
TTS – A Treebank Tool Suite

Aoife Cahill*, Josef van Genabith*

* Dublin City University
Glasnevin, Dublin 9, Ireland

{acahill, josef}@compapp.dcu.ie

Abstract
Treebanks are important resources in descriptive, theoretical and computational linguistic research, development and teaching. This
paper presents a treebank tool suite (TTS) for and derived from the Penn-II treebank resource (Marcus et al, 1993). The tools include
treebank inspection and viewing options which support search for CF-PSG rule tokens extracted from the treebank, graphical display
of complete trees containing the rule instance, display of subtrees rooted by the rule instance and display of the yield of the subtree
(with or without context). The search can be further restricted by constraining the yield to contain particular strings. Rules can be
ordered by frequency and the user can set frequency thresholds. To process new text, the tool suite provides a PCFG chart parser
(based on the CYK algorithm) operating on CFG grammars extracted from the treebank following the method of (Charniak, 1996) as
well as a HMM bi-/trigram tagger trained on the tagged version of the treebank resource. The system is implemented in Java and Perl.
We employ the InterArbora module based on the Thistle display engine (LTG, 2001) as our tree grapher.

1. Introduction
Treebanks are parse annotated text corpora. They are

important resources in descriptive, theoretical and
computational linguistic research, development and
teaching. Treebanks are used as data repositories in
syntactic research (Sampson, 2001) and grammar
extraction, training and ("gold-standard") evaluation
resources in statistical parsing and tagging (Charniak,
1993).

More recently, treebanks are used to (semi-)
automatically generate "higher-level" syntactic and
semantic representations such as e.g. dependency
structures (Collins, 1996) and, in our own research,
Lexical-Functional Grammar (LFG) (Kaplan and Bresnan,
1982) f(unctional) structures (attribute-value structures)
(Frank, 2000), (Sadler et al, 2000), (Cahill et al, 2002).

In our research (Sadler et al, 2000), (Cahill et al, 2002)
we automatically annotate treebank trees with LFG
feature-structure information in terms of annotation
principles and/or annotation algorithms. The annotation
principles/algorithms work on local (sub-) tree
configurations of depth one, i.e. CFG rules (see (Frank,
2000) for a more general approach that involves tree
fragment rewriting).

Treebank trees tend to involve a large number of CFG
rules. The Penn-II treebank (Marcus et al, 1993) features
more than 19K distinct CFG rule types extracted from a
corpus of about 1000K words of parse-annotated text from
the Wall Street Journal. In our automatic annotation work,
we derive annotation principles based on the most
frequent rule types such that for each syntactic category
(S,NP,VP,..) the token occurrences of the rule types
expanding the category cover more than 80% of the
overall token occurrences of the rules. The annotation
principles are applied automatically to the treebank trees
and thereby also cover less frequent local trees (CFG
rules) and allow us to generate good quality, higher level
f-structures automatically from the treebank trees (for
more details see (Cahill et al, 2002)).

In order to support the development of the annotation
principles and algorithms we need a treebank tool that, for
each CFG rule type occurrence in the treebank trees,

allows inspection of the trees containing the rule, the local
trees rooted by the rule and the terminal yields (with or
without left and right context) of the rule.

In this paper we present a treebank tool suite (TTS) for
and derived from the Penn-II treebank resource (Marcus et
al, 1993). The tools include treebank inspection and
viewing options which support search for CF-PSG rule
tokens in the treebank, graphical display of complete trees
containing the rule instance, display of the subtree rooted
by the rule instance and display of the yield of the subtree
(both with or without context).). The search can be
further restricted by constraining the yield to contain
particular strings. Rules can be ordered by frequency and
the user can set frequency thresholds.

To process new text, the tool suite provides a PCFG
chart parser (based on the CYK algorithm) operating on
CFG grammars extracted from various versions of the
treebank (e.g. with and without automatically annotated f-
structure information) following the method of (Charniak,
1996) as well as a HMM bi-/trigram tagger trained on the
tagged version of the treebank resource.

