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A B S T R A C T

The current dependency of Artificial Intelligence (AI) systems on Cloud computing implies higher transmission
latency and bandwidth consumption. Moreover, it challenges the real-time monitoring of physical objects,
e.g., the Internet of Things (IoT). Edge systems bring computing closer to end devices and support time-
sensitive applications. However, Edge systems struggle with state-of-the-art Deep Neural Networks (DNN)
due to computational resource limitations. This paper proposes a technology framework that combines the
Edge-Cloud architecture concept with BranchyNet advantages to support fault-tolerant and low-latency AI
predictions. The implementation and evaluation of this framework allow assessing the benefits of running
Distributed DNN (DDNN) in the Cloud-to-Things continuum. Compared to a Cloud-only deployment, the
results obtained show an improvement of 45.34% in the response time. Furthermore, this proposal presents an
extension for Kafka-ML that reduces rigidness over the Cloud-to-Things continuum managing and deploying
DDNN.
1. Introduction

Artificial Intelligence (AI) and Deep Neural Networks (DNN) [1] are
key contributors to autonomous decision and prediction processes in
multiple domains, ranging from manufacturing systems to self-driving
cars. Currently, thousands of data sources originated during the Inter-
net era, such as the Internet of Things (IoT), provide data streams.
Streaming data [2] feeds these application domains that, in the end,
depend on Cloud platforms due to the large amount of data collected
and processed. Cloud platforms [3] provide infrastructures and plat-
forms as a service (IaaS and PaaS, respectively) to access computing,
storage, and connectivity. Nonetheless, this dependency means a high
transmission latency since data centers are located far from the end
devices. Therefore, it challenges the real-time monitoring of physical
objects featured in the IoT.

Architectures based on Edge and Fog computing represent promis-
ing alternatives that complement Cloud-based systems and make them
more capable of ensuring a rapid response to emergencies. The purpose
of the Fog computing paradigm is to extend the Cloud capabilities
(storage, network, and computation services) and bring them closer
to the edge of the network [4]. Fog systems can be considered a ge-
ographically distributed computing architecture connected to multiple
heterogeneous devices (mini data centers, network devices, lightweight
servers), that forms a bridge between the Cloud and the Edge so as to
meet the time-sensitive requirements of IoT applications. Some authors
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claim that Edge computing can be interchangeable with Fog comput-
ing [5]. However, the key difference between these two paradigms may
be seen in the location where the data processing is performed. In
Fog computing, the processing is performed as close as possible to the
IoT devices, while Edge computing pushes the limits even further by
allowing connected gateways and IoT devices to process data locally.
These two paradigms reduce bandwidth consumption and latency in a
sequence of processing known as the Cloud-to-Things continuum [6].
The Cloud-to-Things continuum, shown in Fig. 1, is defined as a set of
processing units, such as Edge devices and Fog servers. These process-
ing units, located between the IoT and the Cloud, optimize response
times and bandwidth consumption in time-sensitive applications. For
instance, a deployment in this context could consist of IoT devices
generating information connected to gateways or Edge devices and
Fog servers processing before sending the information received to the
Cloud.

Distributed DNN (DDNN) [7] combine DNN for complex pattern de-
tection with a distribution of the DNN layers over the Cloud-to-Things
continuum to optimize latency. For instance, in Structural Health Mon-
itoring (SHM) [8], DDNN can assess the global state and detect struc-
tural problems of civil infrastructures. These mission-critical scenarios
require minimal response latency for real-time evaluation of civil in-
frastructures and population safety. Although DDNN have evolved over
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Fig. 1. Cloud-to-Things continuum.
the last few years, we argue that DDNN are still at a low technology
readiness level since there is a lack of:

1. frameworks for the fault-tolerant distribution of DNN and the
management and monitoring of DDNN over heterogeneous hard-
ware,

2. effective communication layers to interconnect, discover, and
communicate neural networks, and

3. solutions to manage AI pipelines from a DDNN model training
until it is ready for inference.

To address the lacks mentioned in 1) and 2), in this article, a
low-latency and fault-tolerant framework for enabling the flexible dis-
tribution of DNN over the Cloud-to-Things continuum is introduced.

The purpose of this framework is to manage and distribute DNN
with fault-tolerant guarantees and provide adequate communication
layers with low latency to interconnect them. This framework is de-
signed considering container technologies, such as Docker [9], to fa-
cilitate rapid deployment and mobility with lightweight scaling and
reallocation components, applications, and services. It also consid-
ers Apache Kafka, the present state-of-the-art solution for scalable
dispatching of data flows.

