Access control in multicast environments: an approach to
senders authentication

Antonio F. Gomez Skarmeta Angel L. Mateo Martinez
Pedro M. Ruiz Martinez

Computer Science, Electronic and Artificial Intelligence Dept.
University of Murcia
Campus de Espinardo, s/n 30008 Murcia

{skarmeta,amateo}@dif.um.es
pedro.ruiz@rediris.es *

2nd November 1999

Abstract

During the last years, a lot of new interactive multimedia tools based on IP multicast over
the MBone have been developed. Although MBone makes possible audio and video transmission
over the Internet, it is used only by people involved in the ongoing deployment and management
of the IP multicast technology. MBone has a lot of problems like wasted bandwidth, no control
over who isjoined to a session, there is no way to control the scope of sent packets, etc. Thiskind
of problems are making Internet Service Providers (ISP) to think twice before offering multicast
to their clients. So we are trying to solve this kind of problems, especially those related with
multicast senders control and authentication, by modifying multicast routing schemes.

1 Introduction

Internet has undergone lots of improvements during the last years, making possible the development
of new interactive services like videoconferencing. However, these services are bandwidth intensive
and could clog our network, so a good network topology is essential to get a proper resource usage.

Recent popular applications, like NetMeeting or CU-SeeMe, are based on the concept of “reflec-
tor” when dealing with multipart conferences. A reflector provides for the replication of streams, that
is to say, after receiving a datagram from a participant, it sends a copy of that datagram to the rest of
participants in the videoconference.

As an alternative to the use of this kind of applications, there is another family of tools known as
MBone tools. All these tools use IP multicast[2] instead of traditional IP (unicast IP). IP multicast

*Pedro M. Ruiz was a researcher of the University of Murcia during the development of this work. At this moment,
he is working at RedIRIS, the Spanish National Research Network

technology uses group addresses instead of host addresses belonging to a unique host. So, in order to
be IP multicast compliant, an Internet host must be able to receive packets addressed to its IP unicast
address and packets addressed to some of the groups it is a member. With this new model, new routing
equipment and new routing protocols are needed to manage this traffic. Using this service model we
can avoid the use of reflectors and we can reduce the bandwidth used by multimedia communications.

These new multicast routing equipments, usually called mrouters, act like normal routers. The
main difference is that they use a multicast routing algorithm besides a unicast routing protocols.
When such a router receives a packet addressed to a multicast group, it selects the output interfaces
that must be used to forward the packet according to the information stored in its internal multicast
routing table. We can distinguish between two kinds of mrouters: normal routers extended with
multicast capabilities and workstations running a multicast routing daemon (MRD).

Nowadays, not every router in the Internet is a multicast-capable router. Between while, we
need to use tunnels to encapsulate multicast packets over non multicast capable networks. In these
situations, multicast packets are encapsulated into a unicast packet addressed to the mrouter in the
other end of the tunnel. All this virtual multicast network connected via these tunnels and multicast-
capable router is known as Multicast Backbone (MBone[1]).

During the last years, there has been a great effort to develop new streaming media applications,
a suite of new multicast routing algorithms or even new real-time protocols. However, there are some
other issues that, although they are less attractive, they are very important for MBone to become a
totally settled technology and a suitable service for ISPs. Some of this issues are: access control over
members of certain multicast group, control over scope or Time To Live (TTL) that a sender can use
send packets and control over who is allowed to transmit to certain multicast group.

Taking these problems into account, IP multicast seems to be a complex, difficult to manage
and difficult to use service. So, service providers or even universities prefer not to offer it to their
customers or students, and then MBone is not having the importance it should have.

Nowadays, routing algorithms have a high level of reliability. Once you decide the network topol-
ogy to use and you configure the multicast-capable router the system use work fine. When problems
appears it is very tedious to debug because of the lack of multicast management tools.

However, although network management is not difficult once it is correctly configured, ISPs re-
main without offering IP multicast as a product. The main reason is that there is no way to control
who access to MBone and how he uses it. So, service providers can’t offer it like an additional service
because they have only two options: They can offer it to everybody or they can offer it to nobody. In
the same way, universities offering the MBone to all of their students could get their critical traffic
disrupted.

In order to achieve a widespread use of the IP multicast technology with all the benefits and
advantages that it offers, there must be defined some mechanism to manage who uses it and how uses
it. Using this mechanism, providers could offer the service to their customers in the same way they
offer e-mail or WWW these days.

