering in
our houses, thanks to a wide variety of commercial offers
by both producers and installers. KNX is a worldwide
standard for home and building control and represents
one of the most important actor of this process of
modernization [1][2][3].

KNX is not the only communication standard used for
home and building automation and generally at the field
level of the automation systems. Typical scenarios of a
generic automation system (including home and building
environment) feature the presence of different standards,
causing problems of interoperability.

The main problems limiting the interoperability are
present at the information level. Generally, data under
control of dedicated devices are represented in different
ways since each technology defines its own interworking
model. This concerns how the data are modelled (i.e., the
structure of data and the distribution to the devices) as
well as the semantics (i.e., encoding, data types and other
meta-data like engineering units, quality of data). For this
reason interoperability has been always achieved by the
adoption of expensive proprietary mapping.

OPC Unified Architecture (OPC UA) [4] can provide a
cohesive, secure and reliable cross platform framework
for interoperability, resulting a very good solution to

perform the integration of different communication
systems in automation environment.

Current literature presents some results achieved in this
direction; in [5][6] and [7], an OPC UA-based
interworking model is defined to make interoperable the
KNX with other communication systems.

Starting from these proposals (i.e., [5][6] and [7]), in
this paper the authors propose further improvements for
the integration of KNX interworking model into OPC UA;
they are mainly based on the definition of different ways
to represent KNX functions and data structures into OPC
UA information model. The main features of the novel
proposal will be deeply described, pointing out the
difference with the current literature. In order to better
understand the proposal here presented, a simple case
study will be shown and the relevant implementation of
the KNX/OPC UA integration will be proposed. As it
will be pointed out, it has been based on OPC UA .Net
stack implementation made available by OPC Foundation
[8].

II. KNX

KNX is one of the most worldwide used and known
standards for home and building automation [9]. KNX
communication stack allows exchanging of KNX
telegrams through Physical, Data Link [10], Network,
Transport and Application [11] layers.

KNX systems are typically distributed and based on
Functional Blocks (FBs), representing key components in
the KNX interworking model; they are distributed in
different devices and, in order to exchange data, are
connected each other via the KNX network. Each device
can accommodate multiple FBs.

FBs are mainly made up by DataPoints; it is possible
to distinguish input, output and parameter DataPoints.
Each DataPoint is characterized by a well-defined
DataPoint Type (DPT). Any DPT standardizes one
combination of format (bit length), encoding, range
(upper and lower limits) and unit [12]. A DPT is uniquely
identified by a main and a sub number; the main number
defines the format and encoding of DPT while the sub
number concerns range and unit [12].

III. OPC UA

The OPC UA specifications are currently made up by
11 parts [13][14]. OPC UA allows applications to
exchange information on the basis of a client/server

Manuscript received July 29, 2013; revised August 25, 2013;
accepted September 25, 2013.

Corresponding author: S. Cavalieri, University of Catania,
salvatore.cavalieri@dieei.unict.it

1536 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.7.1536-1541

model. OPC UA defines information model to represent
data and communication services to realize the data
exchange.

Inside an OPC UA Server, particular objects, called
Nodes, are used to represent any kind of information,
including the representation of data instances and the
definition of data types. The set of nodes inside an OPC
UA Server is called AddressSpace [13]. Each node
belongs to exactly one of the following node classes:

• Base NodeClass, representing the base class from
which all other node classes are derived.

• Object NodeClass, representing real-world entities
like system components, hardware and software
components, or even whole system.

• ObjectType NodeClass, holding type definition for
objects. OPC UA defines a type model for objects
supporting an object-oriented type hierarchy [13]
(OPC UA Part 3 & Part 5). OPC UA standard allows
extending the standard ObjectTypes [13] with
additional components. The BaseObjectType is the
base ObjectType and all other ObjectTypes shall either
directly or indirectly inherit from it.

• Variable NodeClass, modeling values of the system.
OPC UA distinguishes between data variables (e.g.,
representing physical values of the process under
control) and properties (e.g., meta-data that further
describe nodes).

