
Computer Standards & Interfaces 81 (2022) 103600

Available online 3 November 2021
0920-5489/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Facilitating the monitoring and management of structural health in civil
infrastructures with an Edge/Fog/Cloud architecture

Cristian Martín *, Daniel Garrido , Luis Llopis , Bartolomé Rubio , Manuel Díaz
ITIS Software, University of Malaga, Arquitecto Francisco Peñalosa, 18, Málaga 29071, Spain

A R T I C L E I N F O

Keywords:
Structural health monitoring
Internet of things
Cloud computing
Fog computing
Edge computing
Lightweight virtualization

A B S T R A C T

Structural Health Monitoring (SHM) is nowadays a requirement for civil infrastructures like tunnels, bridges and
viaducts. With the advances provided by the Internet of Things (IoT) in recent years in areas such as wireless
communications, miniaturisation and application protocols, this paradigm is spreading to the wider society to
ensure appropriate protection of critical infrastructures. Both fog and edge computing have also strongly
contributed to SHM and the IoT by bringing computing as close as possible to where data is produced, thereby
reducing the latency response with respect to traditional cloud integrations. In this paper, an Edge/Fog/Cloud
architecture for SHM in civil infrastructures is presented. The main goal of this architecture is to create and
provide a flexible framework involving all the required components for the management, monitoring and
deployment of SHM solutions, enabling high availability and easy distribution of the components over the ar
chitecture. The architecture has been evaluated as an alternative to the real deployment in a tunnel of a cloud
architecture showing the benefits of adopting an Edge/Fog/Cloud hierarchy.

1. Introduction

Some civil infrastructures (CI) related to transport, hydrological
management or the generation and distribution of energy play a stra
tegic role in the development of many activities essential for human
beings. Failures or malfunction of these infrastructures are able to
seriously affect these essential activities. Early detection of faults in CIs
keeps maintenance and repair costs lower than if they are detected at a
future stage when the problem has worsened. In this sense, Structural
Health Monitoring (SHM) as presented in our previous work [1] plays a
decisive role in fulfilling this purpose. SHM is a non-destructive tech
nique for evaluating the state of a structure based on its dynamic
response, which enables detecting, locating and quantifying possible
damage.

The most advanced structural monitoring systems are based on
Wireless Sensor Networks (WSN), which are one of the most important
components in the Internet of Things (IoT) paradigm [2]. These net
works provide real-time monitoring of the infrastructure at a low cost.
Additionally, data collection can be continuous and artificial intelli
gence can be applied to predict their structural health and even to
predict the CI life cycle. A typical architecture based on WSN is

composed of a set of monitoring nodes including sensors and commu
nication modules. Data from these nodes are collected in a gateway,
which is responsible for sending data to the cloud. Cloud platforms
contribute not only to infrastructure monitoring but also to the appli
cation of analytical methods to detect damage to the infrastructure and
for the prognosis of a failure. The combination of WSN and cloud ar
chitectures has facilitated the integration of the IoT concept in the
context of SHM for CI.

Cloud architecture provides access to computation, storage and even
connectivity with easy access. However, these centralised architectures
can create delays and performance issues for devices and data that are
far away from a centralised public cloud or data center source. If the
analysis of the data is centralised in the cloud e.g., to analyse emergency
situations, any communication failure or delays in the response will
limit the operation and will affect human lives.

The architectures based on fog and edge computing represent
promising alternatives that complement cloud-based systems, especially
for a rapid response to emergency situations. Fog computing is a
computing paradigm introduced for the purpose of extending the cloud
capabilities (computation, storage and network services) closer to the
edge of the network [3]. Generally speaking, it is a geographically

* Corresponding author.
E-mail addresses: cmf@lcc.uma.es (C. Martín), dgarrido@lcc.uma.es (D. Garrido), luisll@lcc.uma.es (L. Llopis), tolo@lcc.uma.es (B. Rubio), mdr@lcc.uma.es

(M. Díaz).

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

https://doi.org/10.1016/j.csi.2021.103600
Received 24 November 2020; Received in revised form 30 September 2021; Accepted 30 October 2021

mailto:cmf@lcc.uma.es
mailto:dgarrido@lcc.uma.es
mailto:luisll@lcc.uma.es
mailto:tolo@lcc.uma.es
mailto:mdr@lcc.uma.es
www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2021.103600
https://doi.org/10.1016/j.csi.2021.103600
https://doi.org/10.1016/j.csi.2021.103600
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2021.103600&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Standards & Interfaces 81 (2022) 103600

2

distributed computing architecture connected to multiple heteroge
neous resource-limited devices (network devices, mini data centers,
lightweight servers) that forms a bridge between the cloud and the edge
of the network to facilitate the deployment of new IoT applications. The
edge computing concept is interchangeable with fog computing [4].
Possibly, the key difference is the location inside the IoT network where
the processing of data is performed. In the case of fog computing, the
data is processed as close as possible to the IoT devices, while edge
computing pushes the limits even further by allowing IoT devices and
connected gateways to process some data locally. These two paradigms
reduce the latency and the bandwidth in the communications between
the IoT and cloud systems, which are highly time-sensitive in SHM. More
recently [5], these architectures have been accompanied with light
weight virtualisation technologies like containers (e.g., Docker), which
have enabled a lightweight way of scaling and reallocating components,
applications and services. Due to their lightweight nature, they can be
installed in a wide range of systems including embedded devices like a
Raspberry Pi [6]. Consequently, these technologies enable fault toler
ance through orchestration systems (e.g., Kubernetes) and lightweight
horizontal and vertical migrations [7] in fog/edge architectures, which
are needed to meet the time requirements in mission-critical systems and
to balance the system load when required.

Despite the advances provided by fog/edge architectures and light
weight virtualization technologies to mission-critical applications, their
management and deployment still require a lot of manual processes. A
challenge in these mission-critical environments is how to facilitate the
management, monitoring and configuration in a versatile and simple
way. In this paper, an SHM Edge/Fog/Cloud architecture for CI is
defined where the target environments are easy to install and extremely
versatile, allowing users to design, install and read data in any type of
infrastructure. The main goal of this architecture is to facilitate, in a
flexible and very versatile way, the monitoring, configuration and
management of the complex CI deployments with the benefits of a fog/
edge architecture. The whole process of an SHM deployment is
addressed by this architecture, from the monitoring nodes to the infra
structure management until the data analysis for the damage detection.
All these steps are provided in a common interface that helps and re
duces maintenance operations for administrators and final users in their
daily tasks on civil infrastructures. This work has been validated in a
civil infrastructure for damage detection.

The main contributions of this approach to improve control over civil
infrastructures are:

• We propose a hierarchical (edge-fog-cloud) architecture to manage
structural health monitoring applications.

• The architecture enables users to largely customise and improve
their deployments and monitoring solutions.

• Each layer (edge, fog, cloud) has its own function with the over
arching goal of reducing the latency response for critical situations
(damage detection).

• The hierarchy is scalable from the cloud, fog and edge perspectives
with the benefits in terms of latency response and bandwidth
brought by adopting this architecture.

• The architecture has been validated in a real Tunnel use case.

Our proposal uses a novel combination of up-to-date technologies.
To the best of our knowledge, this combination has been used for the
first time in the domain of Structural Health Monitoring. Next, we
highlight the motivation for using these technologies and how they help
to improve our architecture.

• Internet of Things. Traditional SHM technologies used monolithic
ad-hoc architectures that cannot be reused. Moreover, many of the
components of a solution (hardware or software) could not be
replaced in an easy way. By using IoT technologies and the proposed

solution we obtain more flexible solutions where components can be
easily replaced, deployed and configured by final users.