The main problem we try to solve is access control to IP multicast environments. Our system
should provide control over who connects to MBone, who sends data to what multicast group, who
receives certain multicast group. However, this would be a definitive solution that takes time to
implement. So we have developed an intermediate solution allowing us to authenticate multicast
senders, but it has not considerations about receivers.

The paper proceeds as follows: Section 2 discusses the general idea behind a multicast router
and its relationship with the kernel of the Operating System (OS). Section 3 describes the different
solutions that we have been developing. It also explains the different decisions we took during the

development and makes a much more detailed description of the final solution that we offer. Section
4 presents the conclusions of the work and describes some future work that we are planning in order
to improve the final solution.

2 Thework of the MRD

Although there are a lot of multicast routing algorithms, like PIM and DVMRP [3], all of them work in
a similar way. They must select the virtual interfaces (VIF) that need be used to forward the multicast
packets that the mrouter receives.

To improve scalability and slow down the bandwidth used, some of these algorithms use a mech-
anism called pruning. Firstly, pruning tries to forward multicast packets using only the VIFs that
have interested receivers. But, how does MRD know if there are hosts in the network attached to that
VIF being interested in certain multicast group?. The Internet Group Management Protocol (IGMP
[4]) defines this interaction between hosts and mrouters. A host must use this protocol to tell the
MRD that it wants to join to certain multicast group. And, mrouters have to register the multicast
groups that have members on each VIF. As we will see the every MRD implementation is based on
the forwarding support provided by the multicast-capable OS.

2.1 Relation between multicast routing and operating system

As we have said, multicast packets are frequently used in real-time and multimedia communications.
This implies that the time used to process these packets may be minimized as much as possible. In
order to reduce this time, MRD developers are allowed to ask the kernel for automatic forwarding of
the packets. In this way, the MRD does not need to examine every packet.

Using this OS capability, the MRD must attend to IGMP messages to know what multicast packets
need to be forwarded to what VIFs. Once it knows that, it uses a kernel system call, to ask the kernel
for automatic forwarding of all packets received from that source address and addressed to that group
using certain VIFs. Then OS will be the responsible of sending out these datagrams while MRD
doesn’t tell it to stop forwarding that datagrams. In the same way, when all the hosts attached to
certain VIF of the mrouter leave the multicast group, MRD asks the OS, using another system call, to
stop forwarding that packets.

The main problem here is that there is no control over multicast senders. Every user having an
mrouter in his LAN can send multicast packets whenever he wants, using the TTL he wants and
addressing the datagrams to the multicast group he wants. The key issue here is that the mrouter does
not process these datagrams. It only ask the kernel to forward the packets according to the input VIF
instead of using some kind of tag to identify the sender. So our main goal is to add such control to
MRD.

This mode of forwarding multicast packets forces us to work in the kernel code because at the
MRD level we can’t control multicast datagrams. Thinking in the MRD code, we can only manage
which multicast groups have to be forwarded, but we cannot decide which senders are allowed to send
packets. There is no way to control users nor hosts. At this level there are two choices: we can let
all the users to be joined to certain group or we can let nobody to join the group. This is not useful
because we cannot distinguish between different users. In addition, if we let users to send datagrams
to multicast groups, any host connected to the same mrouter by the same VIF, could send packets
with any TTL it wants, and we can’t do anything to limit that TTL. If we decide not to work in the
kernel code, we get a solution being general enough to be implemented in every system using MRD.

The OS type doesn’t matter in this case. However, this approach has a big drawback: it is only useful
in very restricted environments.

So, we need a better solution based on the use of an open-source OS. Linux [5] or FreeBSD.

Nowadays, the management of multicast senders (MS) is a new and not developed issue. In fact,
we have only found one proposal trying to solve the problem (at this moment as an Internet-draft
[8]). This draft describes some extensions to IGMPv2 protocol to authenticate multicast senders and
receivers.

These extensions allows a MRD (called ingress and egress routers) to authenticate MS via some
external mechanism.

3 Developed solution

To solve these problems, we can offer a few solutions each of them having its advantages and dis-
advantages. But all possible solutions share the need to modify or improve the services that the OS
offers to the MRD. As we have seen, this need is imposed by the way the OS forwards the packets.
The basic idea behind this development is that we need to control when a certain packet has to be
forwarded and when it hasn’t. A multicast datagram has only to be forwarded when it meets a set of
conditions that we have imposed on the user or host that sends the packet.

