
Extensible, Transactional Architecture for IP Connectivity Management
Eduardo Grampín1 , Javier Baliosian2 , Joan Serrat3

Abstract

This paper presents an extensible, transaction oriented Element Manager System
(EMS) architecture for IP connectivity management. The key aspects of the proposal
are the extensibility, derived from the adoption of an object oriented, policy-based
approach, and the transactional feature, which ensures both EMS repository data
information and network configuration integrity. This means that an intended
Connectivity Service is configured end to end in one atomic operation, as seen by the
Network Management System (NMS), or not configured at all, if any of the steps of the
ongoing operation fails. Management data and policies are stored as persistent objects
in a common repository. This provides not only an inventory of the managed elements,
but also a policy-driven application environment. The paper briefly describes the
Information Model, the solution adopted, and presents a proof of concept
implementation.

Keywords: IP management, policies, transactions

1. Introduction
Traditional connection-oriented telecommunications networks have adopted hierarchical, object oriented
management models based on International Telecommunication Union (ITU-T) Telecommunications
Management Network (TMN) [1] principles, which have been very useful for the telecommunications industry
in the last decade. On the other hand, provisioning of IP networks has historically relied on control plane (i.e.
routing and signalling protocols), with little significance of the management plane. The traditional Simple
Network Management Protocol (SNMP) management model has proven to be enough in these best-effort
networks. IP has been adopted as the technology of choice for service delivery among individual and corporate
users, who demand service assurance with predictable levels of Quality of Service (QoS). The Multiprotocol
Label Switching (MPLS) architecture [2] enables the application of Traffic Engineering techniques in IP
networks, like explicit routing with Quality of Service (QoS) guarantees, to fulfil the requisites of IP
applications. The adoption of an intelligent Control Plane help operators willing to deploy IP Connectivity
Services over an MPLS infrastructure. Nevertheless, MPLS Operation, Administration and Maintenance (OAM)
tools are scarce and have limited functionality. Therefore, there is a need for management models and
applications to promote a widespread adoption of the MPLS model.

EMSs usually adapt proprietary management tools (e.g. SNMP-based) to the specifications of the Network
Management Layer-Element Manager Layer (NML-EML) interface. These adaptations are usually not flexible
and cannot easily accommodate changes on network devices. Therefore a requisite of modern EMSs would be
their capability to be dynamically adapted to those changes (i.e. without the need to rewrite and recompile the
adaptation code). Establishing a connection in the IP/MPLS layer requires the issue of several requests from the
EMS to different routers under its domain. These requests must be in order and successfully executed; otherwise
the system should be restored to the previous state, to avoid inconsistencies (and potential problems with
network connectivity). Therefore, the set of operations intended to fulfil a connectivity request can be considered
a transaction, and shall be treated as such.

With these two requirements in mind we propose to use policies and database technology to conceive an EMS
solution that can be used in a variety of conditions. The adaptation mechanism is driven by policies, while ideas
adopted from database technology are used to confer the transaction-oriented property to the whole process of
connectivity establishment, modification or release.

After this section, the paper continues with section 2 and 3 which describe the EMS architecture. Section 4
presents a proof of concept implementation. Some concluding remarks are given at the end of the paper.

1Eduardo Grampín is with Universidad de la República, Montevideo, Uruguay. E-mail: grampin@tsc.upc.es
2Javier Baliosian is with Universitat Politècnica de Catalunya, Barcelona, Spain. E-mail: jbaliosian@tsc.upc.es
3Joan Serrat is with Universitat Politècnica de Catalunya, Barcelona, Spain. E-mail: serrat@tsc.upc.es

123

2. Proposed EMS Architecture
The functional architecture of the proposed policy-based EMS solution is depicted in Figure 1.

NMS

Policy Engine

Device Agent
#N

Device Agent
#M

Objects
Repository

E
le

m
en

t M
an

ag
em

en
t S

ys
te

m

IPNM Gateway

Figure 1 - Architecture of the NMS -EMS Interface

The Gateway component provides the adaptation for the upper layers in the TMN hierarchy, showing an
standard interface to the NML and an internal, proprietary interface to the Policy Engine, enabling the extension
of our data model (that is, to change the behaviour of the EMS in respect to the underlying network elements)
without changing the view from the NML. The Repository is the heart of the system. It holds the persistent
Managed Objects and Policy Objects, which are used by the Policy Engine to drive the management application.
The Device Agents adapt the generic representation of the network to device-specific syntax, and provide
functionality for communication with devices. The major components are described below.

