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Generating ROC Curves for
Artificial Neural Networks

Kevin Woods,* Member, IEEE and Kevin W. Bowyer,Senior Member, IEEE

Abstract—Receiver operating characteristic (ROC) analysis is
an established method of measuring diagnostic performance in
medical imaging studies. Traditionally, artificial neural networks
(ANN's) have been applied as a classifier to find one “best”
detection rate. Recently researchers have begun to report ROC -
curve results for ANN classifiers. The current standard method
of generating ROC curves for an ANN is to vary the output
node threshold for classification. In this work, we propose a
different technique for generating ROC curves for a two-class
ANN classifier. We show that this new technique generates better True
ROC curves in the sense of having greater area under the ROC  pgitive
curve (AUC), and in the sense of being composed of a better .. T
distribution of operating points.
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Index Terms—Neural networks, receiver operating character-
istic (ROC) curves.

I. INTRODUCTION 1

NE method of specifying the performance of a classifier
is to note its true positive (TP) rate and false positive 0.0 : = : = ;
(FP) rate for a data set. The TP rate is the percentage of target 0.0 False Positive Rate '
samples that are correctly classified as target samplgs. The FP (1.0 - Specificity)
rate is the percentage of nontarget samples that are incorrectly
classified as target samples. For particular applications, ?Q-et-tedﬂffggréygﬁzloﬁocecstg\ées Tar?g tP:atgfqggm;ggeoie%i tf;]éiltt ;OU;?ebtf]at
may require the _ClaSSiﬁer to OPerate at _so.me point. (_)ther th%@ below the ROC curgg, the g.reater%he power of the classilyier. i
the one to which it naturally trained. Statistical classifiers have
parameters that can be varied to alter the TP and FP rates. Each
set of parameter values may result in a different (TP, FP) paitassifiers is well understood. Analogous techniques are not so
or operating point. well understood for nonparametric classifiers, such as artificial
An ROC curve is a plot of operating points showing thaeural networks (ANN’s).
possible tradeoff between a classifier's TP rate versus its FPThe use of ANN's has recently become popular in medical
rate. The TP rate is commonly referred to as “sensitivity,” arlfnaging [2]-[6]. Since receiver operating characteristic (ROC)
(1—FP rate) is called “specificity.” Two typical ROC curvesinalysis is an established method of measuring diagnostic
are shown in Fig. 1. performance in medical imaging studies, this work examines
In practice, the errors that can be made by the classifier [FFethods for generating ROC curves for ANN's in a two-
and false negative (FN)] often have different “costs.” In sucHass problem. In this work, ROC points are generated from a
cases, “profits” can be maximized by selecting the approprigté@dle trained ANN by systematically varying some underlying
operating point on the ROC curve. In practical applicatioarameter(s) in the network. The most common current method
this requires that the underlying parameters of the classifier [8&{6] is to vary a threshold value for the output node. Our
easily manipulable to facilitate selection of the operating poiMtork shows that a different method generates a better ROC
[1]. The generation of ROC curves for traditional statisticgurve in terms of both the area under the curve (AUC) and
_ _ _ _the distribution of operating points across the TP or FP range.
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Now consider what happens in an ANN with multiple layers.

X
: W Each node on the first hidden layer computes an output value
which is a nonlinear scaling of the distance of the input point
Wo from the hyperplane defined by that node’s weights. Each node
Xp— S = {(sum) . .
on the next layer computes some nonlinear function of these

Y . X -
/ nonlinearly scaled distances from the original hyperplanes.
B=10 X{W1 + XoWa+ BWg = sum The v_alue computed by th_e output node_ retains thl_s character
(Bias Input) of being a nonlinear function of (a nonlinear function of ...)
nonlinearly scaled distances from the original hyperplanes in
Fig. 2. A single node with a sigmoid activation function is capable cfeature space.
%enera&ir;% a hypder%laneﬁ(a tI&le ig tfhis Z-rl]D case) in feat(ljJre space. ThefWﬁigth’ his simple example in two-dimensional (2-D) feature space
¥V, and Wy, and the offsefiVy define the position and orientation of the : ;
hyperplane.in feature space. allows us to more ea5|l'y opgerve the roles that the h|dplen
and output nodes take in dividing up the feature space into
_ . decision regions. A network with more first hidden layer nodes
ANN'’s, and data sets. Section V presentg experimental resyffii simply have more hyperplanes that can be combined
for both methods of ROC generation on simulated datasets agctreate the final decision boundary. Methods of generating
several datasets from real applications. Section VI summarize9C curves for ANN’s could manipulate parameters of the
the work and draws conclusions about ROC generation fANN controlling any or all of 1) the definition of the basic
ANN’s. hyperplanes, 2) the definition of the combination of hyper-
planes, or 3) the threshold value at the output node. It should
II. THEORETICAL ANALYSIS: ANN DECISION BOUNDARIES  be clear that what is desired is a manner of systematically

For the following discussions, it is assumed that the read@ffinking/enlarging a decision region in feature space. The
is familiar with basic ANN concepts and the backpropagatidwesuon’ then, is how to do this most effectively and directly
training algorithm. For a basic introduction to backpropagatidi the ANN framework.
neural nets, the reader is referred to [7].

