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Abstract 
We propose a pair of shape features for searching surface-based 3D shape models based on their 
shape similarity. Either of the features is computed by first converting an input surface based 
model into an oriented point set model and then computing joint 2D histogram of distance and 
orientation of pairs of points. Advantages of the shape features are (1) they can be computed for 
non-solid or non-manifold models, (2) they are invariant to similarity transformation, and 
(3) they are tolerant of topological and geometrical errors and degeneracies. Experiments 
showed that, with only modest increase in computational cost, our shape features achieved 
significant performance improvement over Osada’s D2, on which our features are based. 

Keywords: content-based search and retrieval, geometric modeling, polygonal mesh. 

1.  Introduction  

Proliferation of 3D models on the Internet and in in-house databases prompted development of 
the technology for effective content-based search and retrieval of three-dimensional (3D) models. 
A 3D model could be searched by its textual annotation by using a conventional text-based 
search engine. This approach wouldn’t work in many of the application scenarios for the 3D 
shape model, however. The annotations added by human beings depend on culture, language, age, 
and other factors. It is also extremely difficult to describe by words a shape that is not in an well-
known shape or semantic category. It is thus necessary to develop content-based search and 
retrieval systems for 3D models that are based on the features intrinsic to the 3D models, one of 
the most important of which is shape.  

In the study of shape similarity search of 3D models, current focuses are on the development of 
robust, concise, yet expressive shape features, and on the development of similarity (or, 
dissimilarity) comparison methods that conform well to the human notion of shape similarity.  

In developing a shape feature for 3D models, we first have to decide which class of 3D shape 
representation we are targeting. A 3D shape may be defined by using any of a number of shape 
representations, many of which are not mutually compatible. Some of the shape representations 
are mathematically well founded, allowing for computations of such well-defined properties as 
volume, surface curvature, or surface (or volume) topology. Other shape representations are less 
nicer. For example, a “polygon-soup” model is a topologically disconnected collection of 
independent polygons and/or polygonal meshes. Neither volume nor surface curvature can be 
computed for the model. As many of the VRML models and 3D models generated by using 3D 
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animation software are defined as polygon soup models, it is quite important to develop effective 
shape similarity comparison methods for this class of models. 

Another important requirement for a 3D shape similarity comparison method is invariance of 
the method to a required class of geometrical transformations. Most of the time, an invariance to 
similarity transformation, that is, a combination of translation, rotation, and uniform scaling, is 
required for a 3D shape similarity comparison. A 3D model has a higher degrees-of-freedom 
(DOF) for their pose than a 2D shape model; a description of a similarity transformation requires 
7 DOF. On the other hand, a 2D shape needs only 4 DOF to define a similarity transformation.  A 
previous shape similarity comparison method either:  

 employed an orientation insensitive shape feature  
 performed pose normalization prior to applying a pose orientation sensitive shape feature. 

Osada et al [1] proposed what they call shape distributions. Osada’s shape distributions, a set 
of shape features, have the advantage of being invariant, without pose normalization, to similarity 
transformations. Furthermore, they are designed to be applicable to a not-so-well-defined mesh-
based model, i.e., a polygon soup defining a non-solid object consisting of non-manifold surfaces, 
multiple connected components, and such degenerate surfaces as zero-area polygons. All of their 
shape features first converts the surface based 3D models into unoriented point set models. Then, 
various statistics are computed from the point set model. Among the proposed shape distributions, 
the D2 showed the best retrieval performance despite its low computational cost. The D2 is also 
easy to implement, for it is a 1D histogram of distance between pairs of points in the point set 
model. However, the retrieval performance of the D2 is not sufficient, failing to distinguish 
shapes that are quite different.  

In this paper, we propose a pair of shape features for comparing polygon soup models. Our 
shape features are based on the Osada’s D2 shape function [1]. Both our shape features try to 
statistically capture surface orientation as well as surface distance of the model. Our method first 
convert a given surface model into oriented point set model, i.e., a set of points having 3D 
position as well as orientation normal vector. Then, the methods compute, as a feature, a joint 2D 
histogram of the distances and mutual orientations of the pairs of oriented points. Experimental 
evaluation showed that our shape features have significantly better retrieval performance than 
Osada’s D2 shape function while having only slightly increased computational cost.  

The paper is organized as follows. In the next section, we will review the previous work on 3D 
shape similarity search and retrieval, focusing on those methods that target polygon soup models. 
Our shape-matching algorithms are described in Section 3, and the method and results for the 
experimental evaluation of our algorithm are presented in Section 4. We conclude the paper in 
Section 5.  