2.1 IPNM Gateway
The Multi-Technology Network Management (MTNM) [3], is a technology-independent specification from the
TeleManagement Forum (TMF) that enables multi-vendor provisioning on the Element Management Layer
(EML). It is strongly connection-oriented, mainly targeted ATM and SDH networks. The adaptation of MTNM
to the IP/MPLS Network Connectivity Model has proven to be quite cumbersome [4]. Another TMF initiative,
the IP Network Management (IPNM) NML-EML interface specification [5], is much closer to the IP/MPLS
model, maintaining the core MTNM concepts. The use of this interface allows the proposed EMS architecture to
transparently integrate into the whole TMN/TMF framework of high-level management application.

Note that the EMS shows the above-mentioned interface to the upper layers, but is free to map this Information
Model as needed towards its internal architecture. In this section we will briefly describe the IPNM model and
operations. The internal object model is described in the Objects Repository section.

2.1.1 IPNM Information Model and Operations
The managed network is assumed to offer basic connectivity and to be MPLS enabled. In response to IP
Connectivity Services requests from the upper layers of the management system, the EMS performs the
configuration of LSPs with QoS constraints. The routing computation for such LSPs is done by the NMS using
the appropriate Constraint Based Routing algorithms; the Control Plane can provide dynamic backup for these
LSPs in case of failure (that is, the establishment of the connection through a different route). The IP EMS
supports a subset of the IPNM “get” operations that respond to requests of information from the upper layers.

The Information Model is an extension of the IPNM interface. The fundamental add-on of the model is to extend
the generic classes with MPLS -related information. The result of this extension is a model that describes the
IP/MPLS network with enough detail to establish Connectivity Services. We consider a restricted model which
main entity is the MPLS Connectivity Service (MPLS-CS), supported by SubNetwork Connections (SNCs).

124

Among the managed entit ies of the model shown by the EMS to the NMS it is worth mentioning the following:

• MPLS Connectivity Service (MPLS-CS) is the basic service over the MPLS network, meeting some QoS

constraints resembling a connection-oriented circuit.
• MPLS SubNetwork is an abstraction provided by the EMS to upper layers in the management hierarchy.

The Subnetwork is the unit of work of an EMS system. SNCs are provided within subnetworks.
• MPLS SubNetwork Connection (SNC) relates MPLS Connection Termination Points. A Network

Connection provides a transparent end-to-end connection through or within a subnetwork, equivalent to a
portion of one MPLS path.

• MPLS Physical Termination Point is an actual or potential endpoint of a topological (physical) link.
Essentially, this is a representation of a physical port, belonging to a Label Switch Router (LSR).

• MPLS Managed Element (MPLS-ME) is an abstract class used to represent Label Switched Routers.

The SNC operations are:

• createSNC configures the SNC in the MPLS infrastructure.
• activateSNC activates the previously created SNC; this includes the assignment of traffic to the

configured SNC.
• createAndActivateSNC executes the both previous operations together.
• deactivateSNC deactivates the target SNC but keeps configuration information.
• deleteSNC deletes the SNC configuration information from network elements.

2.2 Policy Engine
Many policy languages and frameworks can be used as support platforms for policy-based management. Several
Internet Engineering Task Force (IETF) Working Groups (WGs) are involved in this field. Well known models
like PCIM and extensions, and protocols like COPS are major achievements of these groups. There are some
commercial implementations based on the IETF Three Tier Policy model, that cope with the problem of
definition of Per Hop Behaviours on devices but fail to provide a solution for the basic problem of point-to-point
connectivity provisioning with QoS constraints.

Among several options we selected Ponder4 as the language to support the policy-based management system.
The Ponder model includes a declarative language to specify policies of different types, and a deployment model
[6] to make use of these policies. It also provides a policy compiler that transform the policy definitions into
objects that are subsequently stored in a Lightweight Directory Access Protocol (LDAP) repository.

2.2.1 Policy Engine Implementation
The Policy Engine processes the IPNM operations (translated by the IPNM Gateway) and provides the
management functionality using the persistent Managed Objects and Policy Objects. The internal architecture of
the Policy Engine and its interactions with other components are illustrated in Figure 2.

NMS

Policy Management
Agent Objects

Repository

IPNM Gateway

Device Agent

EnforcementAgent

Policy Engine

Figure 2 - Policy Engine Internal Architecture

4 Besides this option others can be used and therefore the solution is not restricted to this language.

125

As we can infer from this figure, most of the work of the Policy Engine is performed on the network abstract
representation stored in the Objects Repository. The Device Agent is requested to carry out the configuration of
the network elements in an atomic operation.