An ANN classifier defines a potentially complicated deci- Ill. METHODS GENERATING ROC QURVES
sion boundary in the feature space. This boundary is formedThe ANN must be trained before the ROC curve can be
as the nonlinear combination of a set of basic hyperplaneserated. The resulting network is referred to as a “basic
Each basic hyperplane is defined by a node in the first hid Bined network.” This initial instance of the ANN provides
layer. A nonlinear decision boundary is formed by combining_ne operating point. Based on the training data, each of the

the basic hyperplanes via weighted connections to nodesyj}, methods we discuss manipulates one or more parameters
subsequent layers of the network. _ _ of the basic trained network to give additional instances of the
Fig. 2 depicts a single sigmoidal node with two inputs, angl\ The result is a set of instances of the network chosen to
an offset which is represented by a bias unit connection. TR, esent points on the ROC curve. The goodness of this set
sigmoid activation function of the node is defined by of network instances is then evaluated using separate test data.
S 1 (1) So, ANN training involves both the learning of the network
o connection weights, and the estimation of classifier parameter

1+ e¢—(sum)’
The input to the hidden node is settings for the purpose of generating an ROC curve.

sum = W1 X1 + WoXy + WoB (2) A. The Standard Method: Output Node Thresholding

which is the equation of a hyperplane in feature space (a lineGenerally, an ANN for a two-class problem has a single
in two dimensions). The hidden node input can be put into tiéltput node. The commonly accepted method of generating
form of a line equationy = maz + b as ROC points [3]-[6] is to vary a threshold?,.;) over the range
of the output node activation (0.0-1.0). For each valu&.qf,
Wi WoB X
X = X+ . (3) any feature vector which produces an output greater than or
W2 W2 equal toT,,; is classified a target, otherwise it is classified
In this form, it is easy to see that the orientation and locatian nontarget.

of the linear boundary defined by one node is determined byAn optimal set of7,. values, which correspond to suc-
the connection weights from the network inputs and the biasssively higher levels of sensitivity, can be found by sorting
offset. When an input to the node produces a weighted suhe set of network outputs found when every training sample
of zero, it corresponds to a point on the hyperplane, and thiem the target class is input to the trained network. Each
activation function outputs a 0.5. If the weighted sum is greatdistinct value in this sorted set corresponds tdlg,; that
than zero, the point lies on one side of the hyperplane and tlesults in a new point in an ROC pléor the training data
activation function outputs a value in the [0.5, 1.0] rangédditional points, if desired, could be found by interpolation.
Similarly, if the weighted sum is negative, the point lies ofor example, assume the training data providgg values
the opposite side of the hyperplane and the activation functioh0.6 and 0.7 corresponding to sensitivity levels of 40% and
outputs a value in the [0.0, 0.5] range. 50%, but nothing in between. &,,,; of 0.65 might be assumed
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to produce an interpolated ROC point with a sensitivity ofalue learned during training results in a lower node activation

45%. Note that this newly estimated value Bf,; will not for a given input. Depending on other weights in the network,

result in a new sensitivity level for the training data, but iscaling the bias weight for a given node to make it greater
may for a different data set with a similar distribution (sucltould either increase or decrease the output node activation
as the test data). for a given input vector.

For the experiments reported here, we first find all of the Testing Individual NodesThe mechanics of the proposed
distinct 7,,,; values for the training set. Then, interpolating amethod of generating ROC curves are as follows. First, for
described above, we estimate a seff@gf; values correspond- each hidden node on the first layer, we determine whether it
ing to TP rates ranging from 0% to 100% in 1% intervalhe is necessary to increase or decrease its bias weight in order to
goodness of this set of 101, values as an ROC curve is thercause more samples to be classified as targets (i.e., increase
evaluated using the test set. Of course, it would be possifl® and FP rates). This is accomplished in the following
to generate an “optimal” ROC curve for the test data by sesanner. The training set data is passed through the basic
lecting 15, values based on the test set. However, this wouldhined network, and the resulting TP and FP rates are noted.
constitute learning classifier parameters directly from test datéhis TP/FP pair represents the “natural” ROC point to which

Analysis of the Standard Methodtandard ANN training the ANN has trained. Next, each first hidden layer node is
algorithms arenot designed to vary the strength of the outputonsidered individually, its bias weight is modified, and the
according to a training sample’s proximity to the final decisioresulting TP and FP rates are observed. In our implementation,
surface. ldeally, all target samples would produce identicéle bias input for all nodes in the ANN is kept at a constant
outputs of “1,” and all nontarget samples would producgalue of 1.0 during training. However, we can vary this value
identical outputs of “0.” individually for each node on the first hidden layer. In effect,