3.1 Kernda modificationsto OS

The only way to control the multicast packets arriving to our mrouter is adding services to the OS
kernel allowing MRD to ask for filtering of multicast packets.

These changes has been made in a PC with Linux RedHat 5.2 OS which acts as a mrouter. We
started working on the 2.0.36 kernel release but we found some multicast-related problems in this
version and we decided to upgrade to version 2.2.2.

We have added some data structures to the kernel. This structures are used to store the parameters
related with the MS and also to keep a list of authorized multicast senders with the multicast groups
they are authorized to send to. In the same way, we have added some functions to check if the traffic
originated by a MS meets the authorized parameters for that users. These functions also allow us to
discard packets not accomplishing such conditions. Furthermore, we have added new system calls
allowing the MRD to dynamically reconfigure these filters.

In all the kernel versions we are using, we need to define some data structures allowing us to store
the data related with the management of which users or hosts can send data, the multicast groups he
can use and the TTL they can use. The data structure that we have created for this purpose is called
msender_ctl. It stores information needed to control traffic generated from a multicast sender.

The next step was to really check that the traffic generated by our MS meets the parameters
established for such MS in its corresponding msender_ctl structure. We started defining a control
policy. The policy we have implemented in our system is the following: the mrouter drops all the
packets coming from its internal network except those coming from a sender registered in kernel
structures and meet the parameters associated with that sender.

Such a policy ensures that nobody can send packets addressed to a certain multicast group except
those specific MS that we have enable. Therefore, users can’t send data to unauthorized sessions and
so, they can’t maliciously interfere with existent multicast sessions.

Moreover, the system ensures that users are limited to an specified TTL (assigned by the adminis-
trator) because if they use a higher TTL, their packets will be dropped. With this scheme, a university

could offer a free access to MBone or even MBone videoconferencing rooms without any risk. In
the actual MBone, users can transmit with the TTL they want and using as much bandwidth as they
want. So, they could easily clog our network or even networks outside our organization. In our newer
scheme, a manager could assure i.e. that users will never send datagrams outside our network.

Once we have defined the policy, the next step is to implement it. The policy implementation is
based on a function that we have added to the OS kernel that checks every packet in the forwarding
queue of the OS. If a packet meets the previous policy, it is then allowed to be forwarded. In other
case, it is silently dropped.

Although we have made some advances from the starting point, it is not enough. We must address
another issue: How do we pass the parameter liked to a user to the kernel? Creating new system calls.

We have created three new system calls: first call is used to create the data structures for storing
multicast senders’ parameters, the second one is used to insert multicast a multicast sender from the
list. These three functions provide us a huge flexibility because we can dynamically add and remove
multicast senders from kernel structures without needing to restart mrouter.

3.2 Thefirst solution

Once we have implemented the basic support to control multicast datagrams according to the defined
policy, the next step is to mix all this parts in a real system and that the final system will work.

To be exact, this first solution consists in doing some additions of the source code of the MRD
mrouted. We have added new code to allow it to read a configuration file called mauth.conf which was
composed by a list of users and related parameters. We have modified version 3.9-beta3 of mrouted
running over a Linux RedHat 5.2 with the version 2.2.2 of the kernel.

When this MRD is started, it reads data from this configuration file, using the added system calls to
insert the authorized multicast senders into the kernel structures. After this, is starts routing multicast
packets in the usual way. When it stopped, it previously removes these senders from the kernel tables.
Therefore, to update the authorized sender list, you just have to send a HUP signal (“kill -HUP”) to
MRD after making the updates in the mauth.conf configuration file.

This has a clear benefit: it simplifies the management process. The only management issue is to
edit a configuration file and then restart the daemon.

But this also has some drawbacks. To sum up , we would say that it doesn’t use all the benefits
provided by the system calls we have created.

3.3 Animproved solution

The previous solution shows some drawbacks caused by the link we make between MRD and the
process used to define parameters and users. In order to avoid these problems, we are going to move
to a distributed approach. That’s to say, we are going to unlink MS management from MRD operation
mode. This way, we get a MRD independent architecture.