2.2.2 Extensibility of the Management Functionality
Every action executed by the interface is policy-driven. This means that the system changes its behaviour
dynamically in accordance with the attributes and methods of the management objects and system policies.
Modifying or adding policies and managed objects is the way to reach the extension of management
functionality.

The extensibility concept is a result of well-known strengths of object-oriented modelling. In this case, dynamic
binding allows us to define operations for one object and then share the specification of the operation with other
objects. These objects can further extend this operation to provide behaviours that are unique to those objects.
At runtime, dynamic binding determines which of these operations are actually executed, depending on the class
of the object requested to perform the operation.

The Policy Management Agent functionality is complemented by the Enforcement Agents. Given a particular
policy and its targets, these agents can navigate the LDAP repository and instantiate actions contained in such
targets. Then, specific functionality stored as a persistent object can be recalled by policies. This functionality
may be completely unknown to the Policy Engine at compilation time; at runtime such functionality can be
augmented.

2.3 EMS Information Model
The internal information model maps the IPNM model described above. Some relevant internal entities are the
MPLS tunnels (Tunnel Class), which reside in a router (the Router Class) and are characterised by a traffic
descriptor (TrafficDescriptor Class), built from their FEC (Forwarding Class Equivalence) and QoSAttributes.
Every entity has its own set of operations that, as we will see, can be used as actions by applicable policies. A
simplified view of the model is depicted in Figure 3. Note that the proposed policy-based model can be extended
as new requirements appear. This is reflected by the ToSpecialize Class of the model.

Router ToSpecialize

AdministrativeInfo

Tunnel TrafficDescriptor

QoSAtributes

FEC

PathOption

IPaddress

StaticRoute

ExpRoute

Figure 3 - Simplified EMS Information Model

2.3.1 LDAP Implementation of the Object Model
There are two kind of objects stored in the repository: the Policy Objects and the Managed Objects. There are
many ways to replicate the model hierarchy into the repository tree. The managed objects can be stored in any

126

convenient way for the management application. (i.e. the persistent objects can be stored in “bulk” or de-
aggregated into a given sub-tree, depending on the programmer’s needs). A leaf of the LDAP tree could contain
a complete Managed Object representation stored as a Java class, with its attributes and methods. A “fine grain”
approach can also be used. Each element could be a node in the repository tree with recursive children that
represent classes contained in the “main” class. For example, a SubNetwork Connection could be de-aggregated
into MPLS-tunnels, which in turn could contain other attributes.

A main goal of our work is to recreate the usual transaction or transactional operation concept from databases
in the configuration management context. A standard transactional operation performs a set of changes in an
atomic way, and if the progression fails somehow, there is a rollback to the state previous to the transaction.
This approach is used in our model, keeping consistency between network and inventory information, and
avoiding useless operations on the elements. As we intended it, a transactional operation is not limited to one
network element, but to the set of operations and elements needed to establish a SNC. This will be described in
the Transactional Behaviour section.

2.4 Device Agent
The Device Agent (DA) is a mediator between the EMS and the managed elements. The DA takes care of the
device-specific functionality. For example, a full SNMP configurable device could use a GenericSnmp DA, but
a MyRouter brand proprietary router should use a MyRouter DA. The DAs shall provide the appropriate methods
to access the device and change the configuration after translating the abstract representation to a device-specific
syntax. In other words, the agent would understand the model and translate it into another device-specific model
with its particular configuration methods5.

As seen in Figure 1, the DAs are boundary entities. Some of their functionality could be built by third party
developers. Figure 4 depicts the DAs’ internal architecture. It can be seen that while the Translator Manager is
an internal entity, the Communication and Discovery module can be thought of as an open interface, or
Application Programming Interface (API).

Translator Mgr

 Objects
Repository

Communication
and Discovery

D
ev

ic
e

A
ge

nt

Policy Engine

Figure 4 - Device Agent Architecture

Translator Mgr
This component is capable of understanding the OO abstract representation and translating it into device-specific
syntax. This process may be triggered by the Policy Engine through a Configure() order. The translator
accesses the Objects Repository and retrieves the relevant objects that need to be updated at the device level.
Communication and Discovery
This is a supporting component that provides communication methods with the network devices. It can be a
basic SNMP API or a more sophisticated piece of software that supports CLI, HTTP, TFTP or other
communication methods. The discovery function is responsible for maintaining information consistency. It
performs this function by accessing the Translator module which in turn feeds the Repository with the updated
information collected from the network devices. One candidate algorithm to perform the discovery task is the
one proposed in [7].

