
Policy-Based Management providing QoS
in a DiffServ Domain

Marcial Porto Fernandez
�

Aloysio de Castro P. Pedroza
� � �

José Ferreira de Rezende
�

marcial@gta.ufrj.br aloysio@gta.ufrj.br rezende@gta.ufrj.br

�
Grupo de Teleinformática e Automação (GTA)

Universidade Federal do Rio de Janeiro (UFRJ)
COPPE/PEE - Programa de Engenharia Elétrica

C.P. 68504 - CEP 21945-970 - Rio de Janeiro - RJ - Brasil
Tel: +55 21 260-5010 Fax: +55 21 290-6626

�
Departamento de Eletrônica / EE-UFRJ

Abstract

The Differentiated Services architecture has been proposed to offer quality of service

in the Internet. Most works on Diffserv (DS) handles QoS guarantees in a per node basis,

which assumes that assuring QoS in a single node also leads to the desired QoS in the entire

DS domain. Nevertheless, this is not always true. This paper proposes a framework that

offers QoS in a DS domain using Policy�basedManagement and fuzzy logic techniques. The

QoS controller recon gures all DS nodes according to ingress traf cand domain policies.

Policy Based Management is used in this framework to provide QoS in DS domain, control�

ing heterogeneous equipments of different manufacturers. The performance and function�

alities of a prototype are shown by simulation of a voice over IP application in different DS

topologies.

Keywords: Quality of Service, DiffServ, Policy-Based Management

1 Introduction

The current Internet architecture does not offer the quality of service (QoS) required by mul-
timedia applications. The Differentiated Services (DiffServ) is a proposal that aims at providing
different service levels to flow aggregations. The DiffServ architecture, however, needs consis-
tent resource provisioning in order to offer QoS in a whole domain or across inter-connected
domains. Thus, to increase the resource utilization while avoiding violation of the service qual-
ity, traffic conditioners at the edges and mechanisms in the core of the network must be fre-
quently reconfigured. With the equipment heterogeneity and the complex network topologies,
the reconfiguration process can be a complicated task, and it can lead to severe instabilities and
even more QoS violations. One possible solution is to use management action on whole do-
main to exert QoS control. Policy-based management has been proposed as the infrastructure
to guarantee QoS in a DiffServ and IntServ architecture.

14

This work proposes to dynamically adjust nodes settings inside a DiffServ domain. A fuzzy
controller, which confi guresall the domain nodes dynamically using policy�basedmanagement
architecture, is introduced. The fuzzy logic is used due to the uncertainty and inaccuracy char�
acteristics of the data fl ow estimate. Fuzzy logic control is an interesting approach to adjust
variables of controllers. Compared to a conventional digital controller, the fuzzy controller
presents advantages in handling inaccurate variables, while keeping low the complexity of the
system. Our fuzzy controller is tested by simulation. The validation is achieved using a real sit�
uation, where delay, jitter and loss rate of voice fl ows competing with other non�sensitive delay
traffi csare evaluated. These QoS metrics are evaluated in three random topologies to assure the
model validation.

The fuzzy controller is specifi edby the defi nitionof fuzzy sets (membership function) and
a set of rules according to a defi ned policy. The change in those confi guration parameters
makes possible to adjust the behavior of the controller in order to turn the action more or less
aggressive. This behavior is defi nedby administrative decisions in a policy�basedmanagement
framework. The use of a fuzzy controller to guarantee QoS in a network was introduced by
Vasilakos and Anagnostakis [1]. However, it is applied to a Traffi cEngineering environment,
which does not consider a policy�basedmanagement framework.

This work is organized as follow: section 2 presents a summary on Policy�BasedManage�
ment and existing problems to control QoS in Internet; section 3 shows the QoS fuzzy controller
architecture; section 4 shows the simulation model and the proposed fuzzy controller. Section
5 shows the results of simulation and, fi nally, section 6 presents the conclusions and suggestion
for future works.

2 QoS control in Internet

This section shows the policy�basedmanagement architecture and works related to QoS
control in Internet using fuzzy approach.

Policy�basedmanagement The policy�basedmanagement was proposed by Sloman[2], which
described a methodology to specify behavior parameters in an abstract way. In a heterogeneous
system, built with several equipments from different manufacturers, those policies can result on
different confi gurationsettings according to the characteristics of each managed device.