The typical ANN implementation contains an inherenthe bias input to a given node becomes a “scale factor” for
weakness which may cause problems when the stand@rd bias weight. We use scale factors -€9.0 and 11.0 to
method is used to generate ROC curves. Since the sigmdistrease and increase, respectively, the bias weight for this
activation function asymptotically approaches zero and orfétst step of the algorithm. We should note that for some nodes
all inputs above a saturation value generate an output of otite TP and FP rates may not be affected when the bias weight
while all inputs less than another saturation value generagéechanged. These nodes have effectively been “turned off”
an output of zero. These saturation values depend on th&ing training and play no role in determining the network
precision of the ANN implementation. For example, using theutput. Such nodes are not considered in subsequent steps of
activation function of (1), all inputs greater than 14 generathe algorithm. So, at this point we know which “direction”
outputs identical to six significant digits. The overall effectincreasing, decreasing, or not at all) the bias weight of each
is that many different input samples appear identical to fiast hidden layer node must be scaled in order to increase or
hidden node, even with a double precision floating-poimtecrease the ANN sensitivity.
implementation. This grouping together of samples due toSweeping Out an ROC CurveSince ANN training results
saturation occurs at all nodes in the network, resulting in an initial point on the ROC curve, generating the rest of
multiple samples having the same network output regardlasg curve involves changing the TP rate of the ANN and
of proximity to the decision surface. As a result, varyingbserving the corresponding FP rate. Thus, the next step to
a threshold on the output node activation may not genergjénerate a ROC curve is to determine sets of scale factors

many distinct ROC points. that change the ANN’s TP and FP rates in a desirable manner.
First, we determine scale factors that increase the TP rate from

B. The Proposed Method: Scaling Bias Weights the initial ROC point while increasing the FP rate as little as

for First Hidden Layer Nodes possible. Then, we determine scale factors that decrease the

Consider a basic trained network. At each node. tH& rate from the initial ROC point while decreasing the FP
weighted sum of inputs is passed through a sigmoid functiA€ & much as possible. Conceptually, we are “sweeping out”

which determines the node activation an ROC curve by attempting to find operating points for the
1 training data that change the TP rate from 0% to 100% while
node activation= maintaining as low an FP rate as possible.

— (W1 X1 +WoXo+ - +Wy Xy+WyB) * . . . . .
1+ e (M A We Xobo A WaXatWo )4) Implementation Details:Our implementation for determin-

In this expression, th&;,i = 1-- - d, are the inputs (otherthaning sets of scale factors uses a lookup table. The table has a
the bias) to the no'de tt{éﬁ i=1- d, are the weights on the "OW for each first hidden layer node. Each column in the table

inputs, andi¥, is the weight on the bias input. The bias inputcontains the set of scale factors that correspond to a particular

B, is fixed at 1.0 during the backpropagation learning phagerating point. The completed lookup table specifies how to
Scaling the bias weight}’y, of a node to make it greater thangenerate a set of ROC points from the basic trained network

the value learned during the training phase results in a gred®f€ Fig- 3). o _ _
node activation for a given input. Scalifi§j, to less than the ' n€ following algorithm is used to dynamically build the
lookup table. The lookup table initially has a single column

_in principle, o des"edd”t‘;mber B, values Wit? any pbrec’i‘:ted spacing yith all entries set to 1.0. This column represents the operating
in TP rates can be created by appropriate interpolation between &¢fual . . .
values that are found directly from the training data. A set of 101 values Wi@pmt to which the ANN naturally trained. Next, the scale fac-

1% intervals in TP rate was judged sufficient for our purposes here. tors for all first hidden layer nodes are mov&ichultaneously
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TABLE |
PORTION OF A LOOKUP TABLE THAT SPECIFIES THE SCALE FACTORS FOR THEBIAS WEIGHT INPUTS OF EACH FIRST HIDDEN LAYER
NoDE. EACH COLUMN IN THE Lookup TABLE CORRESPONDS TO ANOPERATING POINT FOUND FOR THE TRAINING SET DATA

Scale Factors to Decrease | Default | Scale Factors to Increase
<<= == <= = = Scale —— > = > = === >
TP and FP Rates | Factors | TP and FP Rates
Hidden | ... | TP=65.3 | TP=67.0 | TP=68.0 | TP=68.7 | TP=71.3 | TP=72.7 | TP=76.0
Unit # | ... | FP=12.0 | FP=12.7 | FP=14.0 | FP=16.0 | FP=17.3 | FP=21.3 | FP=28.0
Unit 9 | ... 1.0 1.0 1.0 1.0 1.0 1.06 1.06
Unit 10 | ... 1.0 1.0 1.0 1.0 1.1 1.16 1.26
Unit 11 | ... 0.97 0.97 0.97 1.0 1.0 1.06 1.06
Unit 12 | ... 1.6 1.6 1.0 1.0 1.0 0.94 0.94
Unit 13 | ... 1.0 1.0 1.0 1.0 1.0 1.06 1.06
Unit 14 | ... 1.0 1.0 1.0 1.0 1.0 1.06 1.06
Unit 15 | ... 1.0 1.0 1.0 1.0 1.0 1.06 1.06
Unit 16 | ... 1.0 1.0 1.0 1.0 1.0 1.06 1.06
Unit 171 ... 1.0 1.0 1.0 1.0 1.0 1.06 1.06
Unit 18 | ... 0.94 1.0 1.0 1.0 1.0 1.03 1.03