The framework uses models based on BranchyNet [10], which
provides a novel approach that promotes fast inference through early-
exit DNN branches. These branches are complementary outputs located
throughout a neural network structure. BranchyNet-based branches
allow intermediary predictions that, when accurate enough, can make
a DNN inference stop at that point, saving time by avoiding inference
over the upper layers of a DNN model. As a result, during the inference
process, all the DNN-model layers are processed only if none of the
early exits in the model is accurate enough, i.e., the probability of being
a class returned by the model for a prediction made by an early exit is
higher than a specified threshold.

In this work, an extension of Kafka-ML [11] is also proposed to
address the lack 3), by providing an open-source framework to manage
and deploy AI pipelines using data streams.

The main contributions of this work are summarized as follows:

1. A framework that reduces location rigidness over the Cloud-to-
Things continuum by managing and deploying DDNN applica-
tions,

2. effective communication layers to interconnect DDNN applica-
tions, and
2

3. the combination of the BranchyNet approach and the Edge-
Cloud architecture concept, which shows an improvement of
45.34% of the response time compared to a Cloud-only deploy-
ment.

The rest of the paper is organized as follows. The motivation for this
proposal is presented in Section 2. Section 3 introduces a background
on Kafka-ML and the other main technologies used in this work. The
low-latency and fault-tolerant framework is described in 4. In Section 5,
the implementation and its evaluation are presented and discussed.
Section 6 provides an outline of the related literature. Finally, Section 7
concludes the paper and explores future work lines.

2. Motivation

As was demonstrated when the Genoa (Italy) bridge collapsed in
August 2018 [12], civil infrastructure failures and malfunctions can
have terrible consequences for human lives and essential civil work
activities. Therefore, SHM requires proper real-time monitoring and
management. Detecting and predicting any damage or vulnerability is
essential to protect the population before a disaster can occur. Con-
sequently, a number of recent studies [13,14] have shown successful
applications of Deep Learning (DL) techniques in this field. However,
to the best of our knowledge, these techniques are normally deployed in
a monolithic way (i.e., through non-distributed deep neural networks).
Moreover, these techniques are not fit for use in time-sensitive systems
as required in this context. One of the reasons for the absence of DDNN
could reside in the lack of available architectures and frameworks for
managing and deploying DDNN applications in the Cloud-to-Things
continuum.

Furthermore, modern DNN require a considerable amount of com-
putational resources [15–17]. This implies that Cloud and Edge systems
must have sufficient hardware resources to allocate multiple instances
of a DNN model and accept a large number of requests per minute from
multiple devices. The (un)limited capabilities such as processing and
storage of cloud systems to allocate these DNN models are well-known.
However, the response latency present in the communications to these
platforms is far from meeting the requirements of time-sensitive appli-
cations. For these reasons, DNN are being partitioned and distributed
in heterogeneous hardware and multi-layered infrastructures.

DNN layers can extract complex patterns from high volume datasets
consisting of images, as notably demonstrated by Convolutional Neural

Networks (CNN) [18]. However, working with images can raise several
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challenges. One is related to information privacy, mainly when involv-
ing sensitive data in domains like eHealth. Although some systems that
deal with sensitive data only process private images without letting
people access these images, their communication over the network
(especially with the Cloud) can lead to security breaches, even if these
communications are safely and reliably protected. To support data
sensitivity, the DNN distribution allows the transmission of inferences
resulting from the intermediate layers of a DNN model, which contain
less sensitive information than raw images. Moreover, DNN can also
notably reduce the image size [19] thanks to the image compression
performed in some layers. Therefore, DDNN could also significantly
reduce bandwidth consumption by exploiting this technique.

Finally, real-time applications require adequate communication lay-
ers to fully interconnect DDNN and architectures for unified manage-
ment and deployment of DDNN. Moreover, as BranchyNet proposes,
early exits return a response as soon as the accuracy is good enough
to interact with the lowest levels of the continuum, providing real-time
outcomes. Given the results of Kafka-ML [11] managing AI applications
with data streams, we have envisaged an extension of this frame-
work to overcome the management and distribution of DDNN in the
Cloud-to-Things continuum.

3. Kafka-ML: managing AI pipelines through data streams

In this paper, an extension of Kafka-ML [11] is presented. Kafka-ML,
which is available on GitHub,1 is an open-source framework that allows
he management of Machine Learning (ML) and AI pipelines through
ata streams. Kafka-ML aims to reduce the gap between data streams
nd current ML and AI frameworks providing an accessible framework
o harmonize their full integration.

