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Aims of This Talk
• Give a rapid introduction to OpenCL for people 

that may already be somewhat familiar with GPUs 
and data-parallel programming concepts

• Rather than merely duplicating content found in 
existing OpenCL tutorials, I will delve more into 
details not (yet) covered in other online materials 
I’ve found

• Show short sections of real OpenCL kernels used 
in scientific software 
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Online OpenCL Materials

• Khronos OpenCL headers, specification, etc: 
http://www.khronos.org/registry/cl/

• Khronos OpenCL samples, tutorials, etc:  
http://www.khronos.org/developers/resources/opencl/

• AMD OpenCL Resources: 
http://developer.amd.com/gpu/ATIStreamSDK/pages/
TutorialOpenCL.aspx

• NVIDIA OpenCL Resources: 
http://www.nvidia.com/object/cuda_opencl.html

http://www.khronos.org/registry/cl/
http://www.khronos.org/developers/resources/opencl/
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://www.nvidia.com/object/cuda_opencl.html
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What is OpenCL?
• Cross-platform parallel computing API and C-like 

language for heterogeneous computing devices
• Code is portable across various target devices:

– Correctly-written OpenCL code will produce correct 
results across multiple types of OpenCL devices

– Performance of a given kernel is not guaranteed
across different target devices

• OpenCL implementations already exist for AMD 
and NVIDIA GPUs, x86 CPUs, IBM Cell

• OpenCL could in principle also support various 
DSP chips, FPGAs, and other hardware
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Supporting Diverse Accelerator Hardware in 
Production Codes….

• Development of HPC-oriented scientific 
software is already challenging

• Maintaining unique code paths for each 
accelerator type is costly and 
impractical beyond a certain point 

• Diversity and rapid evolution of 
accelerators exacerbates these issues

• OpenCL ameliorates several key 
problems:
– Targets CPUs, GPUs, and other accelerator 

devices
– Common language for writing 

computational “kernels”
– Common API for managing execution on 

target device
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Performance Variation of OpenCL Kernels
• Targets a broader range of CPU-like and GPU-like 

devices than CUDA
– Targets devices produced by multiple vendors
– Many features of OpenCL are optional and may not be 

supported on all devices

• OpenCL codes must be prepared to deal with 
much greater hardware diversity

• A single OpenCL kernel will likely not achieve 
peak performance on all device types
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Apparent Weaknesses of OpenCL 1.0
•OpenCL is a low-level API

–Developers are responsible for a lot of plumbing, lots of 
objects/handles to keep track of

–Even a basic OpenCL “hello world” is much more code to 
write than doing the same thing in the CUDA runtime API

•Developers are responsible for enforcing thread-safety
–Some types of multi-accelerator codes are much more difficult 

to write than in the CUDA runtime API currently
•Great need for OpenCL middleware and/or libraries

–Simplified device management, integration of large numbers of 
kernels into legacy apps, auto-selection of best kernels for 
device...

–Tools to better support OpenCL apps in large HPC 
environments, e.g. clusters
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OpenCL Data Parallel Model
• Work is submitted to devices by launching kernels
• Kernels run over global dimension index ranges 

(NDRange), broken up into “work groups”, and 
“work items”

• Work items executing within the same work group 
can synchronize with each other with barriers or 
memory fences

• Work items in different work groups can’t sync 
with each other, except by launching a new kernel
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OpenCL NDRange Configuration
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OpenCL Hardware Abstraction
• OpenCL exposes CPUs, 

GPUs, and other 
Accelerators as “devices”

• Each “device” contains one 
or more “compute units”, 
i.e. cores, SMs, etc...

• Each “compute unit”
contains one or more SIMD 
“processing elements”

OpenCL Device
Compute Unit

PEPEPEPE
PEPEPEPE

Compute Unit
PEPEPEPE

PEPEPEPE
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OpenCL Memory Systems
• __global – large, high latency
• __private – on-chip device registers
• __local – memory accessible from multiple PEs or 

work items.  May be SRAM or DRAM, must 
query…

• __constant – read-only constant cache
• Device memory is managed explicitly by the 

programmer, as with CUDA
• Pinned memory buffer allocations are created 

using the CL_MEM_USE_HOST_PTR flag
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OpenCL Context
• Contains one or more devices
• OpenCL memory objects are 

associated with a context, not 
a specific device

• clCreateBuffer() emits error if 
an allocation is too large for 
any device in the context

• Each device needs its own 
work queue(s)

• Memory transfers are 
associated with a command 
queue (thus a specific device)

OpenCL Device

OpenCL Device

OpenCL Context
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OpenCL Programs

• An OpenCL “program”
contains one or more 
“kernels” and any 
supporting routines that run 
on a target device

• An OpenCL kernel is the 
basic unit of code that can 
be executed on a target 
device