• Edge-Fog-Cloud Computing. This is one of the stronger points of our
proposal. As shown in this paper, the use of such hierarchical ar
chitecture allows taking several benefits. Mainly, latency and band
width usage are reduced, which are required features for mission-
critical applications like SHM. Other related advantages are scal
ability, dynamic deployment and stronger fault tolerance.

• Lightweight Virtualization. The use of software containers provides
several advantages to our architecture. First of all, it allows easy
deployment of the analysis techniques. These containers include all
the required dependencies. As a result, smaller self-contained pieces
of software can be distributed. Second, the use of containers through
orchestrators such as Docker Swarm, allow efficient management of
computational resources including CPU, memory or storage. Finally,
containers can be easily redeployed or moved where they are more
convenient for the tasks they have to do (i.e. along with the fog or
cloud).

The rest of the paper is organised as follows. In Section 2 related
work is discussed. Section 3 presents the proposed SHM architecture and
all of its components. In Section 4 we describe a real use case scenario
where the SHM architecture has been validated. An evaluation of the
architecture is shown in Section 5. Finally, Section 6 discusses the
conclusions and future work.

2. Related work

There seems to be a broad consensus [8], [9], [10] in regard to the
limitations of the Cloud when considering the huge data volume
generated by IoT applications. Primarily, the bandwidth limitation and
high latencies are considered the two most important problems related
to the IoT-cloud relationship. Most of these approaches present fog as a
complementary alternative to cloud providing solutions to these prob
lems where the fog nodes can work, storing information, providing
computational resources and communicating only a subset of processed
data to the cloud. Our work follows the same approach. As the evalua
tion results show, latency and bandwidth are reduced in a fog archi
tecture, which is very important for scenarios like CI monitoring.

To the best of our knowledge, only a few works have proposed a fog/
edge architecture to reduce the execution latency in SHM. In [11], a
similar approach as this work is presented. A framework for SHM with
fog computing that transmits data to the cloud with 5G networks is
presented. This work presents a novel solution for power saving and
maximising the lifetime of the WSNs by the definition of cluster heads in
the IoT devices for sending data to the Fog. Our architecture provides all
the necessary components to facilitate the management, monitoring and
deployment of SHM solutions that can be easily moved thanks to its
containerisation. Moreover, that work has been evaluated only theo
retically whereas the framework proposed in this paper has been vali
dated in a civil infrastructure. In [12], the authors demonstrated a
promising performance and opportunity of adopting LoRA and a Fog
computing architecture in places where there is no availability of
internet connection in a smart health monitoring system. In this paper,
the proposed solution can also be applied to environments with limited
connectivity like the Tunnel deployment used for validation. Atmo
sphere [13] presents a context and situational-aware collaborative IoT
architecture based on three-tiers, complex event processing and
agent-oriented software. Two-way communications are allowed among
the three tiers of the architecture, which is different to our proposal
where our edge-fog-cloud levels communicate only from lower to upper
levels more focused on reducing latency and delegate computation to
upper levels.

In [14] an interesting survey on state-of-the-art IoT literature is
presented. In this survey, the authors investigate enabling technologies,
services and open research issues related to the Cloud-to-Things

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

3

continuum. They propose an architectural framework based on
Fog/Edge computing-based IoT (FECIoT), which considers load
balancing, resilience, fault tolerance, data sharing and reduction in the
Cloud-to-Things communication. Most of these features are present in
our system. The authors also mention vertical and horizontal commu
nication within the IoT system. In our approach, the use of containers
helps cover this feature. Finally, they present several architectural styles
with several layers. In this sense, our approach follows a four-layer ar
chitecture (sensing, network, service and application) where the service
layer includes data analysis and the application layer provides the user
interface.

The use of microservices in IoT is explored in [15]. In this approach,
the authors use linked-microservices as a way of distributing the
computation across different computing nodes in the IoT architecture.
Using this approach, they try to reduce the latency and bandwidth of IoT
applications. They explore four different architectures namely cloud,
fog, hybrid and fog+cloud with an evaluation of several machine
learning algorithms and different types of datasets. They conclude that
service decomposition reduces the data consumption by 10% - 70%
depending on the architecture, algorithm and dataset. In our approach,
we use containers as a way of service decomposition. In our containers,
we execute different algorithms in a similar way to that proposed in that
paper.

Fault tolerance is very important when considering SHM, where
computer security in terms of availability and integrity is mandatory.
The work presented in [16] presents a survey of fault-tolerant tech
niques based on redundancy for the IoT. They distinguish three different
areas in an IoT system: sensing, routing and control. The first two areas
have fairly developed techniques. However, the control area is less
developed and is based on state-machine replication with consensus
protocols. Fault tolerance in our approach is based on replication tech
niques using containers. Master nodes are responsible for the monitoring
of worker nodes. In the case when worker node fails, the manager can
deploy new instances to maintain availability and integrity. Several of
the experiments also show how we can increase the number of managers
with a low penalty, which contributes to enforcing the QoS of our
system.

The work presented in [17] has some similarities with ours. The
authors use Principal Component Analysis (PCA) as a data reduction
method for SHM in the monitoring of a viaduct. However, they have to
address the memory and computing limitations of embedded low-cost
gateways. In their work, they use a memory-efficient implementation
of the streaming History PCA algorithm. They obtain good compression
factors together with a significant memory reduction. The final signal
can be reconstructed with a low degradation. The work in [6] also has
some similarities with ours. The authors use containers, and an
open-source cloud solution (OpenStack) and Raspberry Pi clusters like
our approach. They aim to find a Platform as a Service (PassS) solution
that can be used for service packaging and orchestration. Our solution is
more focused on SHM in civil infrastructures. Our contribution provides
an Edge/Fog/Cloud infrastructure with the aim of reducing the latency
and bandwidth of analysis techniques in SHM deployments. Further
more, it is intended to facilitate the management and monitoring of SHM
deployments, for which a system and a Web management user interface
have been provided so that administrators can easily manage all the
SHM components of civil infrastructures like tunnels. Work presented in
[18] is more focused on unattended WSN networks. They present the
concept of Deploy&Forget network where WSN can be deployed in an
easy way to ensure unattended and long-lasting operation. However,
different levels of edge-fog-cloud are not considered and they are out of
scope in this work.

Deep learning techniques applied to fog and cloud are explored in
[19]. The authors present EdgeLens, a framework that is able to work in
two different modes (High-Accuracy mode or Low-latency mode)
depending on whether data obtained from the sensors is compressed or
not. The architectural design of the solution is similar in some aspects to

our proposal. They have input sensors, gateways (collecting information
from the sensors) and Aneka nodes deployed as containers in the Fog or
the Cloud (responsible for executing deep learning algorithms). An
important aspect is how the models are trained. In this case, the training
of the models is done separately on high-performance computers. Some
parameters such as accuracy, response time, network bandwidth or
power consumption are studied in this paper. Both works use different
analysis techniques: deep learning versus modal analysis, which can also
be complementary [20]. An advantage of our approach can be the
absence of the training phase, which is not required in our case. On the
other hand, deep learning techniques can be more flexible to changes in
the system.