5 Note that this translation should be done back and forth.

127

3. Transactional Behaviour
One main goal of our proposal is to achieve repository consistency, in each element configuration and between
those elements and the repository. This is analogous to the challenges faced by distributed database systems.
Since the ’80s this has being solved successfully with a Two -Phase Commit (2PC) protocol [8].

To achieve the transactional behaviour of our EMS architecture, the Policy Engine works as the coordinator in
the 2PC protocol, and the Device Agents as the cohorts. The coordinator is responsible for trying the operations
and commands the 2PC process.

In this paper we are addressing only the adaptation of the 2PC idea to the configuration of IP connectivity
services, and although a complete adaptation to network configuration is a very complex task (subject of future
work), the basic concepts are here.

LDAP server shall be enhanced with minimal transactional capabilities (as described in the Implementing
Transactions in the Repository Section), and the Device Agents need the functionality to send notifications, as
shown in Figure 5. An important change to the classic databases 2PC protocol is needed to cover the lack of
transactional behaviour of Device Agents. The modified protocol is will be described further on.

3.1 EMS Two-Phase Commit Protocol Adaptation
In this section we describe our adaptation of the 2PC protocol, shown as a finite state diagram in Figure 5. The
steps of the protocol are described bellow.

W1

A1

Q1 Qi

Wi

C1 Ci

Ai

Policy Engine (PE) Device Agent (DA) i

Commit_request
msg sent
to all DAs

All DAs agreed.
Send Commit msg

to all DAs

One or more
DA(s)

replied abort.
Abort msg sent

to all DAs

Commit_request
msg received.
Agreed msg
sent to PE

Commit_request
msg received.

Abort msg
sent to PE

Abort msg
received from PE

Commit msg received from PE

Rollback

Any DA reply
ABORT. Rollback

A2i

Commit fails.
Send ABORT to PE

Figure 5 - Two-Phase Commit Finite State Diagram

At the Policy Engine (PE):

1. Send COMMIT-REQUEST message to each Device Agent (DA). The PE is now in the preparing
transaction state.

2. Wait for responses from DAs. If any DA responds ABORT the transaction must be aborted, proceeding
to step 5. If all DAs respond AGREED then the transaction may be committed, proceeding to step 3. If,
after some time period any DAs do not respond, the PE can either transmit ABORT messages to all DAs
or transmit COMMIT-REQUEST messages to the DAs that have not responded. In either case the PE
will eventually go to state 3 or state 5.

3. Send COMMIT message to each of the DAs.
4. Wait for each DA to respond. If all DAs reply COMMITTED erase the original branch created in the

LDAP as explained in the previous section. DONE, no more steps should be performed. If any DAs
reply ABORT, erase the temporary sub-tree in the Repository, mark the original one as visible and start a
new commit cycle with the original configuration to rollback to the previous stable network
configuration6

5. Send the ABORT message to each DA. Recover the original configuration state in the Repository.

6We are supposing that the previous stable network configuration state will have no problems to be enforced.
This hypothesis may prove not to be true, and should be considered for future research.

128

At Device Agents

1. When a COMMIT-REQUEST message is received for a t transaction, read the branch in the repository
containing the abstract configuration representation of the elements under the responsibility of this DA.
Translate it to device dependent configuration. Optionally, communication with devices could be tested
as well. If those operations are successful, send AGREED to the PE, and perform step 2. Otherwis e send
ABORT. DONE.

2. If an ABORT message is received, then do nothing on the devices and erase the configuration
information associated with the transaction read in step 1. DONE.

3. If a COMMIT message is received, then perform all the configuration operations obtained in the
translation procedure in step 1. If it is already “committed”, no further action is required.

4. If all the configuration operations in step 3 were successful, respond COMMITED to the PE. Otherwise
respond ABORT. The configuration state of the managed elements could be inconsistent now, internally
and with the Repository. This situation will be fixed later when the previous configuration state would
be enforced by the Policy Engine.

3.2 Implementing Transactions in the Repository
An LDAP server is hierarchically organised, so it can be seen as a tree. To implement a transactional operation
on the LDAP server, the following algorithm is proposed:

• First, the minimal changed sub-tree (the minimum sub-tree of the LDAP repository where changes will
be performed) needs to be found.

• Once a transaction is started, a temporary copy of the minimal changed sub-tree is created. This is the
analogue to the do log from relational databases; the original sub tree is marked as invisible to the Device
Agents. Changes are written to this temporary sub tree.

• If the operation is successful, the original sub-tree is deleted from the repository without further
operations.