Kernel A

Kernel B

Kernel C

Misc support
functions

OpenCL Program
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OpenCL Kernels
• Code that actually 

executes on target 
devices

• Analogous to CUDA 
kernels

• Kernel body is 
instantiated once for 
each work item

• Each OpenCL work 
item gets a unique 
index, like a CUDA 
thread does

__kernel void 
vadd(__global const float *a,

__global const float *b,
__global float *result) {

int id = get_global_id(0);
result[id] = a[id] + b[id];

}
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OpenCL Execution on
Multiple Devices

OpenCL Device

Cmd QueueKernelApplication

Cmd QueueKernel

OpenCL Device

OpenCL Context
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OpenCL Application Example

• The easiest way to really illustrate how OpenCL 
works is to explore a simple algorithm 
implemented using the OpenCL API

• Since many have been working with CUDA 
already, I’ll use the direct Coulomb summation 
kernel we originally wrote in CUDA

• I’ll show how CUDA and OpenCL have much in 
common, and also highlight some of the new 
issues one has to deal with in using OpenCL on 
multiple hardware platforms
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Electrostatic Potential Maps
• Electrostatic potentials 

evaluated on 3-D lattice:

• Applications include:
– Ion placement for 

structure building
– Time-averaged potentials 

for simulation
– Visualization and 

analysis Isoleucine tRNA synthetase
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Direct Coulomb Summation
• Each lattice point accumulates electrostatic potential 

contribution from all atoms: 
potential[j] +=  charge[i] / rij

atom[i]

rij: distance 
from lattice[j] 

to atom[i]
Lattice point j 

being evaluated
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Single Slice DCS: Simple (Slow) C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int numatoms) {

int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom
float dx = x - atoms[n ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Data Parallel Direct Coulomb 
Summation Algorithm

• Work is decomposed into tens of thousands of 
independent calculations
– multiplexed onto all of the processing units on the target 

device (hundreds in the case of modern GPUs)
• Single-precision FP arithmetic is adequate for intended 

application
• Numerical accuracy can be improved  by compensated 

summation, spatially ordered summation groupings, or 
accumulation of potential in double-precision

• Starting point for more sophisticated linear-time 
algorithms like multilevel summation
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DCS Data Parallel Decomposition 
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Work Groups: 
64-256 work items

…

Unrolling increases 
computational tile size

Work items compute up to
8 potentials, skipping by 
memory coalescing width
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Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation in OpenCL
Host

Atomic
Coordinates

Charges

Work items compute
up to 8 potentials, 

skipping by coalesced
memory width

Work groups:
64-256 work items

NDRange containing
all work items,
decomposed into
work groups 

Lattice padding
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Direct Coulomb Summation 
Kernel Setup

OpenCL:
__kernel void clenergy(…) {
unsigned int xindex = (get_global_id(0) -

get_local_id(0)) * UNROLLX + 
get_local_id(0); 

unsigned int yindex = get_global_id(1); 
unsigned int outaddr = get_global_size(0) * 

UNROLLX * yindex + xindex;

CUDA:
__global__ void cuenergy (…) {
unsigned int xindex = blockIdx.x *

blockDim.x * UNROLLX +
threadIdx.x;

unsigned int yindex = blockIdx.y *
blockDim.y + threadIdx.y;

unsigned int outaddr = gridDim.x *
blockDim.x * UNROLLX * yindex
+ xindex; 
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DCS Inner Loop (CUDA)
…for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2);
energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2);

}
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DCS Inner Loop, Scalar OpenCL
…for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2);

}

Well-written CUDA code can 
often be easily ported to OpenCL 

if C++  features and pointer 
arithmetic aren’t used in kernels.
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DCS Inner Loop, Vectorized OpenCL

float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f };
gridspacing_u4 *= gridspacing_coalesce;
float4 energyvalx=0.0f;

…
for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x);
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);

}

CPUs, AMD GPUs, and Cell often perform 
better with vectorized kernels.

Use of vector types may increase register 
pressure; sometimes a delicate balance…
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Wait a Second, Why Two Different 
OpenCL Kernels???