Random Forest techniques for prediction are used in [8]. This paper
presents a conceptual framework for the IoT. The authors recognise the
importance of IoT data analytics and present several limitations of
only-cloud approaches (e.g. bandwidth and high latency). As an alter
native, they propose an Analytics Everywhere framework composed by a
network of tasks using edge, fog and cloud resources. This framework is
composed by three different component types: resource capability
(computing power), analytical capability (analytical tasks) and data
life-cycle (raw, aggregated or filtered data). The most difficult task is to
determine how to map different analytical capabilities with the most
appropriate resource capability based on a data-life-cycle of an IoT
application. Our approach is different in several aspects: we leverage
containers capacity for auto-scaling, fault tolerance and replication. This
work defines its own network of tasks, resources or analytical tasks. We
think our approach is more interoperable in the sense we use a widely
used technology based on Docker containers. Second difference is
related to the purpose of this work. They are more focused on obtaining
insights from the IoT. Instead, we want to detect defects on
infrastructures.

Clemente et al. [9] present a Distributed Cooperative Data Analytics
(DCDA) middleware for the IoT. DCDA enables a high-level vision of the
system at the edge. DCDA considers three different levels of processing
and analytics. On the low level, they control actions that require im
mediate attention such as alerts and notifications. On the medium level,
they are able to generate analytics information using historical data.
Finally, the high level is more oriented to decision-making processes.
Nodes can work in two different modes: Task sharing mode, where
several nodes work together to solve a specific problem, and Cooperation
mode, where a node uses resources from other nodes. Fault tolerance,
scalability and energy consumption are also studied in this proposal.
DCDA has been applied to several seismic use cases that require a
real-time response in a similar situation to our use case. This work also
shares with our proposal the division of processing at different levels.
However, it is different in the sense they use every level for a different
purpose. The lowest level is used for alerts and notifications. The in
termediate level is associated with real-time analytics with data visu
alization and the higher level is devoted to decision-making processes.
They also use a middleware that is equivalent to our container-based
approach.

3. Structural health monitoring architecture

The main goal of the SHM architecture is to facilitate the monitoring
and management processes involved in the deployment of civil in
frastructures. Fig. 1 shows an overview of this SHM architecture. At the
bottom the edge nodes obtain the information from the monitoring
nodes and upload it to the Container Infrastructure, which has been
provided over a Cloud/Fog scheme, which does not only enable the easy
portability and scalability of the system when required, but also reduces
the latency response and bandwidth of the communications between the
IoT and the cloud, which are desirable aspects in applications that
require a low latency and generate large amounts of data, like mission-
critical applications.

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

4

3.1. Monitoring nodes

The IoT part of the architecture comprises a self-install kit for
Structural Health Monitoring of Civil Infrastructures. It is easy to install
and versatile, allowing users to design, install and read data in any type
of infrastructure. Monitoring nodes are the hardware components which
integrate the necessary sensors such as accelerometers and magnetom
eters to monitor the CI. The LoRA wireless communication technology
[21] has been adopted in the nodes for its low power consumption (they
can run on batteries for years), long-range (they can be deployed in large
critical infrastructures) and low interference. LoRA is a type of
low-power wide-area network (LPWAN) designed to allow long-range
communications at a low kbit/s rate between things.

The flexibility of monitoring nodes allows users to select the sensors
to integrate into the node to gather the necessary data to analyse the
structural health in the infrastructure. The final users by means of a Web
application can decide on which sensors to use. In fact, each node can
include different sensors depending on the place in the CI where it is to
be installed. In Fig. 2 a prototype of the monitoring node used in this
architecture is shown. The hardware used for the monitoring nodes
(pointed in Fig. 2 in the same order as below) is as follows:

1. SD Card Module. To store the measurements in case of no connection
to the edge node.

2. Lora Module RN2483 16311AD connected to a Xbee explorer.
3. Magnetometer MAG3110.
4. RTC DS1307. To establish a time in the monitoring nodes.
5. Camera ArduCam for tunnel photogrammetry. Not used in this work.
6. Accelerometers ADXL362 (2 axis) and ADXL345 (3 axis). Mainly

used in this work for tunnel monitoring analysis.
7. Temperature and humidity DHT22 sensor.
8. Moteino Mega. It is the brain of the monitoring node, chosen for its

low power consumption (not seen in the Figure).

3.2. Edge nodes

Edge nodes are the devices that are placed at the border of the
network, which enable the connection between the Container

Infrastructure and the monitoring nodes. The edge devices are also
responsible for receiving and filtering the sensor measurements from the
monitoring nodes as configured in the Monitoring and Management
Web UI. For instance, once a CI has been created in the Web UI by the
final users, a monitoring configuration can be designed. This

Fig. 1. Structural Health Monitoring Architecture.

Fig. 2. A prototype monitoring node with a set of sensors for monitoring a civil
infrastructure including a three-axis accelerometer, temperature and humidity
sensors and a Arducam.

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

5

configuration includes the desired measurements to be monitored from
the monitoring nodes and their monitoring frequency, among other
configurations. Once the configuration has been confirmed by the users,
the corresponding edge devices receive all the required information to
enable that monitoring. From that moment on, the edge devices send
requests to the corresponding monitoring nodes to configure their
monitoring as defined in the Web UI and the edge devices start receiving
the measurements in the times configured in the system. The edge de
vices provide two means of communication: 1) LoRA for both the
incoming and outgoing connection with the monitoring nodes; and 2)
the communication with the Container Infrastructure through 4G (for
the connection with the cloud) and Ethernet (for the connection with the
Fog). Therefore, the edge devices are the LoRA head nodes in the
communication with the monitoring nodes. The edge devices in this
architecture are usually deployed in a Raspberry Pi. Monitoring nodes
are synchronised with the edge devices to minimise time synchronisa
tion errors in damage detection [22]. The communication between the
monitoring nodes and the edge nodes does not use a standard IoT pro
tocol like CoAP or MQTT, but rather a proprietary protocol has been
used. However, one of those standard protocols will be considered as
future work to improve the interoperability between the monitoring
nodes and the edge devices.

To avoid communication interruptions and losing any measurements
received from the monitoring nodes, all the measurements received in
the edge devices are stored in a circular local file system. Then, a peri
odic task is in charge of processing the stored measurements and
uploading them to the Container Infrastructure when the communica
tion is available. Bear in mind that the edge devices are also resource-
constrained devices and for large deployments, replication is required
to communicate with the monitoring nodes.

3.3. Container infrastructure

Monolithic software designs do not allow the scalability of the ar
chitecture, nor managing different levels of load at run-time. For that
reason, all the components that comprise the architecture have been
incorporated as microservices inside a container infrastructure in order
to enable both scalability, high availability and vertical and horizontal
migrations. Container virtualisation technologies have garnered a lot of
attention in the last few years due to their features: fast processes of
building containers, high density of services per container and high
isolation between instances [23]. In contrast to traditional hypervisors,
lightweight virtualisation technologies implement the virtualisation of
processes through containers in the operating system. This reduces the
overhead of the hardware and virtual device virtualisation in traditional
hypervisors, permitting the deployment of a high density of containers.

Therefore, the use of this virtualisation technology can be applied in
resource-constrained devices, such as edge gateways. Docker1 is the
most representative example of a container platform and it has been
adopted in this architecture as the container infrastructure. Another
reason to choose Docker is that it is also well-supported by all the
infrastructure deployed in this work, e.g., the portable fog cluster. The
following components have been incorporated and distributed inside the
Docker containers comprising the software architecture:

• Monitoring and Management Web UI. This component serves the
management and monitoring Web UI that will be used by the
registered users in the system. This Web UI has two roles: the
administrator, who is responsible for managing all the deployments,
the registered users and the system configuration; and the local user,
who only has access to monitor and manage his/her own
deployment.