• VariableType NodeClass, used to provide type
definition for variables. Like ObjectType, OPC UA
defines a type model for variables supporting an
object-oriented type hierarchy [13] (OPC UA Part 3 &
Part 5). The BaseVariableType is the abstract base
type and all other VariableTypes shall inherit from it.
The BaseDataVariableType is a subtype of the
BaseVariableType. It is used as the type definition
whenever there is a DataVariable having no more
concrete type definition available.

• DataType NodeClass, used to provide type definitions
for the values of variables. The BaseDataType is the
abstract base type and all other Data Types shall
inherit from it; among them there is the Structure data
type.

• ReferenceType NodeClass, used to define different
reference types.

• Method NodeClass, modeling callable functions that
initiate actions within a server.

• View NodeClass, allowing OPC UA Servers to subset
the AddressSpace into Views to simplify Client
access.

Each Node has several attributes that describe it. Some
attribute are common to all nodes (like NodeId,
NodeClass and DisplayName). Other attributes are
available only for some node classes; considering
variables, examples of this kind of attributes are Value
(representing the value of the variable) and DataType
(indicating the data type of the Value attribute). Particular
relations may be defined between nodes; they are called
References. References are always defined from one node
to another. References can be defined in a symmetric or
asymmetric way and further be divided into hierarchical
or non-hierarchical. Hierarchical references can be used
to introduce topologies and hierarchies within the model;

typical examples of standard OPC UA hierarchical
references are Organizes (used to introduce a general
hierarchy of nodes) and HasComponent (used to
reference a complex type to its sub nodes). Example of
OPC UA non-hierarchical references are HasEncoding
(specifying the encoding of a structured data type),
HasDescription (specifying the description within the
encoding object) and HasTypeDefinition (allowing
referencing an object or variable to its type definition).

To promote interoperability of Clients and Servers, the
OPC UA AddressSpace is structured hierarchically with
the same top levels for all OPC UA Servers [13] (OPC
UA Part 1).

Nodes are accessible by Clients using OPC UA
Services (interfaces and methods). Client and server
applications use OPC UA Client and Server Application
Programming Interface (API) to exchange data,
respectively. OPC UA Client/Server API is an internal
interface that isolates the Client/Server application code
from an OPC UA Communication Stack. Implementation
of the OPC UA Communication Stack is not linked to
any specific technology; this allows OPC UA to be
mapped to future technologies as necessary, without
negating the basic design.

IV. INTEGRATING KNX INTO OPC UA

Integration of KNX interworking model within OPC
UA information model can be realized mapping the
following main KNX elements into the address space of
OPC UA: Function Blocks (FBs), DataPoints, KNX
Addresses and their corresponding type definitions.
Indeed, OPC UA standard offers many elements that can
be used to perform such translation. In this section, this
mapping will be shown. Although the basic ideas come
from [5][6][7], a novel approach to map KNX DataPoint
Types (DPTs) (based on main and sub number of the
corresponding identifiers) will be presented and described
in the following.

A. Function Block Modeling
In order to model FBs it is possible to adopt two

solutions, as pointed out in [5] and [6]. The first one is to
map a FB with an OPC UA complex variable; in this case,
DataPoints can be modeled as a part of the complex
variable representing the FB. The second option is to use
OPC UA complex objects, as described in [5] and
realized in [6]; basically, according to this approach,
KNX FBs are modeled extending the OPC object type
BaseObjectType.

The proposal here presented will use this second
approach, as the first one seems to show several
drawbacks, among which the intrinsic limitation of
complex variable to include methods and objects.

B. DataPoint Modeling
As described in [5][6] and [7], a DataPoint of a FB can

be modeled as simple OPC UA variable, inside the object
type of the FB. In this paper, the authors have adopted
this way of modeling but introducing a higher convenient
level of abstraction as explained in the following.

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014 1537

© 2014 ACADEMY PUBLISHER

In the ear
specialized d
extension of
any new de
include from
inside the X
Figure 1 help
diagram for t
possible to n
specializes th
have the
InfoOnOffTyp
to contain a
let’s consider
we can not
common attr
number) hen
definitions re

Figure 1.