One application suggested for Policy�BasedManagement is the QoS control on IP networks.
Rajan et al.[3] give an overview of Policy�BasedManagement used to control QoS on DiffServ
and IntServ environment. Blight and Hamada [4] study the Policy�Basedframework scalability
in public networks.

QoS Control in Internet and Related Works Controlling QoS parameters is a complex
task, because it requests ingress traffi c estimation during a given period. Due to the traffi c
randomness, the mesurement tend to be unreliable.

Guérin and Orda [6] showed the effects of inaccuracy and uncertainty of the traffi con net�
work QoS. This work shows that considering only badwidth requirements, the inaccuracy does
not infl uencethe results. However, when a data fl ow requires end�to�enddelay guarantees, the
inaccuracy will turn intractable the path selection process. Lorenz and Orda [7] also showed
that the uncertainty of network state may diffi cult the provision of end�to�enddelay in a do�
main. However, they showed that decomposing the delay requirements into local restrictions

15Network Management as a Strategy for Evolution and Development

and defi ninga probability distribution is possible to establish an exact solution. The algorithm,
however, is too complex to be processed in a node, leading to the use a polynomial approxima�
tion, which is proposed.

The uncertainty and inaccuracy problem led us to propose a solution based on fuzzy logic.
Several works have presented controllers based on fuzzy logic as for example Li and Nahrstedt
[8, 9]. The authors, however, focus on the confi gurationenvironment and they did not deal
with the control of network resources. Cheng and Chang [10] showed a fuzzy controller to
confi gurethe parameters in an ATM network. Their work, in spite of dealing with all the net�
work parameters, supposes the use of an ATM network, which already offers QoS. Vasilakos
and Anagnostakis [1] introduced a fuzzy controller to defi nethe best path to offer QoS guar�
antees. This proposal, used in Traffi cEngineering environment, applied a genetic algorithm to
the traffi chistory to defi nethe fuzzy controller parameters. A example of use of Fuzzy Logic in
network management were presented by Souza et.al[11].

Our work proposes a Fuzzy controller suitable for DiffServ and Policy�BasedManagement
framework. The results shows a improvement in end�to�endQoS metrics to a time sensitive
traffi ccrossing a DiffServ domain.

3 QoS Controller Architecture

In this section, we show the parameters of QoS measure in a DiffServ node and the two
nodes types in the architecture �the edge and the core nodes. The controller architecture, in
spite of being specifi ed for DiffServ, may be used for any class�basedqueue mechanism as
showed in following section.

3.1 Controlling a DiffServ node

The controller in DiffServ architecture is shown in Figure 1. In DiffServ architecture, all
nodes have a different queue for each class; a classifi erput the packets into the respective queue
and a scheduler selects packets from the queues. Besides the previous functions, the edge nodes
contain a marker, that marks or remarks each packet, and a conditioner that keeps the input fl ow
as contracted. The proposed architecture implements two controllers: one to control queues
and scheduler, used in the core and edge nodes, and other to the conditioner, used to adjust the
ingress traffi con edge nodes.

Scheduler Controller The variable that controls the scheduler depends on the type of mech�
anism used. If it is a Priority or RR (Round Robin) type, there is no control. The scheduler
in our experiment should be WRR (Weighted Round Robin) or WFQ (Weighted Fair�Queuing)
type, because they are controlable. The queues are served according to a confi guredweight that
can be changed during operation. The packet delay and discard for each queue (class) can be
controlled by this weight.

The fi rstinput variable is the packet delay in the queue; other delays related to packet pro�
cessing would be ignored. In the same way, we could use the queue occupation, because it is
directly proportional to the delay. The second input variable is the discard rate due to queue
overfl ow.

16 LANOMS 2001

CLASS�1�QUEUE

CLASS�2�QUEUE

PACKET

OUTPUT

EDGE�COMPONENTS COMMON�COMPONENTS

QUEUE�DISCARD

RELATIVE�WEIGHT

(WRR)

INPUT

PACKET

B
U

C
K

E
T

�
S

IZ
E

LEVEL

BUCKET
QUEUE�DELAY

TOKEN�BUCKET�RATE

CONDITIONER�DISCARD

C
L

A
S

S
IF

IE
R

C
O

N
D

IT
IO

N
E

R

S
C

H
E

D
U

L
E

R

Figure 1: DiffServ node architecture

Conditioner Controller The objective of the controller is to police the input data fl ows enter�
ing into the domain. The control variable depends on the conditioner type, nevertheless, most
of then uses a token bucket based mechanism.