the scale factors of all nodes simultaneously makes sense.

However, if the density of training data is different near

different regions of the decision boundary, then it may be
Resulting TP and FPraes — hatter to scale only a selected subset of the bias weights.

define an operating point

Inputs 1st Hidden Layer

on the ROC curve. To check for this possibility, the scale factor is changed
in the appropriate direction for each first hidden layer node
) individually until the desired increase in the TP rate is found.

Again, we record the new TP and FP rates.
So, if we haveN nodes on the first hidden layer, then there
are NV + 1 possible sets of scale factors, and therefsre- 1

(Bias Input)

;Z:fiif;ﬁifiﬁnﬁ E?mf:ﬁ cand?dates from whi_ch to choose t_he r_1ext operating point. The
layer node is multiplicd by the  0-00 — = candidate selected is the one which increases the TP rate by
appropriate scale factor in the table. the desired amount while increasing the FP rate by the least

Scale Factors for Ist Hidden Layer Nodos. amount. In the case of a tie, changing the scale factors for

Hidden (08;’”@2-%%% all first hidden layer nodes simultaneously takes precedence
’ — | xxx over changing the scale factor for a single node, and ties

2 - | xxx between changing different individual node scale factors are

resolved arbitrarily. Finally, the next column to the right in
the lookup table is created and filled in with the scale factors
. — that correspond to the selected ROC point. This procedure is

continued until reaching a TP rate of 100% on the training set.
. . _ A similar strategy is employed to create the columns of the

Fig. 3. The lookup table of scale factors is used to set a desired operati]a%k bl he left of the initial col We find ROC

point for the ANN classifier. In this figure, the bias connections to the secord® up table to the left of the initia C_O u_mn' € 1ind new

hidden layer and output nodes are not shown. points to decrease the TP rate until either a TP rate or an FP

rate of 0% is found for the training set. The only difference

by the same amount in the direction that will increase the Then selecting from theV + 1 candidate operating points is
and FP rates. Based on the first step in our algorithm we knd@t we select the one that reduces the TP rate the desired
which direction the scale factors should be changed for ea@fpount while reducing the FP rate the most.
first hidden layer node, but not by how much. Assuming we Table I shows an example of part of an actual lookup table.
would like to raise the TP rate in some specific increment, siiptice that sometimes all scale factors are changing simulta-
1%, we need to change the scale factors until at least 1% mogoUsly between successive operating points, and sometimes
targets from the training set are correctly classified as targe?sly a single scale factor is changing. Also, moving from left
In order to do this efficiently, we perform a “binary searchto right, notice that the scale factor increases for some nodes
over a range of possible scale factor changes until we zexod decreases for others.
in on the smallest scale factor change (within some desiredWe should note that our solution for obtaining sets of scale
degree of accuracy) that produces the desired increase infagors for the bias weights is a heuristic. It is possible that
TP rate. Once the new set of scale factors has been determifpedier operating points may be found by changing more than
the new TP and FP rates of this operating point are recordede but less than all scale factors. Considering all possible
If the density of the training data in feature space is thgubsets would require checki2d combinations, wheréV is
same near all regions of the decision boundary, then changthg number of first hidden layer nodes, an exhaustive search
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would be out of the question for largg€. Our solution should might expect that an ANN solution will require several hidden
generally give good classification performance at reasonabledes to adequately solve these types of problems.
computational cost. More sophisticated heuristics might beTo test a more difficult type of classification problem, an
used to determine scale factor changes for varying numbedditional four data sets were created with the 2-D exclusive-
of first hidden layer nodes. or distribution shown in Fig. 4(c). Here, the target class is

Once the lookup table has been completed, we can inteomposed of two normally distributed clusters, one in the
polate between scale factors for successive operating poilotwer-left quadrant and one in the upper-right quadrant of
to find a new set of scale factors that could result in a nef@ature space, while the two normally distributed nontarget
operating point for a data set with a similar distribution as thgusters occupy the upper-left and lower-right quadrants. As
training data. For example, using Table | and interpolating tefore, we have four different size training sets, and a test set
get an operating point with a predicted TP rate of 75%, tiveith 5000 samples.
scale factor for node ten would be approximately 1.23, while In addition to the simulated data, experimental results are
the scale factors for the other nodes remain unchanged. Usiagorted for six real data sets taken from applications involving
this interpolation procedure, we estimate sets of scale factonedical diagnosis. Four data sets were obtained from the
that correspond to 101 equally spaced ROC points (0%-100&I| Repository of Machine Learning Databases (available
TP rate in 1% increments). The goodness of the ROC curvia anonymous ftp to ftp://ics.uci.edu/pub/machine-learning-
resulting from these 101 sets of scale factors is evaluated usétajabases). Another two data sets were taken from applications
the test set. in mammogram image analysis [8], [9].