A more ef
authors, is
characterized
numbers, as
number defin
the sub numb
with the sam
encoding, it
considering
Following
KNXDataPo
the main num

The main
about format
DPT; hence,
inside the de
number whi
(subtype of K
the sub num
range and un

Thanks to
KNX interw
model result
KNX is base

rlier approach
directly the KN
the OPC Base
finition of a

m scratch all
XML of the
ps to clarify th
the examples
notice that an
he KNXDataP
RelativeSetV

ype DPT and t
all the attribu
r InfoOnOffTy
tice that they
ributes (in fac
nce a lot of in
esult redundan

UML Diagram

fficient way to
possible if

d (hence uniqu
said in Sect

nes the forma
ber concerns

me main num
is possible t
subtypes g

this a
intTypeMNx v

mber of the DP
advantage bro

t and encoding
there is no ne

efinition of a
ch specialize
KNXDataPoin
mber that ch
nit.
o this approac

working mode
ts simplified

ed on over tha

hes [5][6] and
NXDataPointT
eDataVariabl
DPT would

l the properti
OPC UA In

his statement.
of KNX DPT

ny new subty
PointType (in

ValueControlT
the SwitchOn

utes qualifying
ype and Switc
y are charac
ct, they posse
nformation ca
nt.

of the KNX DPT

o operate, her
we consider

uely identified
tion II. In pa
at and encodi
range and uni

mber have the
to propose a
grouped by
approach,
variable is de
PT.
ought is that a
g are containe
eed to include
new DPT wi

e it. In this w
ntTypeMNx) w
aracterizes th

ch the effort
l within OPC
and well st

an 300 DataPo

d [7], KNX D
Type which w
leType. In this

have require
ies and attrib

nformation M
It shows the U

Ts used in [5]
ype of DPT w
n the example
Type DPT,
OffType DPT
g the DPT. N
hOnOffType D

cterized by m
ess the same
arried in their

T presented in [5].

re proposed by
r that DPTs
d) by main and
articular, the
ing of DPT w
it [12]. Since
same format
general map

main num
the ge

efined, where

all the inform
ed inside this s
e such inform
ith the same
way, a new
will differ onl
he informatio

of integrating
C UA inform
tructured. In
oints and, with

DPTs
was an
s way,
ed to
butes

Model.
UML
; it is

which
e we

the
T) has
Now,
DPT;
many
main
own

.

y the
s are
d sub
main
while
DPT

t and
pping
mber.
eneric
e x is

mation
super

mation
main
DPT
ly by

on of

g the
mation

fact,
h this

appr
type
Data
dem
need

F
appr
the
KNX
pres
and
mod

In
type
KNX
Rela

Fig

A
featu
each
the
Info
DPT
Rela
case
insid

F
pres
subt
prev
the
subt

F
mod
4
KNX
show

C
the
hypo

roach, they ca
es of KNXD
aPoint types

manded to spec
d of specific a
igure 2 show
roach in respe

genera
XDataPointTy
sented. The D
RelativeSetVa

deled accordin
n particular,
e of InfoOnOf
XDataPointTy
ativeSetValueC

gure 2. UML Di

As shown by
ure among att
h DPT refers
DPT_KNXDa
OnOffType

T_KNXDatapo
ativeSetValueC
es, the definiti
de OPC UA.
igure 3 show

sented in [5
type of Stru
vious explanat

KNXDataPoi
type of the OP
igure 4 depic

deled accordin
shows the

XDataPointTy
wn in Figure 2

Comparing Fig
different def

othesis adopte

n be grouped
DataPointType

specialization
cific developm
pplications.

ws the modifi
ect to the one
alized
ypeMN1 and K
DPTs InfoOnO
alueControlTy
ng to our appro

KNXDataPoi
ffType and Sw

ypeMN3 is
ControlType.