• Existing OpenCL implementations don’t 
necessarily autovectorize your code to the native 
hardware’s SIMD vector width

• Although you can run the same code on very 
different devices and get the correct answer, 
performance will vary wildly…

• In many cases, getting peak performance on 
multiple device types or hardware from different 
vendors will presently require multiple OpenCL 
kernels
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OpenCL Host Code
• Roughly analogous to CUDA driver API:

– Memory allocations, memory copies, etc
– Image objects (i.e. textures)
– Create and manage device context(s) and 

associate work queue(s), etc…
– OpenCL uses reference counting on all objects

• OpenCL programs are normally compiled 
entirely at runtime, which must be managed 
by host code
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OpenCL Context Setup Code (simple)
cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL, 
NULL, &clerr);

size_t parmsz;

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz); 

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz); 

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL); 

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, &clerr); 
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OpenCL Kernel Compilation Example
const char* clenergysrc = 

"__kernel __attribute__((reqd_work_group_size(BLOCKSIZEX, BLOCKSIZEY, 1))) \n" 

"void clenergy(int numatoms, float gridspacing, __global float *energy, __constant float4 *atominfo) { \n“
[…etc and so forth…]

cl_program clpgm;

clpgm = clCreateProgramWithSource(clctx, 1, &clenergysrc, NULL, &clerr);

char clcompileflags[4096]; 

sprintf(clcompileflags, "-DUNROLLX=%d -cl-fast-relaxed-math -cl-single-precision-
constant -cl-denorms-are-zero -cl-mad-enable", UNROLLX);

clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);

cl_kernel clkern = clCreateKernel(clpgm, "clenergy", &clerr); 

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

Set compiler flags, compile source, and 
retreive a handle to the “clenergy” kernel
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Getting PTX for OpenCL Kernel on NVIDIA GPU
cl_uint numdevs;
clerr = clGetProgramInfo(clpgm, CL_PROGRAM_NUM_DEVICES, sizeof(numdevs), 

&numdevs, NULL);
printf("number of devices: %d\n", numdevs);
char **ptxs = (char **) malloc(numdevs * sizeof(char *));
size_t *ptxlens = (size_t *) malloc(numdevs * sizeof(size_t));
clerr = clGetProgramInfo(clpgm, CL_PROGRAM_BINARY_SIZES, numdevs *

sizeof(size_t *), ptxlens, NULL);
for (int i=0; i<numdevs; i++)
ptxs[i] = (char *) malloc(ptxlens[i]+1);

clerr = clGetProgramInfo(clpgm, CL_PROGRAM_BINARIES, numdevs * sizeof(char *),
ptxs, NULL);

if (ptxlens[0] > 1) 
printf("Resulting PTX compilation from build:\n’%s’\n“, ptxs[0]);
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OpenCL Kernel Launch (abridged)
doutput = clCreateBuffer(clctx, CL_MEM_READ_WRITE, volmemsz, NULL, NULL); 
datominfo = clCreateBuffer(clctx, CL_MEM_READ_ONLY, MAXATOMS * sizeof(cl_float4), 

NULL, NULL); 
[…]
clerr = clSetKernelArg(clkern, 0, sizeof(int), &runatoms);
clerr = clSetKernelArg(clkern, 1, sizeof(float), &zplane);
clerr = clSetKernelArg(clkern, 2, sizeof(cl_mem), &doutput);
clerr = clSetKernelArg(clkern, 3, sizeof(cl_mem), &datominfo);
cl_event event; 
clerr = clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL, Gsz, Bsz, 0, NULL, &event);
clerr = clWaitForEvents(1, &event);
clerr = clReleaseEvent(event);
[…]
clEnqueueReadBuffer(clcmdq, doutput, CL_TRUE, 0, volmemsz, energy, 0, NULL, NULL); 
clReleaseMemObject(doutput); 
clReleaseMemObject(datominfo); 
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Apples to Oranges Performance Results: Apples to Oranges Performance Results: 
OpenCLOpenCL Direct Coulomb Summation KernelsDirect Coulomb Summation Kernels

MADD, RSQRT = 2 FLOPS  All other FP instructions = 1 FLOP

OpenCL Target Device OpenCL 

“cores”

Scalar Kernel:

Ported from original 
CUDA kernel

4-Vector Kernel:

Replaced manually 
unrolled loop iterations 
with float4 vector ops

AMD 2.2GHz Opteron 148 CPU           
(a very old Linux test box)

1 0.30 Bevals/sec,

2.19 GFLOPS

0.49 Bevals/sec,

3.59 GFLOPS

Intel 2.2Ghz Core2 Duo,                
(Apple MacBook Pro)

2 0.88 Bevals/sec,

6.55 GFLOPS   

2.38 Bevals/sec,

17.56 GFLOPS

IBM QS22 CellBE

*** __constant not implemented yet

16 2.33 Bevals/sec,

17.16 GFLOPS ****

6.21 Bevals/sec,

45.81 GFLOPS ****

AMD Radeon 4870 GPU 10 41.20 Bevals/sec,

303.93 GFLOPS

31.49 Bevals/sec,

232.24 GFLOPS

NVIDIA GeForce GTX 285 GPU 30 75.26 Bevals/sec,

555.10 GFLOPS

73.37 Bevals/sec,

541.12 GFLOPS
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Getting More Performance:Getting More Performance:
Adapting DCS Kernel to Adapting DCS Kernel to OpenCL OpenCL on Cellon Cell