The fi rstinput variable is the bucket occupation, that is, the number of tokens stored in the
bucket. If the bucket is full, it means that the incoming traffi cin the node is smaller than the
bucket rate; if the bucket is empty, it means that the bucket rate is similar or smaller to the
incoming traffi c. The second variable is the number of packets discarded in the conditioner.
When a packet encounters an empty bucket, it is discarded. In this case we can conclude that
the incoming traffi cis larger than the bucket rate.

When there are no more resources in the domain core, we should indicate a reduction in the
input rate in edge nodes, through the reduction of the bucket rate. When there are high delay
into the core, the edge nodes will reduce the input rate. However we could use another policy,
for instance, the conditioner could maintain the rate, refuse new connections and close some of
them.

4 Simulation Model

The simulation model tested the EF (Expedited Forwarding) [12] and BE (Best Effort)
classes. EF is the best class for real�timeapplications, like voice over IP, as it offers the smallest
delay and delay variations in each node. The BE class represents an IP network (Internet) with�
out any guarantee, used to compete with the EF class traffi c.Lorenz and Orda [7] demonstrated
that uncertainty offer constraints to QoS (delay and jitter). Then, this simulation scheme is a
realistic model to test the proposed fuzzy controller.

4.1 Simulation Environment

The proposed model was tested on simulation. The platform used was the Network Sim�
ulator (NS), version 2.1b6a [14]. As the NS standard distribution does not include DiffServ
resources, it was enclosed an additional module, proposed by Pieda and Ethridge [15]. New
functions were added to this model in order to provide all the needed resources.

The fuzzy library used in this work was developed with the Unfuzzy tool of Duarte[16].
This tool offers a graphic interface for prototype development (specifi cationof the membership

17Network Management as a Strategy for Evolution and Development

functions, inference rules and the defuzzifi cator), besides allowing initial verifi cation of the
model. The C or C++ code generated is compiled and linked to our model.

4.2 Membership functions and Fuzzi cation

In our example, we defi neda policy that gives maximum priority to the EF class, the priority
of BE class will be reduced whenever there is reduction of EF class quality. In spite of that rule,
the bandwidth for BE class should never be less than 10% of total bandwidth. Many other
policies could be defi nedonly changing membership functions and rule base.

The proposed controller uses triangular and trapezoid fuzzy sets because they are imple�
mented with more effi cientcode. We also made experiences with a Gaussian function, but the
results did not justify the complexity added.

4.2.1 Scheduler Controller

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scheduler Queue Weight (Input)

MPVLP VHPLP HP

(a) Input: Queue Weight

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EF Delay (Input)

LD MD HD

(b) Input: EF Delay

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BE Discard (Input)

LD MD HD

(c) Input: BE Discard

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scheduler Queue Weight (Output)

MPVLP VHPLP HP

(d) Output: Queue Weight

Figure 2: Scheduler Membership functions

The fi rst input membership function, EF/BE relative weight, is shown in Figure 2(a). It
represents the WRR scheduler weight of the EF queue in regard to the total weight (EF+BE).
The fuzzy sets are: "VLP", very low priority; "LP", low priority; "MP", medium priority; "HP",
high priority and "VHP", very high priority. As the relative weight is always a number between
zero and one, normalization is not needed.

The second input membership function, delay in EF queue, is shown in Figure 2(b). This
sensor reads the delay of a packet through the node. The fuzzy sets are: "LD", low delay; "MD",

18 LANOMS 2001

medium delay and "HD", high delay. The variable must be normalized before entering in the
controller.

The third input membership function, discard in BE queue, is shown in Figure 2(c). This
sensor reads the number of discarded packets in BE class during a time interval. The value is
normalized in regard to the maximum loss rate. The fuzzy sets are: "LD", low discard; "MD",
medium discard and "HD", high discard.

4.2.2 Conditioner Controller

The membership function of the conditioner is similar to the scheduler function. The fi rst
input variable is the token bucket rate, that reads the current token bucket rate from the con�
ditioner. The second input is the bucket occupation, that reads the level of bucket of EF class
which is a component to the measure of the real rate of incoming traffi c.When the bucket level
is high, it means that the rate of incoming packets is smaller than the bucket rate. The third
input is the discard rate in EF queue, that measures the number of discarded packets from EF
class in the conditioner. When a packet is discarded, the token bucket rate is smaller than the
data input rate.