agram of Figure
approach here p

both Figures
tributes, the d
to; in Figure
atapointMN1_

and Switc
ointMN3_Data
ControlType).
ion of those d

ws the definit
]. KNXDataP

ucture DataT
tion, DataTyp
intTypeDataTy
PC Structure.
cts how the D
ng to the propo

specific D
ypeMN1 and
2.
gures 3 and 4
finition, which
ed by the autho

within about
eMNx. More
n can be po
ments, as depe

fied UML dia
e of Figure 1;
implementati

KNXDataPoin
OffType, Swit

Type shown in
oach in Figure
intTypeMN1

SwitchOnOffTy
the supe

1 revised accordi
presented.

1 and 2, the
description of

2 it’s possibl
_DataType (f
chOnOffType)
taType (for
. This means
data types mu

tion of each
aPointTypeDa
Type. Accor
pe of a KNX
Type which,

DataTypes of
osal here pres

DataType m
 KNXDataP

4, it’s possible
ch is due to
hors, as describ

60 only super
over, further
ostponed and
ending on the

agram of this
in particular,

on for
ntTypeMN3 is
tchOnOffType
Figure 1, are

e 2.
is the super

ype while the
r type of

ing to the novel

e KNX DPTs
the DataType
e to point out
for the DPTs
 and the

the DPT
 that in both

ust be realized

data type as
taType is a

rding to the
DPT extends
in turn, is a

Figure 2 are
sented. Figure
odeling, for

PointTypeMN3

e to point out
the different

bed before.

r
r
d
e

s
,
r
s
e
e

r
e
f

s
e
t
s
e
T
h
d

s
a
e
s
a

e
e
r
3

t
t

1538 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figur

Figure 4. D

In OPC
DataTypeEnc
and “XML”
DataTypes to
shown in the
object po
DataTypeDe
DataTypeDic
describes a s
clients to par
and sending
is represe
DataTypeDic
server and
contained in
complex
DataTypeDe
references.
information n
DataType wi
Part 5). On t
DataType a r
DataTypeDic

re 3. Definition

Definition of the D
according the pr

UA, each
coding (for ex
encoding) b

o point to the
e same Figure
oints to
escriptionType
ctionary va
set of DataTy
rse/interpret v
to/from the s

ented as
ctionaryType
the descript
its Value attri

variables
escriptions as

A DataTyp
necessary to f
ithin the Data
the basis of w
relevant descr
ctionary varia

of the Data Type

Data Type shown
roposal here pres

DataType c
xample “Defa

but it is not p
e same DataT
s 3 and 4, a D
one varia

e. This varia
ariable. Da

ypes in suffici
variable values
erver. The Da

a varia
in the Addr

tion about th
ibute. DataTyp

which
variables usin

ypeDescription
find the form
aTypeDictiona
what said, for
ription has to

able, as done b

e used in [5].

in Figure 3, revis
ented.

can have se
ault”, “UA Bin
permitted for
TypeEncoding
DataTypeEnco
able of
able belongs
ataTypeDictio
ent detail to a
s both in recei
ataTypeDictio
ble of
ress Space of
he DataType
peDictionarie

expose
ng HasCompo
n provides
al description
ary [13] (OPC
each new de
be inserted in

by the authors

sed

everal
nary”
r two
g. As
oding

type
to a

onary
allow
iving

onary
type

f the
es is
es are
their

onent
the

n of a
C UA
fined
n the
.

C. A
A

UA
spec
assig
info

In
as s
OPC
Has
inpu
conn
foun

D. D
In

Data
an a
to an
this
inpu
linke
netw

T
adop
parti
mad
HasK
UA

T
impl
and
impl
prop

D
will
info
defin
amo
KNX
defin
(KNX
appl
this

T
of O
OPC
deve
repr
solu
XM
resu
stan

In
mod
Data
of H
cons

Assignment of
A very import

integration i
cific FB. As
gnment of a D
rmation mode
n particular, t
subtypes of H
C UA. T
OutputDataP

ut and output
nect a FB to
nd in [5] and [

Data Point Ad
n KNX appli
aPoints and pa
address. For ex
nother FB, it u
output DataP