Kafka-ML makes use of the distributed message system Apache
afka [20]. Apache Kafka is a distributed and publish/subscribe mes-
aging system that dispatches large amounts of data at low latency.
pache Kafka enables multi-customer distribution, which allows the
onnection of multiple customers to topics (e.g., for distributing in-
ormation to different layers like batch and stream platforms), and a
igh rate of message dispatching. One of its most notable features is
he consumer group, which enables the distribution and parallelism of
essages in a cluster of customers.

Contrary to many distributed queue frameworks, Apache Kafka
tores messages in disk with a configurable retention policy, enabling
ts users to retrieve data later. This is popularly known as the distributed
log, which allows consumers to search the log as they require. In
some cases, such as ML training, this feature is especially useful as
all data may need to be processed at once. If a failure occurs during
this process, the customer can start again without losing any data
stream or having to store it in a file system (as they are stored in
the distributed log of Apache Kafka). In the case of adopting a queue
framework that does not support a retention policy like Apache Kafka
does, data streams should be at least stored into another data storage
system before training is successfully performed to ensure there is no
data loss. Therefore, Apache Kafka allows Kafka-ML to use a novel
approach to manage data streams, which can be reused as many times
as configured, so no file system or data storage are needed for datasets.
Load balancing and fault tolerance among Kafka-ML tasks that require
data streams, such as training and inference, is achieved through Kafka
partitions and replicas of the topics. Each topic can be allocated into
multiple partitions, and each partition can have multiple replicas for
fault tolerance.

Regarding ML frameworks, Kafka-ML supports TensorFlow [21].
TensorFlow is an open-source framework with a flexible ecosystem of
tools, libraries, and community resources for building and deploying

1 https://github.com/ertis-research/kafka-ml.
3

ML-powered applications. Kafka-ML offers also an accessible and user-
friendly Web interface (following a similar approach as AutoML initia-
tives) to manage ML and AI pipelines for both experts and non-experts
users. As its main characteristic, Kafka-ML exploits containerization
(Docker [9]) and container orchestration platforms (Kubernetes [22])
to facilitate the distribution of its components and the system load, and
to provide high availability and fault tolerance.

Docker, container runtime of choice in the industry, automates
the application deployment inside containers enabling the execution
of applications on multiple architectures (x86, AMD64, ARM) and
reducing development time (e.g., dependency problems) for developers
and deployment teams. A cluster of machines running Docker con-
tainers is usually managed through a container orchestration system,
such as Kubernetes, which enables distributed management and coor-
dination while providing fault tolerance, vertical (in federation mode)
and horizontal scaling, and high availability. Kubernetes is an open-
source system for managing containerized applications in a cluster of
nodes, easing both the management and deployment of containers and
providing automation and declarative configuration. Kubernetes also
enables continuous monitoring of containers, including Docker and its
replicas, to ensure that they continuously match the defined status.

Kafka-ML users can write some code lines that define an ML model
on the Web interface of Kafka-ML to start training, evaluating, compar-
ing, and making inferences. The pipeline of an ML model in Kafka-ML
representing its life cycle is shown in Fig. 2: (1) designing and defining
the ML model; (2) creating a configuration of ML models, i.e., choosing
a set of ML model(s) to be trained; (3) deploying the configuration
for training using containers; (4) ingesting the deployed configuration
with training and optionally evaluation data streams through Apache
Kafka; (5) deploying the trained model for inference in the architecture
presented in this work; and (6) feeding the deployed trained model for
inference to make predictions with data streams. All the steps related to
feeding the ML model (e.g., inference and training) use data streams.
Each task executed is deployed in a Docker container in Kubernetes.
Kafka-ML is used as the primary tool for training, evaluating and
deploying ML models. The extension of Kafka-ML to enable DDNN and
how DDNN communicate through Apache Kafka are further discussed
next.

4. Distributed deep neural networks over the cloud-to-things con-
tinuum with Kafka-ML

Apache Kafka as a distributed message system is responsible for pro-
viding an effective and fault-tolerant communication layer for DDNN
inference in the proposed framework. This architectural decision has
the following features and benefits.

First, since Apache Kafka works with data streams, it allows this
framework to accept and work with data streams as its normal func-
tioning and opens the way for the integration of new ones, such as the
ones present in the IoT and the Internet. Furthermore, architectures
that use this framework can easily scale to increase the computing
capacity when required (e.g., deploying replicas of DDNN applications)
thanks to the Apache Kafka capabilities for parallelism (topic parti-
tions and consumers groups), which would automatically distribute the
data stream load among Apache Kafka customers (DDNN application
replicas).