4.2.3 Output Membership functions and Defuzzi cator

The output membership functions were also defi ned as trapezoid functions, by the same
previous reasons. We used the center of gravity defuzzifi cationmethod, because it offers a result
suitable for our application and it demands less fl oatingpoint calculations than other methods
[17]. The fi rstoutput membership function, queue weight EF/BE, is shown in the Figure 2(d).
It gives the weight of the WRR scheduler. The fuzzy sets are: "VLP", very low priority; "LP",
low priority; "MP", medium priority; "HP", high priority and "VHP", very high priority.

The second output membership function, token bucket rate, gives the value of EF bucket
rate considering the reduction of trafi c.

4.3 Rule base and Inference

Rule base is an IF�THENrule group with fuzzy sets that represent the desired behavior of a
fuzzy system. It can be defi nedin agreement with the administrative policy. For our example,
we used a rule that gave priority to EF class in any situation, but leaving for the BE class at least
10% of the bandwidth.

The fuzzy operators were selected experimentally. We chose the maximum operator for
union and intersection. Implication used the product operator and the OR and AND used the
minimum operator. We have tested several other operators, however this combination offered
the best result, that is, the reaction to the variations was fast and the oscillation was not exces�
sive.

4.3.1 Scheduler Controller

The scheduler controller was defi nedwith 45 rules, whose synthesis is presented as follows:

1. If the delay in EF queue is medium (MD), then the queue weight priority is increased by
1; for instance, if the priority was low (LP) it goes to medium priority (MP). And if EF
delay is high (HD) the queue weight priority is increased by 2.

19Network Management as a Strategy for Evolution and Development

2. If the delay in EF queue is low (LD) and the discard rate in BE queue is medium (MD),
then queue priority is reduced by 1; for instance, if the priority was medium (MP) it goes
to low priority (LP). And if BE discard is high (HD) the queue priority is reduced by 2.

4.3.2 Conditioner Controller

The scheduler controller was defi nedwith 27 rules, whose synthesis is presented as follows:

1. If EF delay in core nodes is low, the conditioner bucket level is low and EF queue discard
is medium, then the conditioner rate is increased by 1 and if EF queue discard is high the
conditioner rate is increased by 2.

2. If EF delay in core nodes is high, the conditioner bucket level is medium and EF queue
discard is low, then the conditioner rate is reduced by 1 and if bucket level is high the
conditioner rate is reduced by 2.

4.4 Conventional controller

A conventional digital controller that executes an intuitive control was defi nedto validate
our proposal. The results of the fuzzy controller compared to a situation without controller were
clearly better. We used the same sample period as the fuzzy controler. This controller presents
the following characteristics:

1. If the delay average of the last three samples surpasses a certain value, it calculates the
slope of the adjusted line for those three points. This slope is applied to queue weight in
the scheduler, increasing the EF class rate.

2. If the delay average of the last three samples is below a certain value, and the BE queue
drop rate is high, it calculates the slope of the adjusted line for those three points (that
should be negative). This slope is applied to the output queue weight in the scheduler.

4.5 Simulation Topology

The application voice over IP was implemented with CBR and exponential On�Off traffi c
over UDP protocol. The CBR traffi cis the worst case for network QoS; on the other hand, the
On�Off traffi cis closer to a normal conversation. The voice traffi cwas classifi edinto EF class
and the competitive traffi cCBR/UDP was classifi edinto BE class. The topology evaluated was
outlined on Figure 3 which shows a DS domain composed of 40 nodes, 30 core nodes and 10
edge nodes. There are five input edge nodes and 5 output edge nodes. The topologies was
created with gt�itmpackage (bundled in NS)[14]. We used three diferents topologies whose
metrics are shown in Table 1.