ut DataPoint o
ed by comm

work.
The same appro
pted to mode
icular, associ

de up by
KNXAddress;
NonHierarch

V. SO

The aim of th
lementation o

OPC UA;
lementation o
posal presente

Description wi
be assumed

rmation mod
ned and its sim

ong other
XAlarmSensor
nition of

NXAlarmSenso
lying the nove
paper (see Se

This work has
OPC UA 1.0.2
C Foundation
elopment fram
esents anoth

utions. Integra
L file of th

ulting Inform
dard OPC UA
n order to per
del, four refe
aPoints. Amo

HasComponen
stitute the ref

f a DataPoint
ant item to p
is how DataP
done in [5][6
DataPoint to
el, with the Ref
hree referenc

HasComponen
hey are
oint (connect
DataPoints), a
a parameter D
6].

ddress Modeli
ications, read
arameters are
xample, if a F
uses its output
Point is the s
of the receiver
on addresses

oach proposed
el DataPoint a
ation of an a
using an a
 it has been de
icalReference

OFTWARE IMP

his section is
of the propose
description w
of DataPoint
d in Section IV
ll be done us
to integrate a
el. The KNX
mple function
DataPoints,

r DataPoint.
the re

orType) will b
el hierarchical
ction IV.B).
been complet

2 Stack Source
[8], avoidin

mework as do
her valuable
ation has been
he OPC UA

mation Model
A Server.
rform the inte
rence types,
ng them, thre

nt type, a built
ference types

to FB
point out in th
Points can be
6], the author
a FB within

eference.
ce types have
nt type, a bu
HasInputDat

cting FBs re
and HasParam
DP. Further d

ing
d and write o
 performed as

FB needs to se
t DataPoint. T
same of the c
er FB. Thus D

and FBs are

d in [5][6] and
address into
address to a
ad-hoc Refe
efined as a su

es.

PLEMENTATION

s to present
ed integration
will mainly f

model acco
IV.B.
sing a simple
a KNX FB i

XActuatorType
nalities will be

it will
Its definiti

elevant D
be shown in t
l methodology

tely realized b
e Code .NET
ng to use an
one in [5][6]

difference
n performed b

Information
l was integr

egration of th
are defined

ee references
t-in type of O
which link D

he KNX-OPC
e linked to a
rs realize the
the OPC UA

been defined
uilt-in type of
taPoint and
spectively to
meter used to
details can be

operations of
ssigning them
end something
The address of
corresponding

DataPoints are
e linked in a

d [7] has been
OPC UA. In
DataPoint is

rence called
btype of OPC

N

the software
among KNX

focus on the
ording to the

case study; it
nto OPC UA
e FB will be
e pointed out;
include the
ion and the

DataPointType
the following,
y proposed in

by making use
developed by

ny proprietary
and [7]; this
from these

by editing the
Model. The

rated into a

e information
to deal with
are subtypes

OPC UA; they
DataPoints to

C
a
e

A

d
f
d
o
o
e

f
m
g
f
g
e
a

n
n
s
d
C

e
X
e
e

t
A
e
;
e
e
e
,

n

e
y
y
s
e
e
e
a

n
h
s
y
o

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014 1539

© 2014 ACADEMY PUBLISHER

KNX FBs. They are HasInputDataPoint and
HasOutputDataPoint (connecting FBs respectively to
input and output DataPoints), and HasParameter used to
connect a FB to a parameter DP; Section IV.C has dealt
with this type of references. The last reference type,
HasKNXAddress, is a subtype of OPC UA
NonHierarchicalReferences and it is used to associate
one address to one DataPoint, as explained in Section
IV.D. All these reference types are symmetrical, namely
for each of them it is possible to consider the
InverseName which represents the reference type as seen
by the target node. Figure 5 shows the integration of the
previous four KNX Reference types inside the XML file;
the same figure shows the names assigned for the
InverseName (IsParameterOf).

Figure 5. Implementation of Reference Types.