Summary of the Proposed MethoBirom (1) and (2) we  Since training and test data is required, each data set
see that the weights on the inputs of a first hidden layaas randomly divided into two subsets, retaining the same
node define a hyperplane. Scaling the bias weight is equilass distributions as the full data sets whenever possible.
alent to a parallel shifting of the hyperplane. Since the finBlach subset is alternately used as training data and test data.
decision surface is a combination of these hyperplanes, dResults are reported when each subset is used as training data.
proposed method determines how to manipulate the individddierefore, we have results for 12 experiments involving data
hyperplanes in a desirable manner. We first determine whitbm real applications.
direction each hyperplane should be shifted in order to drive
the sensitivity up or down. Next, we determine how mucB. ANN Topology Selection and Training
the hyperplanes should be shifted in feature space to create

Rl of the experiments reported here use fully connected
family of decision boundaries that correspond to a full set %L P P y

operating points. This is accomplished by changing the sc %ckpropagation networks with sigmoid activation functions
perating points. This 1 Pl y ging Utput range: 0.0-1.0), a bias unit with weighted connections

e e ey ol oces. nd  sinlecuput e, The value proced by
. y Y, 8 ) 9 i output node would typically be thresholded so that values
change which produces the best new operating point.

greater than or equal to 0.5 are labeled “target,” and values
less than 0.5 are labeled “nontarget.”
IV. EXPERIMENTAL METHODS One important aspect of neural network applications is

This section provides descriptions of the datasets, ANi€ determination of a suitable topology (i.e., the number of
configuration, training, testing, and the criteria for comparingidden layers and the number of nodes per hidden layer).

in practice two or more hidden layers are often employed.

While some rules of thumb exist, an optimal solution to this

) ) ) . problem cannot be determined in any reasonable amount of
We created 28 sets of simulated data with various inpgfhe. Generally, a network topology is selected by trial and

dimensions, sample sizes, and data distributions. For 12 dgfa,,. Many different networks are trained, and the “best’
sets, both classes have a Gaussian distribution with sogi is selected. This is the approach we have taken, but
overlap between classes. A 2-D example is shown in Fig. 4(g)y previty we will omit the details. For each set of training
We created training sets using sample sizes of 500, 1000, 15§94 about 100 different one- and two-hidden layer network
and 2000 with an equal number of samples from each clag§nfigurations were systematically evaluated. The best one-
and input dimensions of 2-D, 3-D, and 5-D. We created thrggygen |ayer network and the best two-hidden layer network
sets of test data, one for each input dimension, with 25¢Q,nq for each problem are utilized in the subsequent ROC
samples from each class. We would expect an ANN with &periments.
single hidden node to be sufficient for these data sets. Once a topology has been determined, the ANN's are
For 12 other simulated data sets, only the target sampiggined. Given a set of training data, we first standardize each
have a Gaussian distribution. The nontarget samples are Yktyre value by subtracting the feature mean and dividing

formly distributed throughout feature space except near ¢ the feature standard deviation. Next, the data is divided

target sample mean. Fig. 4(b) shows a 2-D example. As before,

we use training sets with four different sample sizes and three The nature of mammography data did not permit division into two equal

diff t input dimensions. Again. we have three sets of t subsets. It was necessary to prohibit samples from the same mammogram
ifrerent inp A * 9 ! : Gmiage from belonging to the training data and the test data in the same

data, one for each input dimension, with 5000 samples. \Weperiment.

A. The Experimental Data
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Fig. 4. Examples of 2-D simulated data sets in which (a) both classes have Gaussian distributions. (b) The target class has a Gaussian ditribution, an
the nontarget class has a uniform distribution. (c) The two classes exhibit an exclusive-or distribution.