• RESTful API. The RESTful API is used both by the Web UI to serve
the user’s information and by the edge nodes to upload the mea
surements from the civil infrastructures. Therefore, this component
represents both the data source and data sink of the system. This
inter-operable API can also be integrated with third-party systems
that are intended to be integrated within the system [24].

• Data storage. The data storage is responsible for storing all the in
formation involved in the architecture. This information includes the
measurements received in the RESTful API, the registered users in
the system and the defined configuration for the system’s
deployments.

• Damage detection analysis. This component is responsible for
executing the data analysis tasks that will process the measurements
received from the civil infrastructures for damage detection.

• Docker Swarm Visualizer. Docker Swarm Visualizer is an open-
source project that provides a user-friendly Web UI for visualising
the nodes belonging to a Docker cluster and the containers deployed
on them.

• Portainer. The Docker-project Portainer2 has been used to manage
the Docker cluster and their Docker resources (containers, images,
volumes, networks and more). Portainer is a management Web UI
with a community edition that allows the Docker cluster to be easily
managed without having to write multiples lines of script code.

Docker allows the deployment and management of containers.
However, other suitable characteristics in container systems such as
orchestration and clustering are not provided in Docker itself. These are
provided by another Docker related project, Docker Swarm3. Docker
Swarm enables the orchestration of containers, providing high avail
ability and load balancing on them through container replicas and
monitoring. Docker Swarm monitors each node of the system (cloud and
fog) and allocates and distributes the containers based on the resource
utilisation and the availability of the nodes. The configuration of the
containers, such as the number of replicas and the port-forwarding to the
host, is defined in a configuration file, known as the compose file. This
file is used by Docker Swarm to obtain the container infrastructure
configuration and needs in order to distribute the containers throughout
the cluster. Therefore, Docker has been adopted as the container plat
form and Docker Swarm as the orchestration platform in the SHM ar
chitecture. To facilitate the visualisation of the containers in the cluster,
we have used Docker Swarm Visualizer. Finally, the tool Portainer has
been adopted for the management of the Swarm cluster and the con
tainers. Both Docker Swarm Visualizer and Portainer are single light
weight Docker containers, therefore they can be easily deployed as
services like the rest of the components of the container infrastructure.

3.4. Deployment of the container infrastructure in the fog and the cloud

Fog and cloud are both suitable candidates for allocating the
container infrastructure. In fact, it could solely be deployed in the cloud
along with its benefits of global access, scaling and high availability.
However, as discussed in the Evaluation, the Fog provides a better
performance for the timely microservices of the SHM system. For this
reason, the damage detection analysis, which is the most critical task
since it allows the identification of damages on civil infrastructures is
executed in the Fog. The rest of the components such as the monitoring
and management Web UI, the data storage and the RESTful API are less
critical and are placed initially in the cloud. Nevertheless, thanks to the
continuum monitoring and orchestration of the container infrastructure
provided by Docker Swarm, these components can be easily relocated
(downgraded or upgraded) at run-time depending on the current state
and load of the infrastructure (fog, cloud). In this scenario, the edge

1 Docker: https://www.docker.com/

2 Portainer: https://www.portainer.io/
3 Docker Swarm: https://docs.docker.com/engine/swarm/

C. Martín et al.

https://www.docker.com/
https://www.portainer.io/
https://docs.docker.com/engine/swarm/

Computer Standards & Interfaces 81 (2022) 103600

6

nodes send the needed measurements for the damage detection to the
fog, whereas other measurements that are stored and not needed in the
analysis such as temperature and humidity are directly sent to the cloud.
Every service is localised by its hostname since the networking is
transparently managed by Docker Swarm, thereby in the case of service
displacement along the infrastructure this localisation is transparent to
the edge nodes.

On the other hand, this infrastructure could also be entirely deployed
in Fog, and this can be required in the cases where there is no Internet
connection and a portable Fog is used. However, the benefits that bring
the combination of both paradigms in terms of adjusting the whole
infrastructure to the current needs of the system and the reduction of
latency provided by the Fog deserve the utilisation of both paradigms for
mission-critical applications.

3.5. Monitoring and management web UI

The Monitoring and Management Web UI provides an accessible,
simple and unified interface to the final users so that they can manage
and visualise the SHM deployments of the system. One of the first ac
tions to operate with the system is the creation of a new civil infra
structure deployment. This is a simple step where users define the
location of the deployment, its address and related information.

Over the deployments, users can define the monitoring of the in
frastructures. Once users have defined the basic information of the
monitoring such as access to the power grid (to be taken into account in
the installation of the monitoring nodes), users allowed, total moni
toring distance and pedestrian access, they can select the number of
monitoring nodes and their sensors to be deployed by specialised tech
nicians in the civil infrastructure as shown in Fig. 3. This interface is one
of the possible interfaces offered by the Management Web UI and allows
administrator users to configure the basic information about the moni
toring of the infrastructure such as the monitoring name, the number of
nodes, and type of sensors, as described before. This is the first interface
that administrators face when setting up new monitoring of a critical
infrastructure. Next, they can configure the number of monitoring in
tervals and the time of the day when the monitoring nodes should obtain
the configured measurements.

Once the civil infrastructure deployment and monitoring configu
rations have been defined, a token per monitoring is generated in the
system, which has to be included in the edge devices configuration.
Tokens enable edge devices to upload the monitoring data and establish
a connection with the Container Infrastructure in a secure way.

Finally, when the monitoring nodes have been installed by speci
alised technicians and configured through the edge devices and the
system, the SHM architecture starts receiving monitoring data at the
time defined, which can be visualised in Web UI as shown in Fig. 4. Users
can filter the monitoring data selecting the measure to visualise and the
date interval.

The whole process for configuring an SHM in a civil infrastructure
from when it is registered until the system starts receiving monitoring
data is summarised in Fig 5. Through this interface administrators and
end users can easily configure all the steps involved in an SHM
deployment in a civil infrastructure.

3.6. Damage detection of the civil infrastructures

To evaluate the real-time status of the civil infrastructures, a modal
analysis of the monitoring data received is performed in the architec
ture. Modal analysis refers to the study of the inherent dynamic prop
erties of engineering infrastructures in the frequency domain [25].
Modal analysis is used to formulate a mathematical model of dynamic
behaviours and is very important to determine the status of the
infrastructures.

Natural frequencies and mode shapes are two of the modal param
eters extracted from the modal analysis. Natural frequencies are the

frequencies at which an infrastructure tends to oscillate in the absence of
damping and driving forces. Natural frequencies are commonly used to
determine the properties of an infrastructure at the design phase. For
instance, it is important to design infrastructures that do not match the
frequency of expected earthquakes in a region, otherwise, both fre
quencies can join and amplify and the infrastructure can experience
structural damage. On the other hand, mode shapes are the patterns of
motion of these infrastructures at the natural frequencies. For the modal
analysis, the acceleration data (3-axis sensor) is used. In particular, we
used the operational modal analysis (OMA), applied successfully in our
previous work for high-speed railway infrastructure monitoring [26].
The analysis performs the frequency domain decomposition (FDD)[27],
where the relation between the tunnel monitoring data x(t) and the
measured response y(t) can be expressed as shown in formula (1).

Syy(ω) = H∗(ω)Sxx(ω)HT(ω) (1)

where Syy(ω) is a matrix (r x r) of the power spectral density (PSD) of the
response, and r the number of time series; H(ω) is a matrix (m x r) of
frequency response function (FRF) of the system, and superindices T and
* indicate respectively the transposed matrix and conjugated complex
matrix; and Sxx(ω) is a matrix (r x r) of the PSD of the input.