The system calls we have made, offers us some advantages allowing us to get this independence.
These advantages are:

1. Our system calls, allow us to insert or delete MS without restarting anything. With the previous
solution we had to restart MRD every time we made a new update on the parameters attached
to a MS.

2. Our system calls, give us total independence from the MRD used. So, we don’t need to make
any changes to the routing algorithm’s source code.

To achieve our goal, we are going to make our own user management daemon called musersd (Mul-
ticast users daemon).

Musersd is going to be continuously receiving commands addressed to an specified UDP port in
its machine. Every time a new command arrives, musersd will execute it using our system calls.

Of course, the commands types are adding a new MS with its parameters or deleting a MS from
the kernel. We have not added the creation of the structures as a command because the structure’s
startup process will be automatically made by musersd in its initial stage.

The management is made using a Java Applet that we have created. This applet is used to connect
the musersd and the manager. We can see this applet like an interface between the system manager
and the kernel of the machine that acts like a mrouter. So this applet, called mauthclient, is used by
the manager to configure the parameters attached to each MS. These parameters will be updated in
the mrouter’s kernel.

Obviously, the first problem we must solve is the definition of a communication protocol between
musersd and mauthclient. To solve the problem, we defined a call/response protocol with musersd
acting as server and mauthclient acting as client. This communication scheme is shown in Fig. 1.

COMMUNICATION SCHEMA

MUSERSD MAUTHCLIENT MUSERSD MAUTHCLIENT
i —| o — i —| i —|
y y
ACK ERROR

Figure 1: Communication protocol.

The client (mauthclient) will send the commands cited above and the server (musersd) will reply
with an ACK or ERROR message depending on the result of the command.

In order to avoid side effects in the protocol caused by the use of a non-reliable protocol as UDP,
we had to define some extra headers on each message. These extra fields allow us to control packet
losses, acknowledgment losses or even the setting up of timers to manage timeouts. Being more
specific, to avoid the problems caused by packet losses we use two mechanisms. On the one hand we
use a sequence number for each message. This allow us to detect the message losses. On the other
hand, we use timers. It allow us to resend some messages when we don’t get any response during
some period of time.

Because there could be retransmissions, we need to implement a mechanism in the musersd side
to assure that it meets an at most once call semantics similar to the at most once call semantic used
in Remote Procedure Calls (RPC). That’s to say, we must avoid that the arrival of several calls for

the same command would cause several executions of the same command on the server side. This
way we can avoid the appearance of side effects. To avoid this undesired behavior, we have used an
“sliding window” mechanism with a window size of one. That’s to say, the musersd memorize the
last request it received and the last response it got to that request. In this way, it can answer directly
to that request without executing the command more than once. The request and response messages
we have cited before are like those shown in Fig. 2.

REQUEST AND RESPONSE MESSAGES

1 byte 1 byte 4 bytes 4 bytes 1 byte

Sec. Num. Command Source IP Mcast. Group max TTL —‘

Command:
0x00 = Add sender to kernel

0x01 = Remove sender from kernel

1 byte 1 byte

Type Sec. Num.
[

Type:

0x00 = ACK

0x01 = ERROR

Figure 2: Format of messages.

The benefits that this approach provide are the following:

1. Total independence from MRD.

2. Web-based and totally distributed management. This provides a very easy management. In
the same way, supposed our application runs like an applet, we get an additional advantage:
platform independence.

3. The only requirement introduced is that the source code of the mrouter’s OS must be available.
All the other hosts taking part in multicast sessions and even that use by the system manager,
can run over any other platform. This mechanism requires no changes in final hosts.

This approach has also a drawback. The usage could not seem very intuitive. In addition, the system
manager must be looking at every active session using some tool like SDR or mAnnouncer in order
to get information about the multicast groups being in use. With that information in mind and using
the applet he can add all authorizations to the kernel.

3.4 Final solution

To achieve an easier management, we have decided to create a global tool for the control of MS. This
tool allows the system manager to control all multicast active sessions from one window. He can
control the advertisement of a new session, the deletion of an active session or even the management
of the MS allowed to take part in the sessions.

To achieve our goal we introduce a new element called mauthserver. The mauthserver acts as a
mediator element between the musersd an the mauthclient. This element has the following functions:

1. It must listen to multicast sessions advertisements. The mauthserver implements the SAP(Session
Announcement Protocol) and SDP(Session Description Protocol) protocols. Every time a new
session is advertised, the mauthserver captures that announcement packet and sends it to the
mauthclient. So, the mauthclient can show all active sessions to the manager.