2. Previous Work 

A method for shape similarity comparison of 3D models can be classified by the shape 
representation it is targeting. Some of the shape comparison algorithms assume well-defined 
shape representation, that are, 3D solid represented by using voxels, boundary representation, or 
constructive solid geometry [2, 3, 4]. Others assume topologically well-defined 2-manifold 
surfaces [5, 6]. However these methods can’t be used to compare polygon soup models. In this 
section, we review shape similarity comparison methods for not-so-well-defined shape 
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representations, especially those for “polygon-soup” models. 
Another possible classification is by the method used to achieve invariance of the shape 

comparison method to a class of geometrical transformations. To achieve geometrical 
transformation invariance, some methods employ pose normalization. To fully invert a similarity 
transformation, 7 DOF must be fixed; 3 for position, 3 for rotation, and 1 for scaling. Some 
methods normalize all the 7 DOF, while the other normalize a subset of the 7 DOF.  

A pioneering work in 3D shape similarity search by Paquet et al [7] computed, after a pose 
normalization, a set of geometrical features. Their method also employed attributes, such as color 
of the model, for their shape similarity search. Another pioneering work by Suzuki et al [8] 
computed, after pose normalization, distribution of vertices in the uniformly subdivided axis-
aligned grid. Suzuki et al tried to relate impression words and 3D shape by means of multi-
dimensional scaling. Zaharia [9] employed a 3D Hough transformation computed from 
distribution of vertices of a model as its shape feature, while Elad et al [10] computed various 
moments from the points generated randomly on the surface. Elad’s tried to match the human 
notion of shape similarity with that of mechanical distance by employing a learning classifier 
support vector machine. The method by Ohbuchi et al [11] normalizes pose, then computes 
moment of inertia, average and variance of distance from the three principal axes to the model 
surface. These methods employed principal component analysis of the covariance matrix of the 
point distribution of the model for their pose normalization. The points used to generate the 
covariance matrix may be the original vertices or they may be generated uniformly on the 
surfaces for the purpose of pose normalization.  

Ankerst [12] proposed one of the first 3D shape similarity matching algorithms that targeted 
3D molecular databases. One of their shape descriptor parameterizes the 3D space using 
concentric spherical shells, making the feature invariant to rotation. The spherical harmonics 
descriptor by Funkhouser, et al. [13] also employs the concentric-shell parameterization of the 
3D space, after normalizing the position and scale. Funkhouser et al used the spherical harmonics 
descriptor to capture distribution of polygon for each shell in the frequency domain. The 
spherical harmonics shape feature is combined with the normalization of translation and uniform 
scaling to achieve invariance to all the 7 DOF of similarity transformation. The methods by Chen 
et al [14] and Ohbuchi et al [15] compares 3D shape by using a set of 2D images taken from 
multiple orientations. These two methods first normalize position and scale DOF to place a 
normalized model at the coordinate origin. Then, 2 out of 3 rotational DOF are approximated by 
a few dozen discrete viewing locations. The remaining 1 DOF of rotation is removed by using a 
rotation invariant shape feature for 2D images.  

These methods that require pose normalization could run into trouble if pose normalization 
fails. For example, identifying and inverting translation typically employs computing a 
barycenter of the model and translating the barycenter to the origin of the coordinate system. 
Such normalization of position may not work well if the shape contains a geometrical “outliers”. 
Similar problem could arise when normalizing rotation and scale.  

A set of shape features proposed by Osada et al [1] is inherently invariant to similarity 
transformation so that they don’t require any normalization. Among the features, the D2 shape 
“distribution”, one of the simplest to compute, performed the best in terms of computational cost 
and retrieval performance. Beside its geometrical transformation invariance, their shape features 
are quite robust against noise in, or even total lack of, topology of polygons and meshes. Their 
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shape features are also robust against geometrical noise and degeneracies such as zero-area 
polygons. 

The method proposed in this paper is an extension of Osada’s method. We will describe the D2 
shape feature and our shape features in the next section.  

2. Proposed Algorithm  

Figure 1 shows the structure of our proof-of-concept 3D model database system. We adopted 
the query-by-3D-shape-example approach, in which a user presents the system with an example 
3D shape and asks for k  most similar shape models in the database. The shape feature extraction 
algorithm accepts a 3D shape defined as a collection of polygons and polygonal meshes. It may 
contain non-manifolds or geometrically degenerate polygons. If the surface of the input model is 
known to be orientable, we employ mutual Angle-Distance histogram (AD) shape feature. If we 
can’t assume the surfaces of the models to be properly and consistently oriented, we employ 
mutual Absolute-Angle Distance histogram (AAD) shape feature. Both are the extensions of the 
D2 [1] shape feature. Unlike the D2, which is a 1D histogram, both our AD and AAD are 2D 
histogram. For the dissimilarity computation among shape features, we compared a few different 
methods based on L1 norm, L2 norm and an elastic matching algorithm. The database itself is 
organized as a one-dimensional array, and no attempt has yet been made to speed up the database 
access by indexing and other methods. 

In the following, we first explain the D2 shape function (Osada, et al. [Osada02]) on which our 
proposed shape features are based. Then, our proposed shape features, the AD and the AAD will 
be described. 
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Figure 1. Structure of a shape similarity search system for 3D models. 

2.1. Osada’s D2  

Osada et al proposed several different shape features in [1]. Advantages of these shape features 
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are that (1) they can be computed for a 3D polygon soup model that contain geometrical and 
topological noise, errors, and degeneracies, and that (2) the shape features is invariant, without 
pose normalization, to similarity transformation of the 3D model. Among the proposed shape 
descriptors, the D2 performed the best in terms of combined computational cost and retrieval 
performance. 