Second, the fault-tolerant mechanisms provided in Apache Kafka
(e.g., topic replicas) enable fine and reliable control of data streams
for DDNN deployments and reduce the risk of data loss. The Apache
Kafka distributed log also ensures that streaming data are available
(for a predefined time or until it exceeds the available memory) to
DDNN applications even after they have been consumed. Thus, this also
enables fault tolerance for DDNN applications.

Furthermore, IP addressing can be a challenge, especially when
having a cluster of non-high-availability nodes as those present in the
continuum. In this regard, Apache Kafka facilitates the discovery of

https://github.com/ertis-research/kafka-ml
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Fig. 2. ML/AI pipeline in Kafka-ML [11].
DDNN applications. They only have to know the Kafka topics where the
prediction and inference results go (assuming Apache Kafka is deployed
with fault tolerance and its IP is also known). Consequently, in case
of a node failure (e.g., a DDNN application that waits for inference
results), a new consumer subscription (along with the previous DDNN
application) will be deployed in a transparent way for the DDNN
application that sends the data stream (producer). Thus, Apache Kafka
input and output topics have to be indicated when deploying DDNN
applications. This enables high flexibility for the deployment of DDNN
in this architecture, enabling the deployment of all partitioned models
in one layer (e.g, the Edge or the Cloud) or in many layers as infras-
tructures are available in the continuum. Moreover, Kafka MirrorMaker
functionality [23] enables a powerful and easy way to deal with topic
synchronization among Kafka clusters as those present in the Cloud-to-
Things continuum. To this end, the only requirement to be considered
is that the inference of a DDDN hidden layer (non-early exits) must
match the input of the next connected hidden layer in the global model
definition.

As a result, the combination of DDNN and the Cloud-to-Things
continuum can face the challenges presented in the Motivation section.
Whereas Kafka-ML was designed for a single cluster infrastructure
(e.g., a Cloud solution), this work provides a solution that allows
applying this combination in the continuum. The framework has been
developed to facilitate the inference of BranchyNet-based models over
different heterogeneous infrastructures, such as Edge, Fog, and Cloud.
Consequently, Kafka-ML now allows designing BranchyNet-based mod-
els. Therefore, Kafka-ML users can place an early exit in layers of the
continuum (Fig. 3) to early stop the inference if the result is good
enough (with a hit probability higher than a configurable threshold).
Otherwise, the prediction is not considered reliable. In this case, the
ML flow continues to the next layer in the continuum until getting a
reliable prediction in the subsequent layers or reaching the last layer of
the continuum (e.g., the Cloud). This allows generating predictions as
close as possible to the lowest layer where a time-sensitive interaction
can be required as long as the prediction is reliable according to a set
threshold. This chosen threshold represents a trade-off between reliable
and time-sensitive predictions. Furthermore, this framework makes the
deployment of DDNN applications very flexible. The layered architec-
ture depicted in Fig. 3 may be seen as a possible target deployment,
one single layer (e.g., the Cloud), or as many layers as are available in
the continuum thanks to the abstraction of the system through Apache
Kafka.

To facilitate the deployment and development of DDNN appli-
cations and their portability and mobility over the continuum, this
architecture, its components, and dependencies like Apache Zookeeper
(required by Apache Kafka for synchronization of brokers and topic
replicas) are containerized through Docker containers. This provides
a portable and lightweight solution to be distributed in the contin-
uum. Containerization also reduces development and deployment ef-
forts since all dependencies and the source code itself are packed in
4

containers, which can be easily deployed without dealing with the
installation steps required in non-containerization deployments. Once
an ML model has been defined and trained in Kafka-ML, a Docker
container will be instantiated in the continuum infrastructure for each
sub-model. These instances will download their corresponding trained
model from Kafka-ML to start the inference process through data
streams and Apache Kafka. Therefore, Docker containers (and DDNN
applications) communicate each other through Apache Kafka and the
topics configured. Those can also communicate each other in different
clusters available in the Cloud-to-Things continuum. During training,
another Docker container is deployed to train all the sub-models. For
further details about these algorithms, please refer to Kafka-ML [11].

Finally, the orchestration container platform Kubernetes harmonizes
the deployment of the containers that compose this architecture. More-
over, Kubernetes is used to manage a cluster of nodes that can be
present in the continuum and offers other suitable features for mission-
critical applications in production environments, such as fault tolerance
and high availability. This allows unified management of DDNN appli-
cations and continuous monitoring to ensure a desire execution state in
the available nodes. Therefore, fault tolerance and high availability are
warranted for the data and control plane in this framework, through
Apache Kafka with its management of data streams (data plane) and
through Kubernetes with its management of the infrastructure and
deployed Docker components (control plane). To avoid synchronization
delays among internal clusters due to the strict requirements of con-
sensus protocols, each available layer (e.g., Cloud, Edge, Fog) deploys
an independent and isolated cluster of Kubernetes. All of these clusters
can be centrally managed through the Kubernetes Cluster Federation2

(KubeFed) functionality. Fig. 4 shows an overview of the architecture
and its components deployed in two layers of the continuum (Edge and
Cloud).