• If the operation fails, the temporary sub-tree is erased and the original one is marked as visible (back to
original state).

4. Proof of Concept
The implementation is programmed in Java using a standard SNMP API in the Device Agent component. The
functionality is built from an object-oriented information model of the managed elements’ configuration
(depicted in Figure 3) and stored in an LDAP Server.

The actual implementation is based on Cisco routers, but it can be used to manage other vendors’ equipment that
supports the used SNMP MIBs. The application is able to configure MPLS LSPs with all of the functionality
provided by the vendors’ equipment using the described IPNM interface. A multi-vendor implementation would
require specific Device Agents. It has been tested on a network composed by three Cisco 7204 core routers with
MPLS and Traffic Engineering capabilities and several client routers and hosts. The management platform is a
Linux PC. Though currently limited to Configuration Management, the implementation can be extended to
support Fault and Performance Management, based on SNMP traps and MPLS -specific meters.

As stated before, the Policy Engine is based on the Policy Deployment Model. Regarding this model, the
managed elements are the Targets of the policies and their methods are the Actions, such as createTunnel() and
deleteTunnel(). The model can be extended specialising the ToSpecialize Class.

To illustrate the operation of the proposed EMS, let’s review a Create IP Connectivity Service (ICS) scenario.
The workflow of such request will depend on the objects instantiated, which in turn are defined by policies.
When an action is defined in a policy, the correspondent method is instantiated in the relevant managed object. A
couple of simplified obligation policies useful in this scenario are shown below (using Ponder syntax):

inst oblig /Private/Obligs/ics/set_tunnels {
 on createSNC(element_A, element_B);
 subject /Managers/GUI;
 do element_A.createTunnel(toElemet_B) ||
 element_B.createTunnel(toElemet_A);
}

129

This policy determine the first step of an if-event-do-action cascade. The second step will be the one triggered
by the createTunnel() event associated to the action with the same name. That event will match against the
following policy:

inst oblig /Private/Obligs/ics/set_tunnel_elements {
 on createTunnel(Tunnel_ID, fromElement_A, toElement_B);
 subject /EMS/EnfAg;
 do element_A.Tunnel_ID.createTrafficDescriptor(FEC, QoSParams);
}

Following this method, all the needed steps for the ICS creation would be defined in the abstract model and
finally, when a connectionCreated() event occurs, the entire new configuration will be committed on the
elements.

Note that variations to the scenario can be created “on the fly” by modifying the applicable policies, without
modification to the application’s code.

5. Conclusions and Future Work
This paper presents an extensible, transaction oriented Element Manager System (EMS) architecture for IP
connectivity management compliant with the IPNM interface. The core concepts of the proposal are the policy-
driven application environment over persistent managed elements, and an approximation to a transactional
behaviour regarding network inventory and configuration. The proposed model enables a specialisation of the
Information Model at the EMS level, giving the applications the opportunity to manage vendor-independent IP
Connectivity, using specific Device Agents where needed.

The proof-of-concept implementation gives us a good insight about the strength of the model. Further
implementation using the policy-driven approach is being carried out simultaneously with a deeper specialisation
of the model entities and in-depth study of the proposed transactional approach. Relevant future work shall
include a comparison in terms of efficiency and flexibility against other proposals (i.e. Control Plane driven
solutions).

6. Acknowledgements
Some of the ideas described in this paper are the result of the work undertaken in the context of the IST Project
WINMAN, co-funded by the European Union. The authors would like to express their gratitude to the other
members of the consortium.

References
[1] ITU-T, “M.3010, Principles of Telecommunications Management Network (TMN),” 1996.

[2] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switching Architecture, Jan. 2001. RFC

3031.

[3] TMF 608, “Multi-Technology Network Management Information Agreement NML-EML Interface.”

Version 2.0. TM Forum Approved , October 2001.

[4] IST 13305 - WINMAN, “WDM and IP Network MANagement.” http: //www.winman.org.

[5] TMF 611, “IP Network Management Information Agreement NML-EML Interface,” April 2002.

[6] IEEE/IFIP International Symposium on Integrated Network Management (IM’200)1, A Policy Deployment

Model for the Ponder Language, (Seattle), May 2001.

[7] H. C. Lin, S. C. Lai, P. W. Chen, and H. L. Lai, “Automatic Topology Discovery of IP Networks,” IEICE

Trans. Inf. and Syst., vol. E83-D, January 2000.

[8] E. Moss, Nested Transactions: An Approach to Reliable Distributed Computing, pp. 31–38. Cambridge,

Massachusetts: The MIT Press, 1985.

130