into training and validation subsets. The ANN is trainedurrent standard method, and sets of bias weight scale factors
using a standard backpropagation learning algorithm. Betwefen the proposed method) required to generate ROC curves.
each training epoch, the error rate (sum of squared error)Fer the two ANN's, both methods of ROC curve generation
computed for the validation data. The network weights arese all the training data to determine appropriate parameter
saved each time this error rate drops. Training continues ursilts which correspond to predicted sets of 101 ROC points at
there has been no improvement in the validation error rat@& increments in the TP rate. Therefore, given a trained ANN
for 500 epochs. The use of validation data to halt the trainirmnd set of test data, both methods have the same potential to
process prevents the ANN from over-fitting the solution to theroduce 101 evenly spaced ROC points.
training data, and leads to better generalization. The results for
a trained ANN are naturally dependent on the initial values . .
of the weights, which are usually random. This being the: Testing and Comparing ROC Curves
case, each ANN is trained five times with different random Given a set of test data, four ROC curves are generated
initializations, and the one with the best validation error raigwo methods each applied to the best one-hidden layer ANN
is selected. and the best two-hidden layer ANN) which may or may not
At this point, we have two basic trained networks for &ave 101 distinct points. We would like to determine if one
given training set: the best one-hidden layer ANN, and the bestrticular method of generating ROC curves is better than the
two-hidden layer ANN. In this work, training also involvesother, or if the ROC curves generated for the one-hidden layer
determining the appropriate parameter settirigis,.(for the ANN'’s are better than those generated for the two-hidden layer



WOODS AND BOWYER: GENERATING ROC CURVES FOR ANN'S

TABLE I
SuMMARY OF ALL 80 ROC EPERIMENTS

Results for ANNs with 1-Hidden Layer
Bias Scaling Method is better 33 tines 19
Output Thresholding is better 6 times 0

# of times AUCs are stat. sig. different

Methods are equivalent 1 time -
Results for ANNs with 2-Hidden Layers

A of times AUCs are stat. sig. different

TABLE 1l
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RESULTS FOR28 SMULATED DATA SETS, 12 REAL APPLICATION DATA SETS.
AN ASTERISK IN COLUMN 2 INDICATES THE PERFORMANCE OF THE
SeLECTED NETWORK |S STATISTICALLY SIGNIFICANTLY BETTER THAN
THE OTHER NETWORK (I.E., BEST ONE-HIDDEN LAYER ANN VERSUS
BesT Two-HIDDEN LAYER ANN). AN ASTERISK IN COLUMN FOUR
INDICATES THE SELECTED METHOD OF ROC QURVE GENERATION IS
STATISTICALLY SIGNIFICANTLY BETTER THAN THE OTHER METHOD

Bias Scaling Method 1s better 28 times 20
Output Thresholding is better 10 times 2 Data Set ANN Topology | # of Samples | Best Mcthod
Methods are equivalent 2 times - 2-d Overlapping Gaussians 2:2:2:1 500 Bias
2-d Overlapping Gaussians 2:19:1 1000 Bias
2-d Overlapping Gaussians 2:28:24:1 1500 Thresh

' H H 2-d Overlapping Gaussians 2:1:1 2000 Bias™
ANN'’s. The AUC is an accepted way of comparing overal| =~ i : - ,

e . 3-d Overlapping Gaussians 3:1:1 500 Bias
classifier performance [10]; [11] Hanley and McNeil [12]; 3-d Overlapping Gaussians 3:15:17 1000 Dias™
[13] describe a method for Comparing the AUC’s of two ROQ 3¢ ()verlapp%ng Gauss%ans 3:9:9:17 1500 Bias™

. #7d Overlapping Gaussians 3:1:17 2000 Bias™
curves that have been derived from the same set of cases. W Gerapping Gaussians PR =00 Fins
use this approach to determine if the difference between twod Overlapping Gaussians 5:4:4:1 1000 Bias

e ot H = 5-d Overlapping Gaussians 5:1:1 1500 Dias™
AUC’s is Statlsnca_”_y S|gn|f|Cant. A . 5-d Overlapping Gaussians 5:1:1 2000 DBras™

The “best” classifier for an application may well depend O Gaussian and Uniform 251 500 Bias
the particular combination of TP and FP rates that are requirgd:! Ganssian and Uniform 2:7:17 1000 Bias®
. - e s 2-d Gaussian and Uniform 2:23:18:1" 1500 Bias™
Additionally, classifier performance at very low sensitivities Of ;- ¢ ussinn and Unifora 57391 3000 Tias
very high FP rates is usually not of practical interest. Thug-d Gaussian and Uniform 3:0:3:1 500 Bias
H H H H A 3-d Gaussian and Uniform 3:10:17 1000 Dias®
while the AUC _IS useful aS_ a Slngle number for n_]akllng .dl}—d Gaussian and Uniform 3:15:17 1500 Bias
general comparison of classifier performance, the distribution-q Gaussian and Uniform 310 1 2000 Dias
of the selectableoperating points is also important. A finely | >< gmwsm ami gﬂifm ; 35;0;31 : 15(;]000 Dhrcsh
. . . 5-d Ganssian and Uniform 5037 iresh