As said in Section IV.A, a KNX function block is
modeled extending the OPC object type BaseObjectType.
Figure 6 shows the implementation of the simple FB used
for this case study; it has been called KNXActuatorType.

Figure 6. Implementation of KNXActuatorType FB.

It has been assumed that this FB receives a digital
input and according to its state, it sends an on/off
command to an actuator. As shown by Figure 6, inside its
definition, it is possible to highlight the input and output
DataPoints. One of this DataPoint is called
KNXAlarmSensor, defined as an instance of the
KNXAlarmSensorType DPT; it represents the digital input.
The other DataPoint is called SwitchOnOff and realizes
the output of the on/off command. On the basis of what

said, Figure 6 points out that KNXAlarmSensor is defined
as an input DataPoint, through the reference type
HasInputDataPoint; SwitchOnOff is defined as an output
DataPoint using the reference type HasOutputDataPoint.
As it can be seen, references are specified by constructing
the Symbolic Id for the components by inserting a “_”
between each Symbolic Name. In the following, only the
implementation of the KNXAlarmSensorType DPT will
be given.

As already explained in Section IV.B, according to our
proposal of integration (see Figure 2), DPTs modeling is
based on the definition of KNXDataPointType. As
already explained KNXDataPointType extends
BaseDataVariableType and contains all the information
about the generic DPT: main and sub number, range, unit
and resolution. KNXDataPointTypeMNx is a subtype,
where “x” corresponds to the main number of the KNX
DataPoint type. Considering the simple case study here
taken into account, only the use of KNXDataPointType
with main number 1 will be shown in the following for
the definition of KNXAlarmSensor DataPoint.

Figure 7 shows the definition of both
KNXDataPointType and KNXDataPointTypeMN1. In the
same figure, the definition of KNXAlarmSensorType is
also codified. It inherits from KNXDataPointTypeMN1;
as clearly shown in the figure, it has sub number 5 and is
characterized by a property of access (“AccessLevel”)
specifying what operations are allowed by the server
level (in this case both read and write). As it can be seen,
the DataType of the KNXAlarmSensorType is defined as
KNXDatapointTypeMN1DataType.

Figure 7. Implementation of KNXAlarmSensorType DPT.

As explained in Section IV.B, the Structure DataType
has been chosen to model the type of the present value of
a DataPoint. Figure 8 shows an example of such
implementation, with the definition of the
KNXDataPointMN1TypeDataType used in Figure 7
inside the implementation of DataPoint. As shown,
KNXDataPointTypeMN1DataType derives from the
KNXDataPointTypeDataType that, in turns, derives from
the base type Structure. As shown in Figure 8, the
encoding of KNXDataPointTypeMN1DataType
(KNXDataPointTypeMN1Encoding) is referred by a
reference of the type HasEncoding. This encoding
includes the variable KNXDataPointMN1Description of

<opc:ReferenceType SymbolicName="HasInputDataPoint" BaseType="ua:HasComponent">
<opc:Description>Reference connecting KNX FB with input DP. </opc:Description>
 <opc:InverseName>IsInputDataPointOf</opc:InverseName>

</opc:ReferenceType>

<opc:ReferenceType SymbolicName="HasOutputDataPoint" BaseType="ua:HasComponent">
 <opc:Description> Reference connecting KNX FB with output DP. </opc:Description>
 <opc:InverseName>IsOutputDataPointOf</opc:InverseName>
</opc:ReferenceType>

<opc:ReferenceType SymbolicName="HasParameter" BaseType="ua:HasComponent">
 <opc:Description>Reference connecting a KNX FB with parameter DP. </opc:Description>
 <opc:InverseName> IsParameterOf </opc:InverseName>
</opc:ReferenceType>

<opc:ReferenceType SymbolicName="HasKNXAddress"
 BaseType="ua:NonHierarchicalReferences">
 <opc:Description> Reference connecting a DP with its address. </opc:Description>
 <opc:InverseName> IsParameterOf </opc:InverseName>
</opc:ReferenceType>