Topology Type Avg Deg Diameter(hh, ll, hl) Avg Depth(hh, ll, hl) Bicomp

Topology 1 Waxman 1 4.333 5, 71, 113 3.87, 54.40, 80.33 3
Topology 2 Waxman 2 4.133 5, 105, 147 4.10, 71.73, 110.10 3
Topology 3 Exponential 4.133 6, 95, 102 4.27, 71.00, 80.56 3

Table 1: Topology Metrics

20 LANOMS 2001

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

BE

EDGE

CORE

SINK

EDGEEDGE

BE

EF

EF

BE

BE

EF

EF

BEBE

SOURCE

SOURCE

BE

EF

SINK

SINK

SINK

SINK

EDGE

EDGE

EDGE

EDGEEDGEEDGEEDGEEDGE

EDGE

EDGE

EDGE

CORE

CORE

CORE

CORE

CORE

CORECORE

CORECORE

CORE
CORE

CORE

2 MBPS2 MBPS

2 MBPS

2 MBPS

2 MBPS

2 MBPS

2 MBPS

2 MBPS

CORE

Figure 3: Simulation Topology

To simulate the voice conection, the number of voice traffi csources (EF class) changes dur�
ing the simulation time of 200 seconds. The changes in traffi cyields the controller operation in
a real situation. The number of voice source varies according to an exponential distribution with
the following time paterns (traffi con, traffi coff): (5.0,2.0), (10.0,10.0), (6.0,3.0), (20.0,20.0),
(15.0,5.0). Each CBR voice source was defi nedwith a 64 Kbps rate PCM channel. In On�off
source, we used 64 Kbps rate with burst time of 600 ms and idle time of 400 ms, giving an
average rate of 25,6 Kbps. The size of the packet is 576 bytes for both cases. While the CBR
traffi cvaried from 0 to 150 sources, giving an average of 93 active sources, the On�Off traffi c
varied from 0 to 300 sources giving an average of 186 active sources. We used 150 and 300
competitive BE CBR sources with rate of 64 Kbps. The delay of each link of 2 Mbps is 10 ms.
All queues have a maximum size of 100 packets giving a maximum delay of 225 ms in each
node. The simulation model used a WRR scheduler, Drop Tail queues in both classes and Token
Bucket conditioner for EF class (the BE class was not conditioned).

5 Results

The evaluated measures were the percentil of end�to�enddelay and jitter of the EF class. For
each evaluation, we used CBR and exponential On�off traffi c. We show the graphs and tables
of a DiffServ domain without controller, with a conventional controller and with the proposed
fuzzy controller. All simulations began with initial scheduler confi gurationwith 50% of the
bandwidth for each class. To eliminate measures with an empty network, the measures always
started 5 seconds after the beginning of the simulation.

The sampling period infl uencesthe controller stability. When the period is too long, it may
have oscillations. The period used in this work was 1.0 s, but if we reduce the period there will
be an improvement on the controller performance.

5.1 End-to-end delay on EF class

The graph on Figure 4 shows the end�to�enddelay of a voice traffi cclassifi edin EF class
from source to sink node without any controller. These graphs were taken from Topology 1. All
graphs show only total queue delay because links delay were excluded. Figure 4(a) shows the
result with CBR traffi cand Figure 4(b) exponential On�Off traffi c.

21Network Management as a Strategy for Evolution and Development

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

P
ac

ke
t d

el
ay

 (
m

se
c)

Simulation Time (sec)

(a) CBR Traffi c

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200

P
ac

ke
t d

el
ay

 (
m

se
c)

Simulation Time (sec)

(b) On�Off traffi c

Figure 4: End�to�enddelay of one EF fl ow in topology 1 without Controller

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

P
ac

ke
t d

el
ay

 (
m

se
c)

Simulation Time (sec)

(a) CBR Traffi c

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200

P
ac

ke
t d

el
ay

 (
m

se
c)

Simulation Time (sec)

(b) On�Off Traffi c

Figure 5: End�to�enddelay of one EF fl ow in topology 1 with Conventional Controller

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

P
ac

ke
t d

el
ay

 (
m

se
c)

Simulation Time (sec)

(a) CBR Traffi c

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200

P
ac

ke
t d

el
ay

 (
m

se
c)

Simulation Time (sec)

(b) On�Off Traffi c

Figure 6: End�to�enddelay of one EF fl ow in topology 1 with Fuzzy Controller

The graph on Figure 5 shows the end�to�enddelay with a conventional controller. We no�
ticed in Figure 5(a) an improvement of the delay comparing to the case without controller. In
On�off traffi c,in Figure 5(b), the delay presents a little improvement.

22 LANOMS 2001

The graph on Figure 6 shows the end�to�enddelay with fuzzy controller. We noticed in
Figure 6(a) an improvement of the delay comparing to the case without controller and with a
conventional controller. The fuzzy controller corrects all traffi cvariation, keeping delay values
low. In On�off traffi c,Figure 6(b), the average delay is smaller than previous cases.