To compute the D2 shape feature for a surface-based 3D model, the model is first converted 
into an unoriented point set representation by stochastically sampling the geometry of the model 
by generating points at random location on every surface of the model (See Figure 2). Distance is 
then computed for every possible pair of points generated, that is, ( )1 2p pN N −  pairs for the 

pN  points generated. The D2 shape function is a 1D histogram generated by counting the 
population of the point-pair distances that falls within a certain distance interval. The D2 shape 
feature is insensitive to the variation in (or, total lack of) connectivity of polygons. As it is based 
on the unoriented point set representation, it is insensitive to the orientation of the surfaces in the 
original model.  

 

  

 
p1

p2

( )2
1 2d = −p p

(a) Surface based 
model. 

(b) Generate a point 
set model 

(c) Compute 
distance d  between 
the pair of points. 

(c) The D2 shape 
function 

Figure 2. Computing the D2 shape function from the surface based 3D shape model. 
 
We used Osada’s method [1] to generate a point at a random location P  on the surface of a 

triangle.  

 ( ) ( ) ( )1 1 2 2 1 2 31 1r r r r r= − + − +1P t t t . (1) 

In the formula, 1t , 2t , and 3t  are vertices of the triangle, and 1r  and 2r  are pseudo-random 
number sequences (PRNS) having the range [0,1] . If the model contained non-triangular 
polygons, they are triangulated prior to the point generation. The number in  of points per ith 
triangle is determined in proportion to the area of the ith triangle by the following formula; 
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=
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Here, iS  is the area of the ith triangle, M  is the number of triangles for the model, and 3 [0,1]r ∈  
is a PRNS. The integral number in  is probabilistically generated from the expected value ih . 

Our implementation of the D2 is somewhat different from the original D2, and we call our 
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version the modified D2 (mD2). Instead of a PRNS used by Osada, we used a Quasi-Random 
Number Sequence (QRNS) by Sobol [16] for the 1r , 2r  above. The spatially uniformity of 
distribution of points on polygons are better if a QRNS is used, compared to the case in which a 
PRNS is used (See Figure 3.) That is, feature vectors generated by using a QRNS [16] tend to be 
more consistent, that is, low-variance, than those generated by using a PRNS. In the preliminary 
experiment, we experimentally compared the retrieval performance of the D2 shape feature 
computed by using the Sobol’s QRNS [16] with that of the feature generated by using the PRNS 
drand48() function available in the standard C library. The QRNS version performed better 
than the PRNS version given a number of point pN , especially if the pN  is small. We also 
performed the same experiment for the AD and the AAD shape features, and the QRNS versions 
of the AD and the AAD performed better than their PRNS counterparts. We thus chose the 
Sobol’s QRNS for generating points for the mD2 shape feature as well as for the AD and the 
AAD shape features in the experiment described in Section 4.  

 

 
(a) Sobol’s QRNS. 

 
(b) drand48() PRNS. 

Figure 3. Plots of 2D points that used the Sobol’s quasi-random number sequence (a) compared 
with the plot that used the standard pseudo-random number generator function drand48()(b). 
The Sobol’s QRNS samples the rectangle more uniformly than the PRNS drand48(). 

 
For a proper comparison among the models having different size, the distance axis of the 

histogram needs to be normalized. We normalize the histogram by using the maximum, minimum, 
and the average of the point pair distance. Of the total dI  intervals of the histogram, / 2dI  
equally spaced intervals (bins) are allocated for distance values that range from the minimum to 
the average. The remaining / 2dI  equally spaced intervals are allocated to the values from the 
average to the maximum. Consequently, the size of intervals in the upper half (i.e., above 
average) of the histogram is in general different from that of the intervals in the lower half (i.e., 
below average) of the histogram. 

The dissimilarity 1
2 ( , )L

mDD x y  of a pair of models A and B, whose features are 1D vectors x  and 
y , respectively, can be computed as follows;  

 ( )1
2

1
,

dI
L
mD i i

i
D x y

=

= −∑x y .  (3) 
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Here, dI is the number of histogram intervals for the distance axis. 

2.2. Shape Features AD and AAD 

The AD and the AAD shape feature are 2D histograms of distances and angles formed by pairs 
of oriented points that are generated on the surfaces of the given 3D shape model. In computing 
the AD or the AAD shape feature, an oriented point set representation of the original (surface-
based) 3D shape model is computed first. The orientations of the point are inherited from the 
surface normal vectors of the polygons on which the points are generated. The angle between a 
pair of points is actually represented as an inner product of the orientation vectors. The difference 
between the AD and the AAD is that the AAD ignores the sign of the inner product. 
Consequently, the AAD is more robust against models having inconsistent surface orientations 
than the AD.  
2.2.2. AD 

The AD shape feature measures, for each pair of points 1p  and 2p , the 3D Euclidian distance 
( )2

1 2d = −p p  between the points and the inner product 1 2a = n ni  of the orientation vectors 1n  
and 2n  of the points (Figure 4.) The points are generated in the manner identical to that of mD2, 
using the equation (1) and the Sobol’s QRNS. Unlike the mD2, each point is oriented. 
Orientation of a point is inherited from the surface normal vector of a polygon on which the point 
is generated. Given the distance and the inner product for every pairs of the points, the AD is a 
joint 2D histogram of the distance d  and the inner product a .  

a  

  

 n1 n2P1

p2

( )2
1 2d = −p p

1 2a = n ni d 
(a) Surface based 
model. 