2. It gives some Fault Tolerance(FT) to the system. His strategic position allows it to control all
the data flow between the musersd and the mauthclient. This element will successfully recover
the system when any of its extremes falls down. To achieve this recovery, the mauthserver will
save information from all the sessions and also from all the authorized users. When a crash
occurs, the mauthserver will retrieve the saved data in order to bring the system to a previous
normal state.

A general scheme showing this approach can be seen in Fig. 3. This figure shows a totally decen-
tralized approach. In this approach, there exists some entities communicating among them without
imposing extra requirement on the locations of the entities.

GENERAL SCHEME

mauthserver

Call/Response Protocol

Command object
interchange

mauthclient

Call/Response

Basic Protocol

musersd + DEM

setsockopty(...)
Kernel 2.2.X

Figure 3: System architecture.

As these entities need to communicate among them, it is necessary to define the communication
schemes they must use.

3.4.1 Communication between the musersd and the mauthserver

The protocol used by this two entities, will be the same call/response mechanism that we have previ-
ously defined to communicate mauthclient and mauthserver.

The mauthserver will send commands coming from the mauthclient to the musersd and then, it
will receive responses from the musersd. Depending on the response type, the new state will be saved
to disk and the responses will be sent to the mauthclient.

The protocol and the format of the messages are the same as those in the previous communication
scheme.

3.4.2 Communication between the mauthserver and the mauthclient

For the mauthserver and mauthclient to communicate each other,we need two communication schemes:
on the one hand we need the mauthserver to advertise to the mauthclient the arrival of a new session
announcement or a removal of an existing session deletion. On the other hand, we need the mauth-
server to accept all the requests made by the manager using the interface offered by mauthclient.
Valid requests are the registration or the deletion of a MS. This requests will be sent from mauthclient
to mauthserver.

To achieve the latter communication scheme, the solution is to reuse the same protocol we defined
in the section above. To achieve the former one we are going to create a new communication protocol.

As the mauthclient and the mauthserver are implemented using Java, we are going to take ad-
vantage of the object serialization facilities offered by this programming language. Every time the
mauthserver hears a new session advertisement, it will send to the mauthclient an object of to the
class Command using a socket. One instance of the Command class has an attribute called type (that
allow us to identify if we are talking about adding a new session or deleting an existing one) and one
other attribute being an instance of the class Session. The second attribute contains all the information
related with the session which the command refers to. That’s to say, multicast groups, media details,
title, authorized MS, etc.

In this way, the mauthclient can always be aware about active sessions or even the creation or
removal of sessions.

There are some advantages when using this approach. They can be seen in the following points:

1. This approach offers an operative and easy-to-use solution. In fact, we have made an integral
management tool allowing us to control MS. This tool allows the system manager to establish
in an easy, dynamic and Web-based way all the parameters related to everyone of his MS. In
this way, the system manager can control every multicast packet leaving of his subnet and this
allows him to avoid all those problems commented on the Introduction section.

2. It proposes a totally flexible and distributed approach. This approach is easy to integrate in
different environments.

3. The use of the Java programming language in the development of all the entities of the system
except the musersd, offers us a total platform independence that helps us to get some extra
flexibility. In fact, the only element that is not platform independent is the mrouter. The only
requirement to that element is that the source code of the OS must be available.

4. It simplifies the system manager’s tasks. The mauthclient has a totally friendly, intuitive and
easy-to-use interface. This user-interface is shown in Fig. 4.

5. Of course, this approach continues being independent of the MRD used. In this way, it allows
us to easily incorporate our system in different environments and situations.

The main drawback we can see on this approach, it is that we need a manager who centralize all
the control process and who establish all the parameters related to every MS. As we could see on the
future work, we are planning to avoid the figure of a manager. We are trying to make the registration
process as much automatic as possible.

B2 - Hetscape: Default - 0O
File Edit Wiew Go Communicatar Help

w @ 3 & . m S & @

Eack Forward Reload Home Search Metscape Print Security Etop -

' «§ " Bookmarks & Location: fhttps//odicea.dif .um. en/ ~pedrom/Mauth/ /| @517 What's Related

| (4 RPC 4 MBone 2 Internst 4 Lookup 4 New&Cool £ Netcaster 4 ARGENTINA - PAGINA... INGLE!