The FRF matrix can be expressed in the form of residuals and poles as
shown in formula (2).

H(ω) =
∑n

k=1

Rk

ω − λk

R∗
k

ω − λ∗k
(2)

where n are the number of models; λk is the pole; and Rk is the residue. Rk

can be expressed as Rk = ϕkγT
k , where ϕk and γk are the mode shape

vector and the modal participation vector, respectively
Through an orthogonal decomposition, the spectral eigenvectors and

eigenvalues of the system are obtained through the spectral density of
the response, as shown in formula (3).

Syy(ω) =
∑M

k=1
φk(ω)θk(ω)φ∗T

k (ω) (3)

where M is the number of decompositions; φ(ω) are the spectral eigen
vectors of the system; and θ(ω) are the spectral eigenvalues of the sys
tem.

Near a peak, the eigenvectors and eigenvalues of the first order are
dominant in the response of the system in terms of energy; and with
these values can be obtained the natural frequencies and mode shapes.
The ith mode shape (mi) associated with the ith natural frequency (ωi)

can be estimated using the first-order eigenvector: mi = φi1.
The procedure carried out for the OMA analysis is as follows:

1. The acceleration and sampling frequency from the tunnel measured
by the monitoring nodes are obtained through the edge devices.
Measurements are filtered (Butterworth second-order low-pass and
high pass filters) and sent by the edge devices to the Container
infrastructure.

2. Next, in the Container infrastructure, for each axis, the PSD is
calculated and then combined into the cross-spectral density (CSD)
matrix using the Welch calculation method. The CSD calculates the
energy distribution through two synchronised time series of the same
structure but with different locations of the sensors.

3. The decomposition of the CSD matrix is performed to obtain the ei
genvectors and eigenvalues of the system.

4. The natural frequencies and associated mode shapes will be obtained
through the eigenvalues and eigenvectors of the first order
decomposed.

5. Finally, natural frequencies and mode shapes are checked for any
deviation.

Damage and even its location in civil infrastructures can be detected

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

7

by monitoring the changes and deviations in the natural frequencies and
mode shapes [28]. Therefore, continuous monitoring of the dynamic
characteristics of civil infrastructures is necessary to determine their
structural health. In the work presented here, modal parameters are
identified by the peak-picking method. However, other methods like
curve-fitting through the Least-Squares Complex Frequency Domain
(LSCF) estimator from the Python open-source modal analysis software
OpenModal [29] can be used. Curve fitting is the process of matching a
mathematical expression to a set of empirical data points.

In this work, the modal analysis is performed to detect damages in
the infrastructure. By real-time monitoring the civil infrastructures any

alteration will be detected in a very short of time. In the case of damage
detection, an alarm will be generated, which can be visualised by the
administrators and end users in the Monitoring and Management Web
UI.

Thanks to the use of a fog infrastructure, this analysis, which can take
a considerable amount of time and produce a large amount of data, can
be distributed across, over or throughout the Fog to reduce the response
time and actuate as soon as possible in the case of changes in the modal
parameters.

Fig. 3. Monitoring configuration of a civil infrastructure deployment.

Fig. 4. Monitoring data received from a monitoring node in a civil infrastructure deployment.

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

8

4. Use case: An Edge/Fog/Cloud architecture for SHM of a tunnel

The architecture has been evaluated as an alternative to a cloud-
based SHM system of a tunnel. This system is a real case located in the
southeast of Spain where a structural health monitoring analysis was
necessary. Three monitoring nodes were registered in the civil infra
structure and installed on one side of the tunnel as shown in Fig. 6. The
monitoring nodes had integrated some sensors such as magnetometer,
temperature and humidity sensors and 3-axis accelerometers. The
strength, temperature and humidity measurements are stored in the
system and can be visualised in the Web UI. However, the most signif
icant measurements are the accelerations since the modal analysis uses
them to detect alterations in the structural health of the infrastructures.
The accelerations were configured in the Web UI to be collected every
ten minutes for ten seconds with a frequency of 800Hz. An edge node
with a 4G connection was deployed in the tunnel to serve the monitoring
nodes and connect them with the cloud. A portable fog was also
deployed in the tunnel and connected through Ethernet with the edge
device. The fog infrastructure was deployed during the deployment of
the monitoring nodes and edge devices in the tunnel and was used for
the evaluation of this work. During installation, one lane of the tunnel
was closed and traffic was reduced. After the deployment and evalua
tion, the fog infrastructure was uninstalled due to the lack of permissions
and space in the tunnel to position it. As future work, we intend to study
the feasibility of integrating a portable fog infrastructure like this one
inside the tunnel itself to have it permanently. The data size for each
data collection was around 2,9MB, which is a considerable amount of

data per monitoring node to evaluate the advantages and disadvantages
of the edge/fog schema when compared with the traditional cloud-based
scenario.

5. Evaluation

The evaluation aims to measure the performance of the SHM archi
tecture in two different scenarios. On the one hand, the container
infrastructure has been deployed in a commercial cloud platform. This is
a traditional scenario where the main limitations in the IoT are supplied
by cloud computing: processing power, storage and networking at the
expense of an increase of latency response and bandwidth. In this sce
nario, the edge nodes are still placed in the architecture and continu
ously send the measurements to the Google Cloud platform as
configured in the system. The connection of the edge nodes to the
Google platform is through a 4G connection. On the other hand, we have
a portable fog computing infrastructure placed between the edge devices
and the cloud platform, which is intended to reduce the latency between
the IoT and the cloud platform in the modal analysis. This portable fog
infrastructure was connected through Ethernet with the edge devices in
the tunnel. The fog computing infrastructure comprises a portable
cluster of Raspberry Pi model 3 (1GB RAM, 64GB micro-SD) connected
through a Cisco Catalyst 2960 10/100 switch. Raspberry Pi is an
embedded device that supports Docker containers [6] and allows us to
have a 24-node fog computing infrastructure at a low price (around
2000 EUR in total). The Raspberry Pi cluster is shown in Fig. 7 and

Fig. 5. The process of configuring an SHM in a civil infrastructure.

Fig. 6. Monitoring nodes installed in a Tunnel deployment of the architecture
in Spain. Fig. 7. Raspberry Pi cluster used as Fog infrastructure in the SHM architecture.

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

9

known as FogPi [30]. Each layer of the cluster and the grey boxes to
distribute the power have been printed with a 3D printer. We have also
used HypriotOS4, which is a minimal Debian-based operating system for
Raspberry Pi, optimised and designed to run Docker containers.

Since we only could deploy 3 monitoring nodes and one edge device,
to stress the Fog/Cloud architecture, we collected the data gathered by
the edge device from the monitoring nodes on the Tunnel (around
2,9MB per monitoring node) to execute up to 64 simultaneous clients
(edge devices) sending data to the fog infrastructure. The fog infra
structure was deployed in the Tunnel and the gathered data from the
edge device was sent concurrently by a PC (where all the clients were
executed) to provide a higher data ingestion in the architecture. Thanks
to this, we have up to 64 edge simulated devices for further stressing of
the architecture, otherwise we would only have one edge device
deployed in the tunnel which would generate a lower load. Therefore,
edge devices are simulated through a PC during the evaluation in the
Tunnel to stress the architecture. The infrastructure for the evaluation
thus comprises a PC, our FogPi infrastructure and Google Cloud.
Generally, even though there could be large CIs, in an SHM deployment
there is usually a single edge node. Thus this evaluation aims to evaluate
the performance of the architecture from one to multiple SHM de
ployments. We developed a Python script to simulate the behaviour of
the edge nodes sending data to be processed by the modal analysis in the
fog/cloud. This script creates one thread per client sending data and was
executed on a Windows 10 PC with 16GB of RAM. This Python script
also measures the latency response and throughput of analysis per
formed in the fog/cloud from the moment the measurement is sent until
the response is obtained. All evaluations were carried out 100 times
taking the average values. Both in the cloud and the fog, the modal
analysis was deployed inside Docker containers through Docker Swarm
and Portainer.