Sampled range of operatlng pOIntS IS Important because FAl Ganssian and Uniform 5341 1500 Dias B
TP/FP trade-off other than the one the ANN naturally traineh-d Gaussian and Uniform 5:23:1 2000 Bios
i H i i 2-d Exclusive-OR distribution 2:8:4:1 500 Dias

h

to may be nee,de_d for a parthUIa,r appl!catlon' We WI” ali 2-d Exclusive-OR distribution 2:5:17 1000 Bias™
compare the distribution of Operatlng p0|nts generated by UM 4 Exclusive-OR distribution 2:13:17 1500 Thresh
two methods. 2-d Exclusive-OR. distribution 2:18:1" 2000 Bias
Heart disease diagnosis 1 6:66:2:17 135 Thresh
Heart disease diagnosis 2 6:1:1 135 Bias
V. RESULTS BUPA liver disorders 1 6:6:6:1 172 Thresh
.| BUPA hver disorders 2 6:1:1 171 Tie
We have a total of 40 data sets for the purpose of compariNgscnsiu Ding. Breast Cancer 1] 1073 271 284 Dias
the ROC curve generating capabilities of the two methodsisconsin Diag. Breast Cancer 2| 10:2:2: 17 283 Dias”
. h ANN’s f h dat t b in b Pima Indians Diabetes 1 8§:1:1" 384 Bias”
Since Vye ave two S 1or eac aia set, we begin Pima Indians Diabetes 2 8:2:2:1 384 Bias™
comparing the performance of the two methods for all 8 Maminography Application A 1 7117 3719 Dias™
: , Alammography Application A 2 7:98: La72 Dias
ROC e)_(perlments' For the 80 ANN S, the propos_ed meth “Mammography Application B 1 8:22: 1 227306 Bias™
results in the best AUC 61 times, 39 times the difference {Siammography Application B 2 S:15:1 25187 Bias

statistically significant. The current standard method results in
the greatest AUC 16 times, only two of which show statistical
significance. The methods produced equivalent AUC’s thredicantly better ROC curve than the current standard method.
times. So, using the proposed method a statistically equival@&it contrast, the current standard method did not generate a
or better ROC curve was found for 78 of the 80 ANN’s, ostatistically significantly better ROC curve than our proposed
97.5% of the time. By contrast, the current standard methatkthod for any data set examined in this work. Looking at
results in statistically equivalent or better ROC curves for 4he ANN topologies selected for each problem, we see that
of the ANN'’s, or 51.25% of the time. Table Il summarizesa network with two hidden layers resulted in a statistically
these results separately for one- and two-hidden layer ANN&gnificantly better ROC curve for only four of 40 experiments,
In practice, one would only select the single best ANNr 10% of the time.
for a particular task. Table lll summarizes the results whenFor the simulated data with overlapping Gaussian’s, a
the single best ROC curve is selected for each data set. poactical upper bound on the AUC of an ROC curve can
each data set, we show: 1) the selected ANN topology, 2) the established using a linear Bayes classifier in which the
sample size of the training set, and 3) which method of RO&lass-conditional probability density functions are assumed to
curve generation produced a higher AUC measure. We denbte Gaussian distributions [14]. For example, an ROC curve
when the performances of the one-hidden layer network vergienerated from a linear Bayes classifier on the 2-D overlapping
the two-hidden layer network are statistically significantlfzaussian data with 500 samples has an AUC of 0.987 851. Our
different. We also denote when the performances of tipeoposed method generated an ROC curve with an AUC of
two ROC generation methods are statistically significant.987 727, which is slightly less than the upper bound. The
different. current standard method generated an ROC curve with an
From Table Ill, we note the following. For 16 of the 40AUC of 0.966 757. These results are typical of the relative
experiments, our proposed method generates a statistically gigrformance obtained for the simulated data with overlapping
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TABLE IV
1.0 | SUMMARY OF SECOND RuN FOR ALL 80 ROC EXPERIMENTS
Results for ANNs with |-llidden Tayer | # of times AUCs are stat. sig. different
Bias Scaling Method is better 29 times 15
0.8+ Outputl Thresholding is better 11 times 2
: Methods are equivalent 0 times -
[ Results for ANNs with 2-Hidden Layers | # of times AUCs are stat. sig. different
® Bias Scaling Method is better 31 times 17
5 r Outputl Thresholding is better 8 times 2
¥ 06 Methods are equivalent 1 time
o L
= Proposed Method
3 Conventional Method : P
0 i of the 80 ROC experiments. This time the proposed method
v 0.4 7 a statistically equivalent or better ROC curve was found for
— ) | 76 of the ANN'’s, or 95.0% of the time. The current standard
() | method results in statistically equivalent or better ROC curves
0o H ! _ for 48 of the ANN’s, or 60.0% of the time. So, the current
/ standard method faired slightly better than in the first round
Y : of experiments. Even so, the test results overwhelmingly favor
/ the proposed method.
OO0« v 0 v e
0.0 0.2 0.4 0.6 0.8 1.0