<opc:ObjectType SymbolicName="KNXActuatorType"
 BaseType="ua:BaseObjectType">
 <opc:Description>A simple KNX FB used in the case study</opc:Description>
 <opc:Children>
 <opc:Variable SymbolicName="KNXAlarmSensor"
 TypeDefinition="KNXAlarmSensorType"/>
 <opc:Variable SymbolicName="SwitchOnOff" TypeDefinition="SwitchOnOffType"/>

 </opc:Children>
 <opc:References>
 <opc:Reference>
 <opc:ReferenceType>HasInputDataPoint</opc:ReferenceType>
 <opc:TargetId>GenericKNXSensorType_KNXAlarmSensor </opc:TargetId>
 </opc:Reference>
 <opc:Reference>
 <opc:ReferenceType>HasOutputDataPoint </opc:ReferenceType>
 <opc:TargetId>GenericKNXSensorType_SwitchOnOff </opc:TargetId>
 </opc:Reference>
 </opc:References>
</opc:ObjectType>

<opc:VariableType SymbolicName="KNXDataPointType"
 BaseType="ua:BaseDataVariableType">
 <opc:Children>
 <opc:Property SymbolicName="MainNumber" DataType="ua:Integer" />
 <opc:Property SymbolicName="SubNumber" DataType="ua:Integer" />
 <opc:Property SymbolicName="Range" DataType="ua:Range" ValueRank="Scalar"/>
 <opc:Property SymbolicName="Unit" DataType="ua:Double" ValueRank="Scalar" />
 <opc:Property SymbolicName="Resolution" DataType="ua:Double"
 ValueRank="Scalar"/>
 </opc:Children>
</opc:VariableType>

<opc:VariableType SymbolicName="KNXDataPointTypeMN1"
 BaseType="KNXDataPointType" MainNumber = "1"/>

<opc:VariableType SymbolicName="KNXAlarmSensorType"
 BaseType="KNXDataPointTypeMN1"
 DataType= "KNXDataPointTypeMN1DataType"
 SubNumber = "5" AccessLevel="ReadWrite"/>
</opc:VariableType>

1540 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

type DataTypeDescriptionType whose value field is
KNXDataPointTypeMN1. It is possible to access the
semantics within the dictionary referring to this field. The
description is linked to the encoding through the OPC UA
reference of type HasDescription.

Figure 8. Implementation of the KNXDataPointDataType by using the

Structure Data Type of OPC UA.

Figure 9 shows the last part of the XML
implementation related to the description of the portion of
dictionary relevant to the case study. The field “Value”
contains the name given to the dictionary,
“DPTXML.xml”. The first part of the xml file contains
the references to the descriptions defined within the
encodings of KNXDataPointMN1. The last part is the
definition of the OPC Binary type system that contains
the DPTDictionary (used in the upper part of the same
figure) and referred by a HasComponent reference.

Figure 9. Definition of the DPTDictionary and of the OPC Binary

Data Type.

FINAL REMARKS

This paper focuses on the problem to improve
interoperability in all the levels of a communication

architecture in an automation environment; here
equipment are based on different technologies and
communication protocols avoiding to realize full
interoperability, which may be achieved through the
adoption of expensive proprietary mapping.

Previous literature has presented some proposals
aiming to use OPC Unified Architecture (OPC UA) to
provide a cohesive, secure and reliable cross platform
framework for interoperability. Some of the available
papers apply this approach to the KNX interworking
model.

Starting from these proposals, presented in [5][6] and
[7], in this paper the authors propose further
improvements always considering KNX interworking
model integration.

The main difference with the current literature is due to
the different approach adopted to model DataPoints of a
FB, as described in the paper. This approach may reduce
the effort of integration of the KNX interworking model
within OPC UA information model.

REFERENCES
[1] Cenelec EN 50090, Home and Building Electronic System,

2005.
[2] Cenelec EN 13321–1, Open Data Communication in

Building Automation, Controls and Building Management,
2012.