Table 2 shows the delay and jitter of CBR and On�Off traffi cfor topology 1. The percentil
50 means that 50% of all packets have a delay and jitter smaller than this value. The same is
valid to percentil 90 and 95. Table 3 and 2 shows the delay and jitter of CBR and On�Off traffi c
for topology 2 and 3.

Average Percentil 50 Percentil 90 Percentil 95
Traffi c Delay Jitter Delay Jitter Delay Jitter Delay Jitter

CBR Without 152.88 59.45 173.95 69.70 219.46 145.15 229.25 146.30
CBR Conven. 102.98 72.27 57.60 69.70 211.39 144.58 223.49 194.11
CBR Fuzzy 41.21 1.58 40.32 0.00 63.36 2.30 68.54 2.30
OO Without 139.48 16.23 145.09 19.13 161.97 100.64 164.54 117.36
OO Conven. 129.56 9.40 143.03 10.70 161.63 91.48 164.43 115.96
OO Fuzzy 39.62 8.89 30.11 8.02 79.65 62.04 93.09 76.83

Table 2: Delay and Jitter of EF class in Topology 1

Average Percentil 50 Percentil 90 Percentil 95
Traffi c Delay Jitter Delay Jitter Delay Jitter Delay Jitter

CBR Without 151.00 60.00 172.22 69.70 217.15 145.15 226.94 146.30
CBR Conven. 101.30 71.37 50.18 69.70 207.94 144.58 220.03 145.73
CBR Fuzzy 39.30 1.58 38.59 0.00 61.06 2.30 66.24 2.30
OO Without 137.69 35.31 143.18 97.87 159.88 105.25 162.07 126.88
OO Conven. 127.85 24.26 140.87 88.94 159.31 87.37 161.70 111.05
OO Fuzzy 37.70 15.74 28.11 17.77 77.58 61.76 91.07 76.90

Table 3: Delay and Jitter of EF class in Topology 2

Average Percentil 50 Percentil 90 Percentil 95
Traffi c Delay Jitter Delay Jitter Delay Jitter Delay Jitter

CBR Without 173.37 93.36 205.06 69.70 300.10 218.30 353.09 288.58
CBR Conven. 139.18 70.58 167.04 2.30 263.81 216.00 274.18 217.73
CBR Fuzzy 79.60 42.06 63.94 2.30 157.25 143.42 169.34 144.00
OO Without 176.77 56.67 167.83 39.02 273.39 144.76 289.85 168.90
OO Conven. 118.20 52.04 143.12 23.25 205.88 147.68 243.71 170.10
OO Fuzzy 59.44 30.98 51.81 19.49 113.43 80.39 132.27 100.31

Table 4: Delay and Jitter of EF class in Topology 3

5.2 Discard on DiffServ Domain

The Table 5 shows the loss rate of the voice traffi con EF class and default traffi con BE
class in topology 1. The Table 6 shows the loss rate for topology 2 and Table 7 for topology 3.

23Network Management as a Strategy for Evolution and Development

We noticed a decrease of EF discard rate with Fuzzy controller for both traffi cscomparing to
case without and with conventional controller.

Controller EF Drops (CBR) BE Drops (CBR) EF Drops (On�Off) BE Drops (On�Off)

Without 53010 50917 254879 207484
Conventional 37611 66400 241029 212534

Fuzzy 14 103951 25809 428051

Table 5: Drops in Topology 1

Controller EF Drops (CBR) BE Drops (CBR) EF Drops (On�Off) BE Drops (On�Off)

Without 53010 50917 192405 153402
Conventional 37611 66400 184548 156298

Fuzzy 14 103951 8094 336720

Table 6: Drops in Topology 2

Controller EF Drops (CBR) BE Drops (CBR) EF Drops (On�Off) BE Drops (On�Off)

Without 49859 49136 189435 154098
Conventional 46823 52164 172764 160148

Fuzzy 4579 94433 32087 300419

Table 7: Drops in Topology 3

6 Conclusion and Future Works

We showed, in this paper, a fuzzy controller that reconfi gures router parameters to offer
better quality of service inside a DiffServ domain. The use of fuzzy logic improves the handling
of inaccuracy and uncertainties of the ingress traffi c in a domain. The controller kept low
complexity, maintaining DiffServ scalability characteristic. The controller’s computing was not
verifi ed,but we believe that it is not high because the simulation time of fuzzy and conventional
controllers were similar.