4.1. Time synchronization for DDNN applications

For time synchronization between DDNN layers, Apache Kafka is
used. Since every message between DDNN applications is sent through
Kafka (each DDNN layer has been configured with a Kafka input
and output topic), all the communications in DDNN applications are
available in Kafka for a predefined time or until it exceeds the available
memory. Therefore, in the event that a DDNN layer has not been
deployed before a message for it has arrived, messages for this layer
will still be available in Apache Kafka until the layer can process them.

As DDNN applications are vertically layered, if any layer fails for
whatever reason, it could also stop the whole flow of processing for
a while. However, the adoption of Kubernetes and the component’s
isolation in Docker containers provides continuous monitoring of the
available infrastructure to restart any component in case of failure.

2 https://github.com/kubernetes-sigs/kubefed.

https://github.com/kubernetes-sigs/kubefed
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Fig. 3. Early exits and distribution of the DDNN framework in the Cloud-to-Things continuum. The Edge and Cloud contain different parts of a full neural model based on
BranchyNet.
Fig. 4. Low-latency and fault-tolerant architecture for the management and deployment of DDNN applications over the Cloud-to-Things continuum based on Kafka-ML.
Moreover, the BranchyNet approach enables early exits for predictions
and not always all layers have to process data streams. In this case,
once a prediction is received from an early exit (i.e., hit probability is
higher than a set threshold), the result is sent to the Kafka output topic
configured and the DDNN communication flow ends.

5. Implementation and evaluation

5.1. Implementation

We have designed a DNN model based on VGG16 [17] and the
early exit concept proposed by BranchyNet [10]. VGG16 gets a 92.7%
top-5 test accuracy on ImageNet [24], and thus, we can successfully
train a VGG16 model to classify images and expect more than 80%
test accuracy on CIFAR10,3 which is the dataset we have used during
training and evaluation processes. Moreover, VGG16 is a well-known
model and it can be easily adapted to the BranchyNet approach.

The complete resulting model is shown in Fig. 5. This model is
large enough to place a sizeable workload on the Cloud, and thus,
also in the Edge. In this model, we have included one early exit that
corresponds to the edge_output layer. The branch for this early exit

3 http://www.cs.toronto.edu/~kriz/cifar.html.
5

starts at the Flatten layer in the Edge and goes until the end of this
branch, the edge_output layer. When placing an early exit, we have
to consider the vertical traversal of the DNN stack before the start
of this branch to add this early exit successfully. For instance, when
designing a DNN model, we need to flatten the input of MaxPooling
or Convolutional layers in order to work with Dense layers, since they
work with different dimensionalities.

There is also another fact to consider when placing an early exit
while following this framework, namely the additional memory re-
quired when adding a branch (i.e., including more layers) and thus the
DNN model requires more resources. Although it is not a requirement,
we recommend placing one early exit per architecture layer (e.g., Edge,
Fog). In this way, we have one output for each layer in the architecture
(e.g., Edge, Fog, Cloud) deciding whether or not to send to the upper
layers of the architecture and saving in communications. For instance,
if a prediction made at the early exit placed in the Edge system has a
probability of being a predicted class higher than a specified threshold,
this will result in the Edge system sending back this prediction to the
devices rather than asking the upper layers, the Cloud in this case, for
a more reliable prediction. Moreover, Edge systems have normally less
available resources to allocate to a DNN model (i.e., GPUs, memory).
Therefore, having an elevated number of early exits placed at the Edge
level does not guarantee a faster response time. Those early exits that
are placed too early in the model will not have enough prior layers in

http://www.cs.toronto.edu/~kriz/cifar.html
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Fig. 5. DDNN model based on VGG16 and BranchyNet.
the model to provide a good prediction. Hence, we have to consider
the DNN stack and the actual size of a model before introducing these
branches for early exiting and partitioning the model. These aspects
result in a trade-off between the accuracy and the size of the DNN
model and sub-models generated once partitioned.

As a result, in our DDNN application we partitioned the model into
two pieces, as shown in Fig. 5. Note that one of them is much smaller
than the second one to be placed in computers that comprise an Edge
cluster, while the larger one is to be placed in a Cloud cluster. We can
then allocate these two parts of the model (i.e., two sub-models) in the
different computers that built the evaluation environment, which will
be introduced in 5.2, reaching a suitable accuracy level.