(b) Convert the 
model into an 
oriented point set. 

(c) Compute 
distance d and the 
inner product a . 

(d) The AD shape 
feature. 

Figure 4. Computing the AD and AAD shape function from the surface based 3D shape model. 
 

Similar to the D2 and mD2 shape features, a proper comparison of models having different 
sizes requires normalization of the distance axis of the AD histogram. We experimented with the 
four different normalization methods; (1) by maximum, (2) by average, (3) by median, and (4) by 
mode, of the distance values.  
 
Normalization by Maximum: The maximum and the minimum of the distance values are found. 
Then, the interval the minimum distance and the maximum distances is subdivided into dI  equal 
width bins.  
Normalization by Average: An average distance is computed. Then, given the total number of 
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distance bins dI ,  a half ( / 2dI  equal sized bins) is allocated to the distance values above the 
average the other half (another / 2dI  equal sized bins) is allocated to the distance values below 
the average.  
Normalization by Median or Mode: These two normalization methods are similar to the 
“normalization by average” above, except that, instead of the average, either the median or the 
mode of the distance is used. 

 
Inner product of a pair of orientation vectors always fall within the range [ 1,1]− , regardless of 

the size of the model. The structures of the bins for the angular axis are the same for all the 
normalization methods. The angular axis divides the interval [ 1,1]−  into aI  equal sized bins. The 
result is a 2D histogram having a dI I×  elements for all the normalization methods. 

Examples of the AD shape features computed by using the four normalization methods above 
are shown in Figure 5a-5d. In these figures, the darker the image, the higher the population is. 
These features are computed for the bunny model of Figure 2 by generating 2,000 points on the 
surface of the model for the 2D histogram having 64 8d aI I× = ×  elements.  
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a  
+1 

-1  
 Minimum  Maximum  d 
 (a) Normalized by using the minimum and the maximum.   

a  
+1 

-1 
 Minimum Average Maximum  d 
 (b) Normalized by using the average.  

a  
+1 

-1 
 Minimum Median Maximum  d 
 (c) Normalized by using the median.  

a  
+1 

-1 
 Minimum Mode Maximum  d 
 (d) Normalized by using the mode.  

Figure 5. Examples of the AD shape feature, a 2D histogram, generated 
by using four distance normalization methods.  

2.2.3. AAD 

The AD shape feature described above is sensitive to the sign of the orientation vector of the 
point set model. If the models to be compared have a consistent surface orientation, e.g., a 
consistent traversal order of the vertices among polygons, the AD shape feature performs well. If, 
however, the database contains models having surfaces that are inconsistently oriented, the 
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performance of the AD shape feature suffers. Models generated by using different shape 
modeling tools might have different rules in determining surface orientations. Some of the 
models do not have coherent surface orientation at all.  

The mutual Absolute Angle and Distance (AAD) histogram is computed similarly to the AD, 
except that the AAD ignores the sign of the inner product. This makes the AAD a more robust 
shape feature than the AD for the models having unoriented or inconsistently oriented surface 
orientations. The anglular axis of the 2D histogram of the AD takes the value in the range [0,1].  

Figure 6 shows an example of the AAD shape feature computed for the same bunny model of 
Figure 2 using the maximum value normalization, 2,000pN =  points and the histogram size of  

64 8d aI I× = × . 
 

|a|  

+1 

0  
 Minimum  Maximum d 

Figure 6. The AAD normalized by using the maximum. 
 

2.3.  Dissimilarity computation for the AD and AAD 

We have implemented and compared three distance computation methods, the L1 norm 
(Manhattan distance), the L2 norm (Euclidian distance), and the elastic matching distance for the 
AD and the AAD shape features.  
2.3.1. Dissimilarity measures using L1-norm and L2-norm 

Assume that ,( )i jx=X  ( 1 di I≤ ≤ , 1 aj I≤ ≤ ) and ,( )i jy=Y   ( 1 di I≤ ≤ , 1 aj I≤ ≤ ) are the 
feature vectors for the models A and B, respectively. Note that a feature “vector” for the AD and 
the AAD shape features are in fact a 2D matrix of the dimension d aI I× , in which dI  is the 
number of distance intervals and aI  is the number of angular (or, inner product) intervals. The L1 
norm-based dissimilarity measure 1( , )LD X Y  and the L2 norm-based distance 2 ( , )LD X Y  for the 
AD and AAD shape features are defined as follows; 