[3] ISO/IEC 1454–3, HSE Architecture, 2006.
[4] W. Mahnke, S. Leitner, and M. Damm, OPC Unified

Architecture, Springer, 2009.
[5] W. Granzer, W. Kastner, and P. Furtak, “KNX and OPC

UA”, Proceedings of Konnex Scientific Conference,
November 2010.

[6] P. Ruß, KNX for OPC UA, Technical Report 183/1-158, A-
Lab @ Automation Systems Group, TU Vienna,
November 2011, available at
https://www.auto.tuwien.ac.at/bib/pdf_TR/TR0158.pdf

[7] W. Granzer, and W. Kastner, “Information modelling in
heterogeneous Building Automation Systems”,
Proceedings of 9th IEEE International Workshop on
Factory Communication Systems (WFCS), May 2012.

[8] www.opcfoundation.org
[9] S. Cavalieri, “Modelling and analysing congestion in

KNXnet/IP”, Computer Standards & Interfaces, Volume
34, Issue 3, March 2012, pp. 305–313.

[10] KNX Association, System Specifications, Communication:
Data Link Layer General, Chapter 3/3/2, 2009.

[11] KNX Association, System Specifications, Communication:
Application Layer, Chapter 3/3/7, 2010.

[12] KNX Association, System Specifications, Interworking:
Datapoint Types, Chapter 3/7/2, 2010.

[13] OPC Foundation, OPC Unified Architecture Specification,
Parts 1-11, 2009.

[14] S. Cavalieri, “Evaluating Overheads Introduced by OPC
UA Specification”, Human–Computer Systems Interaction:
Backgrounds and Applications 2, Advances in Intelligent
and Soft Computing, Springer, Vol. 98, 2012, pp. 201-221.

<opc:DataType SymbolicName="KNXDataPointTypeDataType" BaseType="ua:Structure" />
<opc:DataType SymbolicName="KNXDataPointTypeMN1DataType"
 BaseType="KNXDataPointTypeDataType "/>
 <opc:References>
 <opc:Reference>
 <opc:ReferenceType>ua:HasEncoding</opc:ReferenceType>
 <opc:TargetId>KNXDataPointTypeMN1Encoding </opc:TargetId>
 </opc:Reference>
 <opc:References>
</opc:DataType>

<opc:Object SymbolicName="KNXDataPointTypeMN1Encoding"
 TypeDefinition="ua:DataTypeEncodingType">
 <opc:Children>
 <opc:Variable SymbolicName="KNXDataPointTypeMN1Description"
 BaseType="ua:DataTypeDescriptionType" Value="KNXDataPointTypeMN1"/>
 </opc:Children>
 <opc:References>
 <opc:Reference>
 <opc:ReferenceType>ua:HasDescription</opc:ReferenceType>
 <opc:TargetId>
 KNXDataPointTypeMN1Encoding_KNXDataPointTypeMN1Description
 </opc:TargetId>
 </opc:Reference>
 </opc:References>
</opc:Object>

<opc:Variable SymbolicName="DPTDictionary"
 TypeDefinition="ua:DataTypeDictionaryType" DataType="ua:ByteString "
 Value="DPTXML.xml">
 <opc:References>
 <opc:Reference>
 <opc:ReferenceType>ua:HasComponent</opc:ReferenceType>
 <opc:TargetId>KNXDataPointTypeMN1Encoding_KNXDataPointTypeMN1Description
 </opc:TargetId>
 </opc:Reference>
 <opc:ReferenceType>ua:HasComponent</opc:ReferenceType>
 </opc:References>
</opc:Variable>

<opc:Object SymbolicName="OPCBinary" TypeDefinition="ua:DataTypeSystemType">
 <opc:BrowseName>OPCBinary</opc:BrowseName>
 <opc:References>
 <opc:Reference>
 <opc:ReferenceType>ua:HasComponent</opc:ReferenceType>
 <opc:TargetId>DPTDictionary</opc:TargetId>
 </opc:Reference>
 </opc:References>
</opc:Object>

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014 1541

© 2014 ACADEMY PUBLISHER