This model was trained using the CIFAR10 dataset, which consists
of 60.000 32 × 32 color images in 10 well-balanced classes. First, the
full model without the Edge exit was trained with 80 percent of the
training set (40.000 32 × 32 color images; 10.000 images are used
for the validation set). Then, all layers were blocked. The Edge exit,
which consists of the Flatten, Dense and edge_output layers shown
in Fig. 5, was added to train this branch in the same way as the rest of
the model without affecting the weights already trained.

Once the model is trained (e.g., through Kafka-ML or a Jupyter
notebook) and cut to the level of the early exist, each DDNN part can
be deployed through Kafka-ML in different instances of this program
running in different machines with Zookeeper, Kafka, and its topics
correctly configured. As we include Kubernetes as management con-
tainer platform, we have used Docker images for Apache Zookeeper4

and Kafka5 provided by third parties to easily configure them.
We have developed a container-based Python application to facili-

tate the inference of the BranchyNet-based model over different archi-
tectures levels by using the same technologies as Kafka-ML. These tech-
nologies are Kafka6 and Tensorflow7 [21]. This application is packed
and executed in Kubernetes as a service, i.e., in a Docker container.
Kafka-ML components (Fig. 4) are also packed in Docker containers and
deployed in Kubernetes.

4 https://github.com/31z4/zookeeper-docker.
5 https://github.com/wurstmeister/kafka-docker.
6 kafka-python: https://pypi.org/project/kafka-python/
7

6

For both training and development, we have used Tensorflow 2.3.0.
The code of implementation8 and Kafka-ML9 are both open-source
projects. Furthermore, in the GitHub repository for this implementa-
tion, we have also shared the trained model based on VGG16 and
BranchyNet for the sake of reproducibility, as well as the Docker
and Kubernetes configuration files used during the evaluation of the
proposed framework.

5.2. Evaluation

To evaluate this framework, we have used the value of 0.8 as a
threshold. Selecting a threshold is a trade-off between reliable and
time-sensitive predictions. As a result, we have chosen this threshold
empirically due to most of the early exit responses, which return a
probability higher than this threshold value, match the class returned
in the Cloud. Hence, when the probability of being a class returned by
the Edge early exit is higher than the specified threshold, the DDNN
application in the Edge does not continue the inference process. There-
fore, it does not send any images or information to continue the process
in the Cloud. However, the predictions made by the sub-model placed
in the Edge system may be less reliable than those made in the Cloud
as the sub-model placed in the Cloud has more layers that comprise the
DDNN. Note that this threshold can also be conveniently configured in
the framework according to the needs of the target application.

Results are obtained using the CIFAR10 test set comprising 10.000
32 × 32 color images through an environment composed of 5 devices
sending the same data at the same time, an Edge infrastructure, and a
Cloud system. The Cloud deploys a Kubernetes cluster with 3 Nodes, 6
vCPUS, and 12 GB memory in Google Cloud. We have placed the Edge
infrastructure at the University of Malaga, comprised of 3 computing
nodes connected to the external streaming devices. These 3 computers
form a cluster in Kubernetes and have different hardware configura-
tions. The first of them works with an i7-4790 3.60 GHz and an 8 GB
memory configuration. The second one has an i5-7400 3.00 GHz and 16
GB of memory, and the last of them works with an i7-10700 2.90 GHz
and 32 GB of memory. The devices generating CIFAR10 data streams
are deployed at the University of Malaga into 5 different computers

8 https://github.com/ertis-research/DDNN.
9 https://github.com/ertis-research/kafka-ml.

https://github.com/31z4/zookeeper-docker
https://github.com/wurstmeister/kafka-docker
https://pypi.org/project/kafka-python/
https://github.com/ertis-research/DDNN
https://github.com/ertis-research/kafka-ml
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Fig. 6. Resulting accuracy for CIFAR10 test set using an Edge-Cloud architecture and an Cloud-only system.
ith i7-4790 3.60 GHz and 8 GB of memory each one. Edge computers
re then placed in the same network where the information is produced
University of Malaga) to reduce the network latency.

To sum up, this is the infrastructure used to deploy the DDNN
pplication in the continuum:

• Devices deployed in 5 computers at the University of Malaga
(Spain).

• Edge layer: 3 computers at the University of Malaga (Spain).
• Cloud layer: Google Cloud. Europe West 1 zone (Belgium).

We compare the results for the Edge-Cloud architecture with an-
ther architecture that depends only on the Cloud. In the Cloud-only
ase, the model used consists of the model shown in Fig. 5 as a single
iece, i.e., without the branch for the early exit. First, we show the
verage accuracy for two different collections of the CIFAR10 test set
n Fig. 6.