Falsc Positive Rate VI. SUMMARY AND CONCLUSION

Fig. 5. ROC curves generated by both methods for one of the Pima IndiansMethods of generating ROC curves for ANN classifiers in a
Diabetes data sets. Here, the current standard method was unable to gentpateclass problem are examined. Two methods are compared.
any operating points with TP rates between 0%, 58.2%, or between 64.qﬂﬁese methods are 1) varying a threshold on the output node

d 100%.
an ’ and 2) scaling the bias weight for selected first hidden layer
nodes. Varying a threshold on the output node is the current
Gaussian’s. standard method [3]-[6]. Scaling the bias input weight for

For the simulated data in which the target class hassalected first hidden layer nodes is a new method proposed
Gaussian distribution and the nontarget class is uniformhere.
distributed, it should be possible to generate a reasonablyOur proposed method involves the construction of a lookup
good ROC curve using a quadratic Bayes classifier in whi¢hble which contains a sequence of scale factors for the bias
the class-conditional probability density functions are assumegights of each first hidden layer node. The lookup table is
to have Gaussian distributions [14]. As an example, an RQfSed as a “sensitivity dial” which facilitates the easy selection
curve generated from a quadratic Bayes classifier on the 2sP an operating point for an ANN classifier, and thereby
data with 500 samples has an AUC of 0.987 603. Our proposeermits reliable classification at operating points other than
method generated an ROC curve with an AUC of 0.990 66the one to which the ANN naturally trained.
which is slightly better than the Bayesian classifier. The currentBased on our experimental results, we suggest the following
standard method generated an ROC curve with an AUC wikethodology for utilizing ANN’s in diagnostic applications
0.988119. A linear Bayes classifier generated an ROC cutivewhich it is necessary to generate an ROC curve. First,
with an AUC of 0.960837. Again, these results are typical. select the “best” ANN topology for the application. Our results

The current standard method occasionally had problemssinggest that approximately 90% of the time an network with a
finding a full range of operating points. As an example, usirgingle hidden layer will be sufficient. Since one may avoid
the current standard method for an ANN trained on one tdsting numerous two-hidden layer ANN configurations, a
the Pima Indians Diabetes data sets, operating points witbnsiderable reduction in computational effort can be realized
only 8 distinct TP rates were found on the test data: 0%, a trial and error approach to ANN topology selection is
58.2%, 59.7%, 60.4%, 61.2%, 63.4%, 64.2%, and 100%. Usiutilized. Since the current standard method of generating ROC
the proposed method, operating points corresponding to giZves for an ANN is simple to implement, one may want
distinct TP rates were obtained. These points run from 0%t try this approach first. However, our test results would
100% with a gap of at most 3% between successive operatingdicate that a statistically significantly better ROC curve can
points. Fig. 5 shows the ROC curves for this experiment. Thie generated using the proposed method between 40% and
example illustrates that it may not be possible for an ANN0% of the time. Additionally, the current standard method
to operate near a desired sensitivity if the current standardhy, on occasion, have problems generating operating points
method is used to generate operating points. over a large range of sensitivity.

As we noted before, the results for a trained ANN are In the process of developing this work, several other meth-
naturally dependent on the initial values of the weighteds of ROC generation were considered and eventually dis-
Therefore, we might expect slightly different test results shoutérded. One approach attempted to create ROC points by
all these experiments be run again with different randorepeating target or nontarget training samples some extra
initializations. Table 1V summarizes the results of a second rmmumber of times in extra training epochs. Another approach
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attempted to create ROC points by an additional training epoch
in which the error value for training samples in different o
classes was scaled by some factor prior to backpropagatio[n.
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interstitial lung diseases,” ifProc. SPIE Conf. Medical Imaging IV:
Image ProcessingNewport Beach, CA, Feb. 1990.

I. N. Bankman, V. G. Sigillito, R. A. Wise, and P. L. Smith, “Feature-
based detection of thR'-complex wave in the human electroencephalo-

Neither of these approaches yielded results as good as the gram using neural networks/EEE Trans. Biomed. Engvol. 39, no.

method of adjusting the first hidden layer bias values.

We have not considered attempts to generate ROC curvEd
by repeatedly training an ANN to the different operating
points. Changing the ANN architecture for each ROC point[3]
manipulating the training set, or weighting the different error
types are all methods that would require the ANN to be trainegs
“from scratch” many times to derive each operating point.
While these methods may be feasible, they are not generally
done in practice because they are potentially problematig;
and time-consuming. We would prefer to generate an ROC
curve from an already trained classifier by manipulating som#!
underlying parameter(s) of a classifier. The manipulation of
classifier parameters will in turn move a decision boundary
in feature space between the two classes and result in(@
new sensitivity/specificity tradeoff. Thus, our proposed metho
and the current standard method both start with a decision
boundary found via training, and directly manipulate the
decision boundary in order to obtain new operating pointﬁO]
This is not the case if we retrain the ANN each time from some
random initialization to find a set new decision boundaries fd¥1]
each operating point. [12]
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