@m M AuthClient G-Q

Sesiones anunciadas Descripeion

Y

]

£

=d 1

Media

Hosts permitidos

]

=

=
= 100% \ o e @@ 2

Figure 4: Administration applet.

4 Conclusonsand futurework

The IP Multicasting technology combined with the MBone offers us an perfect environment for video-
conferencing over the Internet. But, it can be also used by some other services involving simultaneous
communications among more than two hosts in the net.

Despite this, IP multicast has several lack that need to be improved. There is a lot of ongoing work
in improving or developing better multicast routing algorithms. But, there have not been sufficient
attention to some other issues like controlling users, error monitoring, multicast networks debugging
and data privacy.

As we have seen along the paper, we can use several approaches to solve the problem. These
approaches range from an application-level solution (allowing nobody to run multicast applications
until they get authenticated) to a kernel-level solution based on extending the IGMP protocol.

We have decided to develop a halfway approach. This approach allows us to check that all is
working fine before implementing a more complex scheme.

The solution we have developed is totally operative and works as it was supposed to do. That’s to
say, it allows the system manager to control who gets connected to the MBone, who sends multicast
datagrams and the TTL those datagrams have been sent with. The manager defines a maximum TTL
for each user and the system drops all multicast datagram sent with a bigger TTL that the assigned to
that user. All this process is made in a transparent way for the final user.

In addition, there are no changes on MRD. We only need to add some functionality to the kernel of
the mrouted host. The changes we need are minimal and only involve the addition of several system
calls.

Despite it is a total operational system, this does not means that it couldn’t be improved. In fact,
we are introducing some of that improvements nowadays.

The first improvement we can made is to setup an authentication mechanism. We must keep in
mind that we are talking about communications among different hosts, so we need to setup some
mechanism allowing us to identify what hosts are actually participating in the communications pro-
cess. We need to assure that the multicast datagram comes from the host that it is supposed to come.
We are thinking about several possibilities based on the use of encryption. For example, IPsec would
be a nice choice.

Nowadays, the user authentication is made by manager. He has to define what users are allowed
to send information and what is the maximum TTL a user can use. However, all this system can be
mesh into a RADIUS scheme in order to leave the system manager apart from this kind of tasks.

The system main goal is to avoid that spiteful users could clog the communication links by the
massive sending of data to certain multicast groups. However, it controls nothing about the informa-
tion reception. In order to achieve the reception control we need some mechanism to encrypt the data
when we work on shared-medium environments.

Acknowledgments

We would want to thank for their collaboration to all the people that helped us while we were looking
for a solution or implementing it.

So we want to thank to Norihiro Ishikawa from the NTT Information and Communication Systems
Laboratories his help answering some questions related to their internet-draft his hardcopy from the
experimental implementation of his system over FreeBSD.

In addition, we would like to thank to Francisco Cruz, Jesus Gonzalez Barahona and his working
group in the Carlos Il University from Madrid for their interest in hearing of our solution meetings
celebrated in the IRIS-MBone working group.

Finally, we thank to the Comision Interministerial de Ciencia y Tecnologia (CICYT) for partially
supporting this work by means of the project TEL97-2001-E and the project TEL98-0454-C02-01.

References

[1] Vinay Kumar. “MBone: Interactive Multimedia on the Internet”. New Riders, 1996. ISBN 1-
56205-397-3.

[2] Steeve Deering. “IP Multicast Extensions for 4.3BSD Unix and related systems”. June 1989.
Standford University

[3] D. Waitzman, C. Partridge, S. Deering. “Distance Vector Multicast Routing Protocol”. RFC 1075
[4] W. Fenner. “Internet Group Management Protocol. Version 2”. RFC 2236. November 1997.

[5] David A. Rusling. “The Linux Kernel”. REVIEW, Version 0.8-2. March 1998.

[6] Mark Handley. “SAP: Session Announcement Protocol”. INTERNET-DRAFT. November 1996.
[7] M. Handley, V. Jacobson. “SDP: Session Description Protocol”. RFC 2327. April 1998.

[8] N. Ishikawa, N. Yamanouchi, O. Takahashi. “IGMP Extension for Authentication of IP Multicast
Senders and Receivers”. INTERNET-DRAFT. August 1998.