On the one hand, global accuracy shows the average accuracy for the
hole CIFAR10 test set when using the complete model (i.e., without
arly exits) in the Cloud-only architecture and when using the model
ased on VGG16 and BranchyNet (Fig. 5), i.e., with early exits in the
dge-Cloud architecture. Despite the fact that the model evaluated
s the same in both cases, in the Cloud-only case, the inference is
rocessed using all the layers of the model, while early stopping (with
n early-exit branch) in the Edge-Cloud case is considered. Therefore,
s expected, the accuracy obtained in the Cloud-only case is higher than
he accuracy obtained in the Edge-Cloud case. However, the results
btained by the Edge-Cloud architecture are still suitable enough.

On the other hand, we show the accuracy for the set of images
hat have been responded at the Edge level (early exit) of the Edge-
loud architecture, 84.18%. This result is compared with the accuracy
btained in the Cloud-only architecture for the same set of images
92.49%). The values observed in this comparison show the main
isadvantage of the BranchyNet approach. Using early exits does not
ncrease the accuracy of the model, but decreases it while saving
ime during the inference process. This confirms the threshold trade-
ff discussed. Therefore, running a complete DNN model in the Cloud
an return more reliable predictions, but considering early exits in an
ntermediate architecture layer (e.g., Edge) will reduce response time
aintaining an acceptable degree of reliability (in this case, > 80%).

Next, we have evaluated the framework comparing the Edge-Cloud
nvironment with the Cloud-only environment in a Cloud-to-Things
imple deployment by using the following configuration in both layers
f the architecture (Edge on 1 computer and 1 node in Google Cloud)
n order to measure the response time:
7

• 1× Apache Kafka broker (1 Computer)
• Kafka topics configured with 1 partition and without replication

For this test, results were obtained after sending all CIFAR10 test
images from a single computer and shown in Fig. 7. As with accuracy,
we show the average response time using two different sets. Using
the simple deployment mentioned, the average Edge-Cloud response
time is much higher than the Cloud-only architecture response time.
The set of images that has been responded at the Edge corresponds
to 5416 images, which are more than half of the CIFAR10 test set.
Thus, the rest of the requests are much slower, since they have to go
twice (for the request and response) through all the Cloud-to-Things
continuum layers defined. This means that a Cloud-only architecture
gives better response time results for the complete test set when using
this simple deployment (with 1 computer in the Edge and a single
node in Google Cloud). However, the Edge-Cloud architecture shows
a significant improvement over the Cloud-only architecture regarding
the response time (0.0638 s) when comparing the results for the set
of images that has been responded at the Edge level. Thereby, more
than 54% of the responses were provided in the Edge early exit that
has reduced the Edge response time for these prediction requests.

Finally, we have evaluated the framework in a higher performance
scenario. This scenario makes use of the described 3 Edge computers
and the 3 nodes of Google Cloud. We have deployed a cluster of 3 Kafka
brokers for each architecture level (i.e., Edge and Cloud) while varying
topic replication and the number of replicas for high availability and
fault tolerance. In this case, a replica of the DDNN inference module is
deployed in Kubernetes with each partition to distribute the load of the
system among 5 devices sending CIFAR10 data streams. Fig. 8 shows
the response time of our framework versus a Cloud-only deployment.

As a result, with 1 partition, the total average Edge response time
(including early exits and those that go to the Cloud) is higher due to
the overhead of clients. However, with two partitions, the load is dis-
tributed among DDNN deployments, and results show lower response
latency in our distributed framework than in the Cloud-only architec-
ture. The overload in the Cloud system caused by the increase in the
number of partitions and replicas may be due to the infrastructure
available in Google Cloud (6 vCPUs and 12 GB of memory). Fig. 9
shows the speed-up of our architecture (early exits and total Edge time)
regarding the Cloud deployment. The best result is obtained with 4
partitions and replicas, reaching a speed-up of 23× for early exits and
8× for total Edge response time.

These results demonstrate that considering early exits in DDNN
combined with continuum architectures could drastically reduce re-

sponse time, which is essential in AI and time-sensitive applications,
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Fig. 8. Response time of the distributed architecture versus the Cloud-only deployment. Three Kafka Brokers and 5 clients are used. Partitions and replicas change.
uch as self-driving, civil infrastructure monitoring, and eHealth. De-
pite the fact that the accuracy is slightly decreased due to early
topping during the inference process across the Cloud-to-Things con-
inuum, it can be adjusted to satisfy the requirements of different
cenarios by modifying the threshold value. Time-sensitive applications
equire working with response times in the order of milliseconds. Thus,
he faster a system gives a prediction, the better its fitness for purpose.