 1 , ,
1 1

( , ) ( )
d aI I

L i j i j
i j

D x y
= =

= −∑∑X Y . (4) 

 2
2 , ,

1 1

( , ) ( )
d aI I

L i j i j
i j

D x y
= =

= −∑ ∑X Y . (5) 

The distance axis is treated differently from the angular axis. The L1 or L2 distance among a 
pair of column vectors, each of which consisting of values from angular bins at the distance bin i , 



Ryutarou Ohbuchi, Takahiro Minamitani, Tsuyoshi Takei, Shape-similarity search of 3D models by using enhanced shape 
functions, International Journal of Computer Applications in Technology (IJCAT), pp.70-85, Vol.23, No. 2/3/4, 2005 

 11 

is computed first. Then, a simple sum of these distance values over all the dI  intervals is 
computed.  
2.3.2. Dissimilarity measure using elastic matching  

We also computed elastic matching distance along the distance axis to compute the distance 
( , )ED X Y  between the shape features X  and Y . It locally stretches and shrinks the distance 

axis of the histogram in order to a find minimal distance match.  The elastic matching algorithm 
employs dynamic programming technique for an efficient implementation. In the past, elastic 
matching in the temporal axis had been used extensively in speech recognition in order to absorb 
variation in the speed of utterance.  

If the matching is too elastic, a pair of shapes that are different could produce a small distance 
value. We compared the performance of linear and quadratic penalty functions, and chose the 
better performing quadratic penalty function, as shown in equation (8). The elastic distance 

( , )ED X Y  among a pair of features X  and Y is computed as follows.  

 ( ) ( ), ,E n nD g=X Y X Y , (6) 

 ( )
( ) ( )
( ) ( )
( ) ( )

1

1 1

1

, ,

, min , 2 ,

, ,

n n n n

n n n n n n

n n n n

g g

g g g

g g

−

− −

−

+∆⎡ ⎤
⎢ ⎥

= + ∆⎢ ⎥
⎢ ⎥+∆⎣ ⎦

X Y X Y

X Y X Y X Y

X Y X Y

, (7) 

 ( ) ( )2

, ,
1

,
aI

i j i k j k
k

g i j x y
=

∆ = − −∑X Y . (8) 

3.  Experiments and results 

To evaluate the proposed shape features, we implemented the proof-of-concept 3D shape 
similarity database system using C++ on a Linux operating system. 

3.1.  Evaluation method 

For the experiment, we used three different databases, each with its own “correct answer” 
categories. 

 Database A: The database A consisted of 215 VRML models provided by Patrick Min and 
Prof. Funkhouser at the Princeton University. The model database is categorized a priori into 
42, which are listed in Table 1.   

 Database B: The database B consisted of 1,213 VRML models we have collected, modified, 
or created. We combined the database A above with the models from Johan Tangelder et al 
at the University of Utrecht [17]. We also collected more than 300 copyright free models 
from the Internet. To generate similar but different models, we modified some of the models 
(e.g., a bunny model) by using our shape morphing algorithm, a mesh simplification 
algorithm, or by adding geometrical noise. We also created a dozen or so new models, e.g., a 
“bunny house” model that contains the bunny model in a cube. Based on a consensus among 
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a few graduate students, we classified the models into 35 categories listed in Table 2. The 35 
categories included the “other” category containing as many as 352 difficult to classify 
models. The database B contains a disproportionately large number of airplane models from 
the Utrecht database [17].  

 Database C: The database C is the Princeton Shape Benchmark (PSB), a publicly available 
3D model database [18]. The PSB version 1.0 consists of 1,814 models, which is divided into 
two groups; the training database (907 models) and the test database (907 models). We used 
the test database only for the experiment described in this paper. The 92 categories in the 
database C are listed in Table 3.  

The retrieval experiment is as follows. We pick a query model q  from a category qC , and ask 
the system to find, in a database, models similar to q . If a retrieved model qr C∈ , it is a 
“success” retrieval. If  qr C∉ , then it is a failure. (In the case of the database B, we drew query 
models from categories other than the “other” category. Consequently, the larger the size of the 
“other” class, the lower various performance figures become.) Note also that many of the 
categories contained small number (2, 3, 4, or 5) of models.   

As the objective measures of retrieval performance, we used the First Tier (FT), Second Tier 
(ST), and Nearest Neighbor (NN), as well as the recall-precision plot.  

 First Tier (FT): Assume that the query belongs to the class qC  containing qk C=  models. 
The FT figure is the percentage of the models from the class qC  in the top ( 1)k −  matches. 
As the query model is excluded, ( 1)k −  models from the class qC  in the top ( 1)k −  results 
produces the figure 100%.  

 Second Tier (ST): The ST figure is the percentage of the models from the class qC  in the 
top 2( 1)k −  matches. 

 Nearest Neighbor (NN): The percentage of the cases in which the top match is drawn from 
the query’s class qC .  