OpenCL Target

Device

Scalar Kernel:

Ported directly from 
original CUDA kernel

4-Vector Kernel:

Replaced manually 
unrolled loop 
iterations with float4 
vector ops

Async Copy Kernel:

Replaced __constant 
accesses with use of
async_work_group_copy(),

use float16 vector ops

IBM QS22 CellBE

*** __constant not 
implemented

2.33 Bevals/sec,

17.16 GFLOPS ****

6.21 Bevals/sec,

45.81 GFLOPS ****

16.22 Bevals/sec,

119.65 GFLOPS

Replacing the use of constant memory with loads of atom data to __local memory via 
async_work_group_copy() increases performance significantly since Cell doesn’t 
implement __constant memory yet.  
Tests show that the speed of native_rsqrt() is currently a performance limiter for Cell.  
Replacing native_rsqrt() with a multiply results in a ~3x increase in execution rate.
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Computing Molecular Orbitals
• Visualization of MOs aids in 

understanding the chemistry of 
molecular system

• MO spatial distribution is 
correlated with electron 
probability density

• Calculation of high resolution 
MO grids can require tens to 
hundreds of seconds on CPUs

• >100x speedup allows 
interactive animation of MOs 
@ 10 FPS

C60
High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs.  Stone et al., GPGPU-2, ACM 
International Conference Proceeding Series, volume 383, pp. 9-18, 2009
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Molecular Orbital Inner Loop, Hand-Coded SSE 
Hard to Read, Isn’t It? (And this is the “pretty” version!)

for (shell=0; shell < maxshell; shell++) {

__m128 Cgto = _mm_setzero_ps();

for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

float exponent      = -basis_array[prim_counter ];

float contract_coeff =  basis_array[prim_counter + 1];

__m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);

__m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));

Cgto = _mm_add_ps(contracted_gto, ctmp);

prim_counter += 2;

}

__m128 tshell = _mm_setzero_ps();

switch (shell_types[shell_counter]) {

case S_SHELL:

value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break;

case P_SHELL:

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));

value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));

break;

Until now, writing SSE kernels for CPUs 
required assembly language, compiler 

intrinsics, various libraries, or a really smart 
autovectorizing compiler and lots of luck...
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Molecular Orbital Inner Loop, OpenCL Vec4
Ahhh, much easier to read!!!

for (shell=0; shell < maxshell; shell++) {
float4 contracted_gto = 0.0f;
for (prim=0; prim < const_num_prim_per_shell[shell_counter];  prim++) {

float exponent = const_basis_array[prim_counter      ];
float contract_coeff = const_basis_array[prim_counter + 1];
contracted_gto += contract_coeff * native_exp2(-exponent*dist2);
prim_counter += 2;

}
float4 tmpshell=0.0f;
switch (const_shell_symmetry[shell_counter]) {

case S_SHELL:
value += const_wave_f[ifunc++] * contracted_gto;       break;

case P_SHELL:
tmpshell += const_wave_f[ifunc++] * xdist;
tmpshell += const_wave_f[ifunc++] * ydist;
tmpshell += const_wave_f[ifunc++] * zdist; 
value += tmpshell * contracted_gto;
break;   

OpenCL’s C-like kernel language 
is easy to read, even 4-way 
vectorized kernels can look 
similar to scalar CPU code.

All 4-way vectors shown in green. 
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Apples to Oranges Performance Results:
OpenCL Molecular Orbital Kernels

Kernel Cores Runtime (s) Speedup
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00
Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 4 11.740 3.97
Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36
Cell OpenCL vec4*** no __constant 16 6.075 7.67
Radeon 4870 OpenCL scalar 10 2.108 22.1

Radeon 4870 OpenCL vec4 10 1.016 45.8
GeForce GTX 285 OpenCL vec4 30 0.364 127.9
GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0
GeForce GTX 285 OpenCL scalar 30 0.335 139.0

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4
Minor varations in compiler quality can have a strong effect on “tight” kernels.  The two 

results shown for CUDA demonstrate performance variability with compiler revisions, and 
that with vendor effort, OpenCL has the potential to match the performance of other APIs.
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Summary
• Incorporating OpenCL into an application requires adding far 

more “plumbing” in an application than for the CUDA 
runtime API

• Although OpenCL code is portable in terms of correctness, 
performance of any particular kernel is not guaranteed across 
different device types/vendors

• Apps have to check performance-related properties of target 
devices, e.g. whether __local memory is fast/slow (query 
CL_DEVICE_LOCAL_MEM_TYPE)

• It remains to be seen how OpenCL “platforms” will allow 
apps to concurrently use an AMD CPU runtime and NVIDIA 
GPU runtime (may already work on MacOS X?)
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