The operational modal analysis described in Section 3.6 has a time
and space complexity marked by the frequency domain decomposition
performed [31]. The solution proposed based on Edge/Fog/Cloud
computing in this paper does not alter the complexity of this approach
since each analysis component is executed in an isolated way through
Docker containers, and replication only provides high availability,
load-balancing and fault tolerance.

5.1. Latency response and throughput

In the first evaluation, we have measured the latency response and
the throughput in the Fog and the Cloud by multiple simultaneous edge
nodes sending a full monitoring from the tunnel deployment (around
2,9MB). Bear in mind that the connection between the simulated edge
nodes and the cloud platform is provided through a 4G connection (the
one we adopted in our previous deployments), and the connection be
tween the fog and the edge nodes is through Ethernet. We consider that
our fog cluster can be portable to civil infrastructures in order to have
wired connection with the edge nodes.

To have equitable conditions both in the Fog and the Cloud, one
replica of the modal analysis with 1GB of RAM has been deployed for
this evaluation. Fig. 8 shows the latency response in both scenarios. The
results demonstrate that with one edge node the latency response is 2,87
times higher in Google cloud, whereas with 32 nodes the latency is 4,4
times higher. This is due to the network latency since in the cloud sce
nario all the information has to go through the network whereas in the
Fog the computation is closer.

The throughput of this evaluation is shown in Fig. 9. The higher
throughput in both scenarios is achieved with low numbers of edge
nodes, which is predictable due to the number of connections. Overall,
the Fog achieves a higher throughput than the Cloud.

5.2. Data size impact on latency

In order to evaluate the impact of the monitoring data size on the
latency response, another evaluation was carried out adjusting the
monitoring data size by controlling the frequency. This helps us to
decide when the Cloud is more feasible than the Fog. In this evaluation
we have also increased the processing power both in the cloud with 8
CPUs and 8GB of RAM (the maximum with our plan); and in the Fog, by
having 16 container replicas distributed in the cluster. This is not
entirely unfair, as we suppose that the CPU frequency in Google Cloud is
much higher than our fog cluster (700 Mhz per Raspberry Pi). Figs. 10,
11, 12 show the latency results of the Fog and Cloud with different
monitoring data sizes and 1, 32 and 64 edge nodes respectively. With the
increase of the processing power both in the Cloud and the Fog, the
system can deal with more edge nodes and the latency response is lower
than with 1 replica (Fig 8).

In relation to the monitoring data size, in the three cases the latency
response differs in centiseconds with small data sizes (a few of Hz).

Fig. 8. Average latency response of the modal analysis in the Fog and the
Google cloud.

Fig. 9. Average throughput of the modal analysis in the Fog and the Goo
gle cloud.

4 HypriotOS: https://github.com/hypriot

C. Martín et al.

https://github.com/hypriot

Computer Standards & Interfaces 81 (2022) 103600

10

However, when the monitoring data size increases, especially with large
amounts of monitoring nodes, the difference turns to an increase of
seconds in the Cloud. We can conclude that with a lightweight

monitoring without real-time requirements a cloud platform could be
adopted without the need to invest in a fog infrastructure. Nevertheless,
in the case of large amounts of monitoring data required for processing
units like modal analyses and the necessity of a low latency, the fog
provides an alternative to be considered.

5.3. Replication

Thanks to the capabilities offered by the Container Infrastructure in
terms of lightweight portability and distribution, the system can scale
(due to high amounts of load) and downgrade (to release used resources)
when required. Figs. 13 and 14 respectively show the impact of the
modal analysis in container replicas to the latency response and
throughput in the architecture. The replication is achieved by deploying
container replicas of the modal analysis component through the Por
tainer web UI. The replicas are continuously monitored through Docker
Swarm and are deployed on both the portable fog and the cloud plat
form. It can be seen that with a higher number of replicas, the system can
offer a higher quality of service (QoS). On the other hand, with a high
number of replicas the system can also have an overhead as shown in Fig
15, which zooms the latency response of the highest replicas. In this
architecture and the evaluation performed, the best performance is
achieved with 16 replicas.

In a Docker Swarm cluster, the cluster is managed by managers and a
group of workers which are continuously monitored are responsible to
execute the containers upon request. These managers also manage the
worker failures, fault tolerance and the load distribution in the system. A
failure in a one-manager cluster can take the cluster down. Therefore, to
have a fault-tolerant cluster the managers have to be replicated. Fig. 16
shows the latency response impact of having multiple managers in our
Fog cluster. For simplicity, we have performed this evaluation with 16
replicas (the best performance obtained in the latency response). The
results denote an increase of latency response (centiseconds) with an
increase of up to 4 managers, which is admissible given the higher level
of QoS in the architecture.

6. Conclusions and future work

In this paper, an Edge/Fog/Cloud Architecture for Structural Health
Monitoring (SHM) in Civil Infrastructures (CI) has been presented. The
main goal of this architecture is to facilitate the monitoring, configu
ration and management of complex CI deployments in a flexible and

Fig. 10. Latency response with 1 Edge node and different data sizes.

Fig. 11. Latency response with 32 edge nodes and different data sizes.

Fig. 12. Latency response with 64 edge nodes and different data sizes.

Fig. 13. Average latency response of the modal analysis in the Fog with
different numbers of replicas.

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

11

highly versatile way. These steps can be handled in a common interface
that helps both administrators and final users in their daily tasks and
reduce maintenance operations on CIs. For this reason, this architecture
enables the configuration of the IoT solutions together with their sensors
and monitoring intervals, the visualisation of the CI information and the
data processing to detect the structural health of the infrastructures in a
unified interface. To achieve this goal, this architecture aims to cover
most of the stack involved in a CI deployment: how the information is
obtained from the infrastructures (monitoring nodes); how the infor
mation is acquired and sent to the cloud/fog (edge nodes); an infra
structure to easily allocate the components in a Fog/Cloud architecture
(Container Infrastructure); the information processing (damage detec
tion of the infrastructures); and a unified interface to manage and
monitor the CIs (Monitoring and Management Web UI). State-of-the-art
paradigms and solutions such as fog computing and lightweight virtu
alisation adopted in this architecture not only allow the scalability and
portability of the system when required but also reduce the bandwidth

and latency response in IoT communications. In addition, the flexibility
of containers simplifies the integration of new analysis models for SHM
in the Fog.

This architecture has been evaluated as an alternative to a cloud
architecture deployed in a real civil infrastructure, a tunnel in the
southeast of Spain where several monitoring nodes are installed. The
evaluation performed shows how fog computing (through a cluster of
Raspberry Pis) can reduce both the latency and the bandwidth in the
communication between the monitoring nodes and the cloud. Moreover,
the lower processing time in the modal analysis in the Fog compared to
the Cloud is desirable for scenarios like CI where a low latency is
required. Finally, this architecture helped administrators in their daily
work of management and monitoring of the civil infrastructures. With
our proposal, administrators can remotely monitor the CI in real-time
using an application, which was previously performed by manual in
spection. Moreover, with this system they can easily configure the in
spection including node configuration, periodicity of inspections, etc.
Finally, it is not required to have a technical IT profile to use the system,
which is also an extra motivation.