Recall and precision are well known in the literature of content-based search and retrieval. 
Precision is the number of retrieved models that are in the class qC  divided by the number of all 
the retrieved models. Recall is the number of retrieved models that are in the class qC  divided by 
the number of models in the class qC . In general, recall and precision are in trade-off relationship. 
If one goes up, the other usually comes down. As the objective of this database is similarity based 
search, if the similarity matching criteria is rather strict, the precision value goes up, while the 
recall value goes down. On the other hand, if the matching criterion is too loose, most of what 
has been retrieved is useless.  

The FT, ST, NN figures as well as the recall-precision plots shown later are the averages 
produced by querying every model in the database once. As an exception, in the case of the 
database B, models in the “other” category are not queried.  

 



Ryutarou Ohbuchi, Takahiro Minamitani, Tsuyoshi Takei, Shape-similarity search of 3D models by using enhanced shape 
functions, International Journal of Computer Applications in Technology (IJCAT), pp.70-85, Vol.23, No. 2/3/4, 2005 

 13 

Table 1. The 42 categories created for the test database A, which contains 215 models. 
Class name qC  Class name qC  Class name qC  

animal 5 head 4 plant 3 
ball 6 helicopter 6 rifle 4 
bed 2 human 17 shark 2 
belt 3 lamp 9 skateboard 3 

bicycle 2 leg 2 sofa 4 
blimp 3 lightning 3 spaceship 6 
boat 4 mechanoids 2 sub 3 

bookshelf 2 misc 3 table 4 
box 6 missile 7 tank 5 

building 2 mug 5 tiefighter 2 
car 7 openbook 4 tools 5 

chair 9 pen 5 torus 2 
claw 3 phone 4 tower 3 
glove 2 plane 37 vase 4 

 
 

Table 2. The 35 categories created for the test database B, which contains 1,213 
models. 

Class name qC  Class name qC  Class name qC  

airship 5 delta-jet 74 plane2 49 
animal4legs 22 dolphin 11 plane3 90 

ball 33 head 23 plane4 54 
biplane 24 helicopter 17 plane5 55 

board-circular 6 holes 9 plane6 55 
board-thick 16 humanoid 26 plane7 53 

board 16 lamp 12 sofa 9 
boat 10 missile 11 submarine 8 

bunny 23 mug 4 sword 9 
car 19 multi-fuselage 54 tank 7 

chair 6 office-chair 8 other 352 
cube 8 plane1 35  
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Table 3. The 92 categories used in the database C, which is the “test” dataset containing 907 
models of the Princeton Shape Benchmark [PSB] database. 

Class name qC  Class name qC Class name qC  

Biplane 14 Book 4 Vase 11 
Commercial 11 Barn 5 Mailbox 7 
Fighter_jet 50 Church 4 Electrical_guitar 13 

Glider 19 Gazebo 5 Newtonian_toy 4 
Stealth_bomber 5 One_story_home 14 Bush 9 
Hot_air_balloon 9 Skyscraper 5 Flowers 4 

Helicopter 18 One_peak_tent 4 Potted_plant 26 
Enterprise_like 11 Two_story_home 10 Barren 11 
Flying_saucer 13 Chess_set 9 Conical 10 

Satellite 7 City 10 Satellite_dish 4 
Tie_fighter 5 Desktop 11 Large_sail_boat 6 

Ant 5 Computer_monitor 13 Ship 11 
Butterfly 7 Door 18 Submarine 9 
Human 50 Eyeglasses 7 Billboard 4 

Human_arms_out 20 Fireplace 6 Sink 4 
Walking 8 Cabinet 9 Slot_machine 4 

Flying_bird 14 School_desk 4 Staircase 7 
Standing_bird 7 Bench 11 Hammer 4 

Dog 7 Dining_chair 11 Shovel 6 
Horse 6 Desk_chair 15 Umbrella 6 
Rabbit 4 Shelves 13 Race_car 14 
Snake 4 Rectangular 25 Sedan 10 
Fish 17 Single_leg 6 Covered_wagon 5 

Sea_turtle 6 Geographic_map 12 Motorcycle 6 
Axe 4 Handgun 10 Monster_tuck 5 

Knife 7 Hat 6 Semi 7 
Sword 16 Hourglass 6 Jeep 5 
Face 16 Ladder 4 Train_car 5 
Hand 17 Streetlight 8 Wheel 4 
Head 16 Glass_with_stem 9 Gear 9 
Skull 6 Pail 4 
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3.2.  Selecting Parameters for the Proposed Shape Features 

The AD and the AAD contains three parameters that affect their performance as well as 
computational cost; the number of points generated on each model pN  and the number of 
distance intervals dI  and angular intervals aI  . In this experiment, we varied these three 
parameters to find a best performing combination of parameters without too much in computation.  

For the AD, we tested a set of 27 parameter combinations; { }512,1024, 2048pN = , 
{ }32,64,128dI = , { }4,8,16aI = . For the AAD, we evaluated another set of 27 parameter 

combinations; { }512,1024, 2048pN = , { }32,64,128dI = , { }4,8,16aI = . In both of the cases, 
histograms are normalized by using the average, and the distance among features are computed 
by using the L2 norm. We compared the results using the retrieval performance in terms of FT, 
ST, NN, and the computational cost. If performances of two parameter combinations are equal, 
we chose the one having lower computational cost.  