. Related work

.1. DDNN partitioning

One of the first works on DNN branches for early exits was
ranchyNet [10]. An extension of that work [7] proposed the adaption
f BranchyNet to the Cloud-to-Things continuum through horizontal
ggregations. This provides system fault tolerance with a 20× reduction

of communication cost compared to offloading the whole computation
to the Cloud. The main drawback of these approaches is that the
8

architecture presented is statically deployed and DDNN applications
do not adapt to the continuous changes. For instance, in case of a
node failure in these architectures, a DDNN application would stop its
service, whereas in our architecture, Kubernetes automatically would
reallocate the DDNN application container into another available node
to restart the service. An adaptive surgery [25] scheme dynamically
splits DDNN between the Edge and the Cloud to optimize both the
latency and throughput under variable network conditions. In the
continuum, Fog can also play a role besides Edge and Cloud, and
DINA [26] presents a fine-grained solution based on matching theory
for dynamic DDNN partitioning in Fog networks. These approaches do
not consider the instances when the inference stops at the middle layers
(early exits), which can also reduce the network traffic [27] and the
computing capacity [28].

Other studies show that response time is accelerated whilst net-
work congestion is reduced by combining Cloud and Edge environ-
ments [29]. These approaches are also considered in video and image
analysis in smart city applications, which entail a great computational
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ost and a huge number of data sent through the network, resulting in
onsiderable delay reductions [30]. Yet, early exits at the middle layers
re not contemplated, and they could result in a further improvement
n response time and a significant decrease in the number of messages
ent to the Cloud.

.2. Cloud-to-Things continuum architectures for DDNN

As stated, Kubernetes enables the management and monitoring of all
inds of applications in a cluster of nodes. Kubeflow [31] is an open-
ource ML toolkit for Kubernetes. It does not provide support for data
treams as the framework proposed and Kafka-ML do, but allows for the
onfiguration of multiple steps of AI and ML pipelines, such as hyper-
arameters and pre-processing. These solutions are not designed for the
lexible support of DDNN over the Cloud-to-Things continuum.

EdgeLens [32] and HealthFog [33] provide frameworks to deploy
eep learning-based applications in Edge-Fog-Cloud environments and
mprove the Quality of Service (QoS) for such applications. To reduce
atency, EdgeLens scales down in resolution in order to shorten the
elivery time. Both EdgeLens and HealthFog run non-distributed ML
nstead of adapting the DDNN themselves to the continuum.

IoTEF [34] provides a fault-tolerant architecture and unified man-
gement and monitoring for Cloud and Edge clusters; however, it
oes not allow the automation of DDNN in order to accomplish other
oS aspects, such as latency and inference optimization beyond fault

olerance.

. Conclusion

This paper addresses the distribution of DNN over the Cloud-to-
hings continuum for those mission-critical applications that require

ow-latency responses. It has been demonstrated that the partitioning
f deep neural networks can be better adapted to the needs of the
eterogeneous devices that host them and improve response times
early exits), security, and communication requirements. To the best
f our knowledge, this work is the first to fully place the BranchyNet
pproach in the continuum providing a fault tolerance and low-latency
ramework; and an architecture and effective communication layers
hat offer better support to DDNN in this field. The proposed framework
s open-source and available on GitHub.10 The Kafka-ML extension,

10 https://github.com/ertis-research/DDNN.
9

which addresses the comprehensive integration of data streams and ML
frameworks and is also part of this work, is also available on GitHub.11

To accomplish the DNN distribution, especially in large DNN (e.g.,
ResNet-152), we partition the layers of the neural network. Apart
from being a non-trivial task, as it constitutes a trade-off between
computation and transmission costs, the partitioning of DDNN can
have implications in the prediction accuracy, and the response latency
could also be affected. Moreover, infrastructure capabilities may vary
largely in heterogeneous and dynamic environments, which can also
affect the pre-established partitioning strategy. Network conditions can
also vary, e.g., the throughput can decrease by 10 times in LTE net-
works during peak hours [25]. Therefore, dynamic, fault-tolerant, and
auto-adaptive partitioning strategies for DDNN inference acceleration
should be released to ensure and maintain flexibility. We envisage
that new micro-service components could be defined in Kafka-ML to
continuously monitor the available continuum infrastructure [35] and
dynamically decide where to cut and where to deploy DDNN applica-
tions to optimize the response latency. This will be explored as future
work in order to adapt DDNN to the current status of infrastructures
(hardware + networking) by allocating DDNN layers at the right place
t the right time in the Cloud-to-Things continuum.
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