The policy�basedmanagement allow the controller to be generic, defi ningthe domain be�
havior in agreement with administrative decisions. Furthermore, the behavior can be easily
changed in whole domain, during normal system operation.

The simulations used to validate the model considered an example with EF and BE classes.
Delay and jitter measurements are affected by inaccuracy and uncertainty of ingress traffi cinto
the domain [7]. The results obtained through simulation demonstrated the functionality of the
proposal showing an improvement in QoS metrics.

The results obtained using Drop Tail queues, WRR scheduler and Token Bucket conditioner,
already reached improvement in QoS metrics. If more sophisticated mechanisms are used, for
instance, WRED queues and WFQ scheduler, the results will be certainly better.

As future work a new controller will be defi nedincluding support to other DiffServ classes,
like AF (Assured Forwarding). This class has a different philosophy, forcing the controller to
deal with variables different from those considered in this paper. Thus we will have a complete
controller, able to adjust all DiffServ parameters dynamically, according to the traffi cchanges
and a given policy.

24 LANOMS 2001

References

[1] VASILAKOS, A., ANAGNOSTAKIS, K., “Evolutionary�FuzzyPrediction for Strategic
Inter�DomainRouting: Architecture and Mechanisms”, WCCI 98. Anchorage, USA, May
4�91998.

[2] SLOMAN, M., “Policy Driven Management for Distributed Systems”, Journal of Network
and Systems Management, Vol. 2, No. 4, pp. 333�360,1994.

[3] RAJAN, R., VERMA, D., KAMAT, S., at al. “A Policy Framework for Integrated and Dif�
ferentiated Services in the Internet”, IEEE Network Magazine. USA, September/October
1999.

[4] BLIGHT, D., HAMADA, T., “Policy�BasedNetworking Architecture for QoS Interwork�
ing in IP Management �Scalable Architecture for Large�ScaleEnterprise Public Interop�
eration”,

[5] STEVENS,M., WEISS, W., MAHON, H., at al., "Policy Framework", Internet Draft draft�
ietf�policy�framework�00.txt,September 1999.

[6] GUÉRIN, R., ORDA, A., “QoS�basedRouting in Networks with Inacurate Information:
Theory and Algorithms”, IEEE Infocom 97. Kobe, Japan, 1997

[7] LORENZ, D., ORDA, A., “QoS Routing in Networks with Uncertain Parameters”, IEEE
Infocom 98

[8] LI, B., NAHRSTEDT, K., “A Control�BasedMiddleware Framework for Quality of Ser�
vice Adaptions”, IEEE Journal on Select Areas in Communication, September 1997.

[9] LI, B., NAHRSTEDT, K., “Dinamic Reconfi gurationfor Complex Multimidia Applica�
tion”, IEEE International Conference on Multimedia Computing and Systems 99, Vol 1,
pp 165�170,July 1999.

[10] CHENG, R., CHANG, C., “Design of a Fuzzy Traffi c Controler for ATM Networks”,
IEEE/ACM Transaction on Networking, v.4 n

�

3, pp 460�469,June 1996.

[11] SOUZA, J.N., CARVALHO, E.V., BELCHIOR, A.D., ”Distributed Proactive Network
Management based on Fuzzy Logic”, International Conference on Telecommunication �
ICT’ 99. Korea, 1999.

[12] JACOBSON, V., NICHOLS, K., PODURI, K., ”An Expedited Forwarding PHB”, Request
for Comments 2598, June 1999.

[13] BLAKE,S., BLACK, D., ,CARLSON, M., et al, ”An Architecture for Differentiated Ser�
vices”, Request for Comments 2475, December 1998.

[14] Network Simulator �NS Version 2, http://www.isi.edu/nsnam/ns/.

[15] PIEDA, P., ETHRIDGE, J., BAINES, M., et al.,”A Network Simulator Differentiated Ser�
vices Implementation �Open IP”, Nortel Networks, http://www7.nortel.com:8080/CTL/.

[16] DUARTE, O., Unfuzzy, http://ohm.ingsala.unal.edu.co/ogduarte/

[17] ROSS, T., “Fuzzy Logic with Engineering Applications”, McGraw�Hill,New York, 1995.

25Network Management as a Strategy for Evolution and Development