In terms of the number of points, 1024pN =  performed better than 512pN = . But the 
performances of 1024pN =  and 2048pN =  are indistinguishable. We chose 1024pN =  for its 
lower computational costs. 

The numbers of distance intervals dI  and aI  affected retrieval performance. If they are too 
small, the feature becomes insensitive to shape differences. If they are too large, the shape feature 
may be overly sensitive to minute shape differences, decreasing the overall similarity search and 
retrieval performance. And, the larger the number of intervals, the higher the storage cost and the 
distance computation cost. For example, when we increased the aI  from 8 to 16, the retrieval 
performance of the AD and the AAD shape feature decreased. What happened was that the 
features have become too sensitive. For example, two polygonal approximations of sphere, one 
having 20 facets and the other having 80 facets are determined to be different, although they are 
in the same “ball” category.   

Overall, the combination of parameters we found to be the best are shown in Table 4.  
 

Table 4. Parameters selected for the shape feature vectors. 
Features pN  dI  aI  

AD 1024 64 8 

AAD 1024 64 4 
 

3.3. Performance Comparison among the proposed methods 

We compared the performance of various variations of our proposed methods using the 
database A. We performed three sets of comparisons;  

(1) Comparison among the two shape features AD and AAD,  
(2) Comparison among the four histogram normalization methods (by maximum, by average, 

by median, and by mode), and  
(3) Comparison among the three distance computation methods, the L1-norm, the L2-norm, 

and the elastic matching distance.  
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Table 5 shows the results of the comparison (1) above. In this experiment, we used the average 
normalization method for the histogram normalization and the L2 norm for the distance 
computation. The figure shows that the AAD has the higher NN value, while its FT value is 
slightly lower, than the AD. Due to its smaller feature vector size (64×4 instead of 64×8), the 
AAD is somewhat faster than the AD at the database search step.  

Table 6 shows the results of the comparison (2) above that compared among the histogram 
normalization methods. For this experiment, the AAD shape feature and the L2 norm are used. 
The result showed that the average based normalization performed the best. In terms of 
computational cost, maximum normalization was the least expensive, followed closely by the 
average normalization method. 

Table 7 shows the results the comparison among the three distance computation methods 
(comparison (3) above.) In this experiment, we used the AAD shape feature and the average 
based normalization method. The figures in the table show that the L2 norm performed the best. 
The elastic matching did improve the performance for certain classes. But overall, the simple L2 
norm performed better than the elastic matching.  

 
Table 5. Performance comparison among the proposed shape features. (Database A). 

Features FT ST NN Retrieval time 
AD 39% 51% 56% 0.84s 

AAD 38% 51% 60% 0.70s 
 

Table 6. Performance comparison among the histogram normalization methods. (Database A.)  

Normalization 
methods FT ST NN 

Feature 
computation 

time 
Max-Min 36% 49% 58% 0.52s 
Average 38% 51% 60% 0.54s 
Median 36% 48% 58% 0.60s 
Mode 33% 47% 54% 0.60s 

 
Table 7. Performance comparison among the distance computation methods. (Database A.) 

Distance 
computation 

methods 
FT ST NN Retrieval 

time 

L1 norm 38% 49% 58% 0.68s 
L2 norm 38% 51% 60% 0.70s 

Elastic matching 37% 50% 54% 0.77s 
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3.4. Comparison with the other methods 

We compared the performance of the AAD and the mD2 shape features by using the database 
A and the database B. The parameters used for this experiment are as follows; 

 mD2: The number of points per model 1024pN =  and the number of distance intervals 
512dI = . The normalization is performed by using the average based method [1]. 

Dissimilarity is computed by using the L1 norm.  
 AAD: The number of points per model 1024pN =  and the number of distance intervals 

64dI = , and the number of angle intervals 4aI = . The normalization is performed by the 
average-based method. Dissimilarity is computed by using the L2 norm-based method.  

The parameters for the mD2 are chosen so that its performance is the highest in our 
preliminary experiment. The choice of the AAD shape feature and the choice of various 
parameters of the AAD shape feature are due to the experiments described in the Section 3.3. The 
size, counted in number of numerical values to be stored, of a feature for the mD2 is 512, while 
that for the AAD is 64 4 256× = . 

The FT, ST and NN figures resulted are shown in Table 8, Table 9, and Table 10, respectively, 
for the database A, the database B, and the database C. The recall-precision plots are shown in 
Figure 7, Figure 8, Figure 9, respectively, for the database A, the database B, and the database C. 
Table 8 and Table 9 also show computational costs in two parts; (1) the feature computation time, 
and (2) the total retrieval time, which is the sum of the feature computation time and distance 
computation time.  