As for future work, we have several directions planned on the
roadmap. On the one hand, an integration of the current advances in
LPWAN networks for the communication between the monitoring nodes
and the edge nodes is intended. This would enable the use of the wireless
technology LoRA with current IoT standards like CoAP, thus facilitating
the adoption of this architecture. Interesting alternatives can be based
on 6G [32], which can provide edge intelligence with ultra-reliable low
latency. On the other hand, this architecture can integrate our previous
work in [33] to provide monitoring nodes with fault tolerance, i.e., the
architecture would automatically detect service disruptions in the
monitoring nodes to adapt the processing and information acquired of
the CI with other available data sources deployed in the infrastructures.
Even though we can control the deployment of components in the cloud
and fog, a mechanism/algorithm that allows the dynamic portability of
the container infrastructure over the infrastructure would optimise the
architecture load and latency response when required. Streaming tech
niques [34] are also in our roadmap. When a huge volume of data has to
be processed, these techniques can help in data distribution, replication
and fault tolerance. Security is also a very important factor. We can try
to improve our proposal as outlined in [35].

Our solution is not restricted to SHM, but it is also extendable to
other fields where the benefit from a hierarchical architecture in several
tiers can be used. For instance, Cloud-based design and collaborative
manufacturing [36,37] are also several fields where our approach
edge-fog-cloud could be successfully applied.

Finally, in this work we address one of the main steps of an SHM

Fig. 14. Average throughput of the modal analysis in the fog with different
numbers of replicas.

Fig. 15. Average latency response of the modal analysis in the Fog with
different numbers of replicas (8–128).

Fig. 16. Average latency response of the modal analysis in the fog with
different numbers of managers.

C. Martín et al.

Computer Standards & Interfaces 81 (2022) 103600

12

system: the detection of damages. However, other steps [38] such as
damage localisation and quantification and the prediction of the
remaining useful life of infrastructures are also important in an SHM
system. We plan to extend this work by integrating techniques and
mechanisms to address these steps in SHM. Thanks to the adoption of
containers, these steps can be easily incorporated as new microservices
in the infrastructure.

CRediT authorship contribution statement

Cristian Martín: Software, Validation, Writing – original draft.
Daniel Garrido: Validation, Writing – original draft. Luis Llopis: Su
pervision, Conceptualization, Writing – review & editing, Funding
acquisition. Bartolomé Rubio: Supervision, Conceptualization, Writing
– review & editing, Funding acquisition. Manuel Díaz: Supervision,
Conceptualization, Writing – review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that there is no conflict of interest regarding the
publication of this manuscript.

Acknowledgment

This work is funded by the Spanish projects RT2018-099777-B-100
(“rFOG: Improving Latency and Reliability of Offloaded Computation
to the FOG for Critical Services”), PY20_00788 (“IntegraDos: Providing
Real-Time Services for the Internet of Things through Cloud Sensor
Integration”), and UMA18FEDERJA-215 (``Advanced Monitoring Sys
tem Based on Deep Learning Services in Fog’’). Funding for open access
charge: Universidad de Malaga/CBUA. Cristian Martín was with a
postdoc grant from the Spanish project TIC-1572 (”MIsTIca: Critical
Infrastructures Monitoring based on Wireless Technologies”).

References

[1] L. Alonso, J. Barbarán, J. Chen, M. Díaz, L. Llopis, B. Rubio, Middleware and
communication technologies for structural health monitoring of critical
infrastructures: a survey, Computer Standards & Interfaces 56 (2018) 83–100.

[2] M. Díaz, C. Martín, B. Rubio, State-of-the-art, challenges, and open issues in the
integration of internet of things and cloud computing, Journal of Network and
Computer Applications 67 (2016) 99–117.

[3] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet
of things. Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, August 13–17, Helsinki, Finland, ACM, 2012, pp. 13–16.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: vision and challenges, IEEE
Internet Things J. 3 (5) (2016) 637–646.

[5] R. Morabito, V. Cozzolino, A.Y. Ding, N. Beijar, J. Ott, Consolidate iot edge
computing with lightweight virtualization, IEEE Netw 32 (1) (2018) 102–111.

[6] D. von Leon, L. Miori, J. Sanin, N. El Ioini, S. Helmer, C. Pahl, R. Buyya, S.
N. Srirama. Fog and Edge Computing: Principles and Paradigms, John Wiley &
Sons, Inc., Hoboken, NJ, USA, 2019, pp. 145–170.

[7] C. Dupont, R. Giaffreda, L. Capra, Edge computing in iot context: Horizontal and
vertical linux container migration. 2017 Global Internet of Things Summit (GIoTS),
Geneva, Switzerland, 6–9 June, IEEE, 2017, pp. 1–4.

[8] H. Cao, M. Wachowicz, C. Renso, E. Carlini, Analytics everywhere: generating
insights from the internet of things, IEEE Access 7 (2019) 71749–71769, https://
doi.org/10.1109/ACCESS.2019.2919514.

[9] J. Clemente, M. Valero, J. Mohammadpour, X. Li, W. Song, Fog computing
middleware for distributed cooperative data analytics. IEEE Fog World Congress,
FWC 2017, Santa Clara, CA, USA, October 30, - Nov. 1, 2017, IEEE, 2017, pp. 1–6.

[10] S. Tuli, N. Basumatary, R. Buyya, Edgelens: deep learning based object detection in
integrated iot, fog and cloud computing environments, CoRR abs/1906.11056
(2019).

[11] D. Sinha, K. Doshi, M.R. Babu, An efficient approach to civil structures health
monitoring using fog computing as clusters through 5g network environment, Adv
Syst Sci Appl 18 (3) (2018) 123–143.

[12] J. Kharel, H.T. Reda, S.Y. Shin, Fog computing-based smart health monitoring
system deploying lora wireless communication, IETE Technical Review 36 (1)
(2019) 69–82.

[13] G. Ortiz, M. Zouai, O. Kazar, A.G. de Prado, J. Boubeta-Puig, Atmosphere: context
and situational-aware collaborative iot architecture for edge-fog-cloud computing,
Computer Standards & Interfaces (2021) 103550, https://doi.org/10.1016/j.
csi.2021.103550.

[14] B. Omoniwa, R. Hussain, M.A. Javed, S.H. Bouk, S.A. Malik, Fog/edge computing-
based iot (feciot): Architecture, applications, and research issues, IEEE Internet of
Things Journal 6 (3) (2019) 4118–4149, https://doi.org/10.1109/
JIOT.2018.2875544.

[15] B. Alturki, S. Reiff-Marganiec, C. Perera, S. De, Exploring the effectiveness of
service decomposition in fog computing architecture for the internet of things,
IEEE Trans. Sustainable Comput. (2019).

[16] A. Rullo, E. Serra, J. Lobo, Redundancy as a measure of fault-tolerance for the
internet of things: A review. Policy-Based Autonomic Data Governance [extended
papers from the Second International Workshop on Policy-based Autonomic Data
Governance, PADG@ESORICS 2018, September 6, 2018, Barcelona, Spain]., 2018,
pp. 202–226, https://doi.org/10.1007/978-3-030-17277-0_11.

[17] A. Burrello, A. Marchioni, D. Brunelli, L. Benini, Embedding principal component
analysis for data reduction in structural health monitoring on low-cost iot
gateways. Proceedings of the 16th ACM International Conference on Computing
Frontiers, CF 2019, Alghero, Italy, April 30, - May 2, 2019., 2019, pp. 235–239,
https://doi.org/10.1145/3310273.3322822.