Table 8 shows that, using the database A, the AAD methods outperformed the mD2 in all of 
the FT, ST, and NN figures by the margin of 6% to 7%. Recall that these numbers are computed 
as averages over all the models and categories in the database. The AAD also outperformed the 
mD2 in the experiments that used the database B and the database C that are shown in Table 9 
and Table 10. The performance advantage of the AAD is apparent in the recall-precision plots 
shown in Figure 7, Figure 8, and Figure 9 for the database A, B, and C, respectively. (In a recall-
precision plot, a curve closer to the upper right corner means a better retrieval performance. Ideal 
retrieval performance would be the precision value of 1.0 for all the recall values.) The plots are 
smoother for the Figure 8 and Figure 9 than the Figure 7. This is because the database A has 
much smaller size than the database B and C.  

In terms of computational cost, the feature extraction costs more for the AAD than the mD2. 
This modest increase in cost is well justified considering the performance advantage of the AAD. 
Furthermore, when it comes to the cost of distance computation, the AAD cost less to compare 
than the mD2 due to its smaller feature size. 

Figure 10-13 show query examples using the mD2 (Figure 10a, 11a, 12a, and 13a) and the 
AAD (Figure 10b, 11b, 12b, and 13b) using the database B. In each figure, the upper left entry is 
the query, and the 5 by 4 matrix to the right shows the top 20 matches. Of the top 20 retrievals, 
the upper left corner shows the best match, which in every case is the query model itself. In these 
examples, the AAD appears to perform better than the mD2. In Figure 10, for example, the AAD 
appears to retrieve more “chair-like” models than the mD2. In the example of Figure 11 and 
Figure 12, compared to the mD2, the AAD retrieved models that appear to have “smooth and 
continuous” surfaces orientations..  
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Note that, in these figures, some of the images of the retrieved models contained black surfaces. 
Examples of black surfaces can be found in airplane models in Figure 11a. These are “backward-
facing” polygons having flipped surface normal vectors. In these airplane models, one of the 
wings is made of backward-facing polygons presumably because of the “mirror and copy” 
operation used during the modeling process. 

 

Table 8. Comparison among the mD2 and the AAD shape features using the database A 
(215 models). 

Performance Computational cost 
Features 

FT ST NN Feature 
computation 

Retrieval 
total 

mD2 33% 44% 47% 0.41s 0.70s 
AAD 38% 51% 60% 0.54s 0.70s 

 
Table 9. Comparison among the mD2 and the AAD shape features using the database B 
(1215 models). 

Performance Computational cost 
Features 

FT ST NN Feature 
computation 

Retrieval 
total 

mD2 20% 31% 37% 0.40s 2.00s 
AAD 24% 35% 43% 0.52s 1.37s 

 
Table 10. Comparison among the mD2 and the AAD shape features using the database C 
(907 models) (Computational costs are not available.) 

Performance 
Features

FT ST NN 

mD2 19% 27% 36%
AAD 25% 35% 47%
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Figure 7. The recall-precision plot of the mD2 and the AAD shape features using the database A 
(215 models). 
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Figure 8. The recall-precision plot of the mD2 and the AAD shape features using the database B 
(1213 models). 



Ryutarou Ohbuchi, Takahiro Minamitani, Tsuyoshi Takei, Shape-similarity search of 3D models by using enhanced shape 
functions, International Journal of Computer Applications in Technology (IJCAT), pp.70-85, Vol.23, No. 2/3/4, 2005 

 20 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
recall

pr
ec

is
io

n

mD2
AAD

 
Figure 9. The recall-precision plot of the mD2 and the AAD shape features using the database C 
(907 models). 
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(a) mD2 

 
(b) AAD 
Figure 10. The retrieval example using the mD2 and the AAD shape features for 
the database B. 
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(a) mD2 

 
(b) AAD 
Figure 11. The retrieval example using the mD2 and the AAD shape features for 
the database B. 
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(a) mD2 

 
(b) AAD 
Figure 12. The retrieval example using the mD2 and the AAD shape features for 
the database B. 
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(a) mD2 

 
(b) AAD 
Figure 13. The retrieval example using the mD2 and the AAD shape features for 
the database B. 
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4.  Summary and conclusion 

In this paper, we proposed and evaluated a pair of shape features for shape similarity search of 
3D models. The shape features, called the AD and the AAD, are robust against topological and 
geometrical irregularities and degeneracies, which make them applicable to VRML and other so 
called “polygon soup” models. They are also invariant to similarity transformation, a quality 
valuable in comparing 3D shape models. While the AD and the AAD have computational cost 
somewhat higher (about 1.5 times) than the D2, they significantly outperformed D2 in our 
retrieval experiments. Although a direct comparison has not been made, the AD and the AAD 
might have the performance lower than that of the more elaborate methods, such as [13] and [14]. 
However, the computational costs of AD and AAD are significantly lower than these methods. 
The AD and AAD could thus be useful for a quick pre-screening of 3D shapes.  

As a future work, we would like to improve our shape feature, for example by adding some 
form of multi-resolution approach to matching 3D shapes. We also would like to explore a hybrid 
shape feature that combines, possibly adaptively, shape features having different characteristics.  
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