[18] D. Todolȡ-Ferrandis, J. Silvestre-Blanes, S. Santonja-Climent, V. Sempere-Paya,
J. Vera-PȨrez, Deploy&forget wireless sensor networks for itinerant applications,
Computer Standards & Interfaces 56 (2018) 27–40, https://doi.org/10.1016/j.
csi.2017.09.002.

[19] S. Tuli, N. Basumatary, R. Buyya, Edgelens: Deep learning based object detection in
integrated iot, fog and cloud computing environments. 2019 4th International
Conference on Information Systems and Computer Networks (ISCON), Nov 21-22,
Mathura, India, IEEE, 2019, pp. 496–502.

[20] A.I. Ozdagli, X. Koutsoukos, Machine learning based novelty detection using modal
analysis, Comput.-Aided Civ. Infrastruct. Eng. 34 (12) (2019) 1119–1140, https://
doi.org/10.1111/mice.12511.

[21] J. Haxhibeqiri, E. De Poorter, I. Moerman, J. Hoebeke, A survey of lorawan for Iot:
From technology to application, Sensors 18 (11) (2018) 3995.

[22] A. Abdaoui, T.M. El Fouly, M.H. Ahmed, Impact of time synchronization error on
the mode-shape identification and damage detection/localization in wsns for
structural health monitoring, Journal of Network and Computer Applications 83
(2017) 181–189.

[23] R. Morabito, R. Petrolo, V. Loscri, N. Mitton, Legiot: a lightweight edge gateway for
the internet of things, Future Generation Computer Systems 81 (2018) 1–15.

[24] E. KEMER, R. SAMLI, Performance comparison of scalable rest application
programming interfaces in different platforms, Computer Standards & Interfaces
66 (2019) 103355, https://doi.org/10.1016/j.csi.2019.05.001.

[25] Z.-F. Fu, J. He, Modal analysis, Elsevier, 2001.
[26] E. Cañete, J. Chen, M. Diaz, L. Llopis, B. Rubio, Wireless sensor networks and

structural health monitoring: experiences with slab track infrastructures, Int. J.
Distrib. Sens. Netw. 15 (3) (2019), https://doi.org/10.1177/1550147719826002,
1550147719826002.

[27] R. Brincker, L. Zhang, P. Andersen, Modal identification of output-only systems
using frequency domain decomposition, Smart Mater. Struct. 10 (3) (2001) 441.

[28] P.C. Chang, A. Flatau, S. Liu, Health monitoring of civil infrastructure, Structural
health monitoring 2 (3) (2003) 257–267.

[29] Openmodal - a measurement, analysis and visualisation software for structural
dynamics analysis, (Available online: http://www.openmodal.com/). (accessed on
27 October 2020).

[30] C. Martín, D.R. Torres, M. Díaz, B. Rubio, Fogpi: A portable fog infrastructure
through raspberry pis. 9th Mediterranean Conference on Embedded Computing
(MECO’2020), 8-11 June, Budva, Montenegro, IEEE, 2021.

[31] R. Brincker, L. Zhang, Frequency domain decomposition revisited. Proc. 3rd Int.
Operational Modal Analysis Conf.(IOMAC09), 4–6 May, Portonovo, Italy, 2009,
pp. 615–626.

[32] R. Gupta, D. Reebadiya, S. Tanwar, 6G-enabled edge intelligence for ultra -reliable
low latency applications: vision and mission, Computer Standards & Interfaces 77
(2021) 103521, https://doi.org/10.1016/j.csi.2021.103521.

[33] C. Martín, D. Garrido, B. Rubio, M. Díaz, From the edge to the cloud: Enabling
reliable iot applications. 7th International Conference on Future Internet of Things
and Cloud (FiCloud 2019), 26–28 August, Istanbul, Turkey, IEEE, 2019, pp. 17–22.

[34] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz, J. Boubeta-Puig, A stream processing
architecture for heterogeneous data sources in the internet of things, Computer
Standards & Interfaces 70 (2020) 103426, https://doi.org/10.1016/j.
csi.2020.103426.

[35] H.-C. Chen, I. You, C.-E. Weng, C.-H. Cheng, Y.-F. Huang, A security gateway
application for end-to-end m2m communications, Computer Standards &
Interfaces 44 (2016) 85–93, https://doi.org/10.1016/j.csi.2015.09.001.

[36] Y. Liang, F. He, X. Zeng, 3D mesh simplification with feature preservation based on
whale optimization algorithm and differential evolution, Integr. Comput. Aided
Eng. 27 (4) (2020) 417–435, https://doi.org/10.3233/ICA-200641.

[37] Y. Wu, F. He, D. Zhang, X. Li, Service-oriented feature-based data exchange for
cloud-based design and manufacturing, IEEE Trans. Serv. Comput. 11 (2) (2018)
341–353, https://doi.org/10.1109/TSC.2015.2501981.

[38] X. Zhao. New methods for structural health monitoring and damage localization,
University of Sheffield, 2015. Ph.D. thesis.

C. Martín et al.

http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0001
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0001
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0001
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0002
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0002
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0002
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0003
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0003
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0003
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0004
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0004
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0005
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0005
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0006
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0006
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0006
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0007
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0007
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0007
https://doi.org/10.1109/ACCESS.2019.2919514
https://doi.org/10.1109/ACCESS.2019.2919514
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0009
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0009
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0009
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0010
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0010
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0010
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0011
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0011
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0011
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0012
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0012
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0012
https://doi.org/10.1016/j.csi.2021.103550
https://doi.org/10.1016/j.csi.2021.103550
https://doi.org/10.1109/JIOT.2018.2875544
https://doi.org/10.1109/JIOT.2018.2875544
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0015
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0015
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0015
https://doi.org/10.1007/978-3-030-17277-0_11
https://doi.org/10.1145/3310273.3322822
https://doi.org/10.1016/j.csi.2017.09.002
https://doi.org/10.1016/j.csi.2017.09.002
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0019
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0019
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0019
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0019
https://doi.org/10.1111/mice.12511
https://doi.org/10.1111/mice.12511
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0021
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0021
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0022
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0022
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0022
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0022
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0023
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0023
https://doi.org/10.1016/j.csi.2019.05.001
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0025
https://doi.org/10.1177/1550147719826002
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0027
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0027
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0028
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0028
http://www.openmodal.com/)
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0030
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0030
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0030
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0031
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0031
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0031
https://doi.org/10.1016/j.csi.2021.103521
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0033
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0033
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0033
https://doi.org/10.1016/j.csi.2020.103426
https://doi.org/10.1016/j.csi.2020.103426
https://doi.org/10.1016/j.csi.2015.09.001
https://doi.org/10.3233/ICA-200641
https://doi.org/10.1109/TSC.2015.2501981
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0038
http://refhub.elsevier.com/S0920-5489(21)00095-7/sbref0038

	Facilitating the monitoring and management of structural health in civil infrastructures with an Edge/Fog/Cloud architecture
	1 Introduction
	2 Related work
	3 Structural health monitoring architecture
	3.1 Monitoring nodes
	3.2 Edge nodes
	3.3 Container infrastructure
	3.4 Deployment of the container infrastructure in the fog and the cloud
	3.5 Monitoring and management web UI
	3.6 Damage detection of the civil infrastructures

	4 Use case: An Edge/Fog/Cloud architecture for SHM of a tunnel
	5 Evaluation
	5.1 Latency response and throughput
	5.2 Data size impact on latency
	5.3 Replication

	6 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