It turns out that the TTS suite developed in our
automatic annotation project can also be used for

• treebank development (either manually or semi-

automatically using the tagger and PCFG parser
followed by a manual inspection and correction
phase);

• treebank inspection as a graphical interface to the
Penn-II resource for teaching and research;

• as a grammar development tool for inspection,
profiling and proofing of the coverage and
application of large scale CFG grammars and
their output on a corpus.

Below, we first give an overview of the functionality

of the TTS treebank inspection tool. The tool supports
search and display of treebank information based on CFG
rule and terminal yields. We then describe the HMM
based tagger and PCFG parser components in the TTS
system. Finally, we discuss further work and conclude.

2. CFG Rule Based Treebank Search and
Display

Given a treebank resource such as Penn-II, it is
straightforward to extract the CFG grammar rules
embodied in the treebank trees (Charniak, 1996). For the
1000K word Wall Street Journal section more than 19K
rule types are extracted.

Given a particular CFG rule type, we would like to be
able to retrieve and view

• trees containing instances of the rule,
• subtrees rooted by the rule,

• the terminal yields of the rule (the strings
covered by the rule) with our without left/right
context

in the treebank.

In order to achieve this, we preprocess the treebank to
index extracted rule types with rule token occurrences in
treebank trees. This allows efficient retrieval during
runtime, an important end user requirement.

The user selects a rule and a presentation format (trees,
sub-trees or yields with or without context). If there are
multiple solutions, for efficiency reasons, the TTS tool
will retrieve and present such in consecutive sets of 50.

Figure 1. TTS displaying the first tree containing the rule ADJP-> JJ NN

Figure 2. TTS displaying the first tree of the rule ADJP-> JJ NN

Certain CFG rules occur more than several thousand times
in the corpus and exhaustive retrieval of all solutions
before presenting the first 50 solutions would be time
consuming and involve unacceptable response times.

The yield with/without context option effectively turns
the TTS tool into a "yield in context" (YIC - KWIC)
application. In contrast to e.g. Richard Pito’s tgrep, the
TTS tool does not support arbitrary tree fragment (of
variable depth) searches. However, we can often

approximate such searches by using a TTS search option
involving a CFG rule together with a terminal yield
constraint. In order to select trees exhibiting subject
control constructions, e.g., a user can specify a VP ->
VBD NP S rule and require that
'promise|promises|promised|promising'
be an element of the yield of the rule

This search query generates the following response:

Figure 3. TTS displaying the yield of the rule ADJP-> JJ NN

Figure 4. TTS displaying the yield(in context) of the rule ADJP-> JJ NN

CFG Rules can be ordered by frequency and the user
can set frequency thresholds. In our current
implementation the CFG rule search and tree display
option works with a number of versions of the Penn-II
treebank and extracted grammars.

The first is the original version of the Penn-II treebank
(with the functional annotations provided by the original
annotators).

The second is a version of the Penn-II treebank pre-
processed for PCFG (probabilistic context free grammar)
parsing (Charniak, 1996). In this version we strip all
functional annotations provided by the treebank
annotators (PP-TMP becomes PP etc.) and keep only the
monadic CFG categories. In addition, we eliminate unary,
empty (epsilon) productions and trees containing FRAG
constituents. The CFG rule set extracted is of size 19K.

Figure 4. TTS displaying the yield of the rule ADJP-> JJ NN

Figure 5. TTS limiting the rule VP→ VBD NP S

Figure 6. TTS displaying the trees of the limited yield of the rule VP→ VBD NP S

The third version is pre-processed for PCFG parsing
similar to above but this time we preserve the functional
annotations provided by the original treebank annotators.
The CFG rule set extracted is of size 29K.

The fourth version is identical to the third version but
this time (in addition to the functional annotations present
in the original treebank) carries all the f-structure
(attribute-value structure) annotations generated by our
automatic annotation algorithm (Cahill et al, 2002). The
CFG rule set extracted is of size 37K.

3. Treebank Based HMM Tagger and PCFG
parser.

In addition to providing an interface to existing or pre-
processed versions of the Penn-II treebank, TTS provides
tools for analysing new text. These tools include a HMM
tagger and a PCFG parser, both trained on the Penn-II
treebank resource.

The HMM tagger (Charniak, 1993) is available as both
a bigram and a trigram tagger. For a sequence of words,
the bigram tagger maximises the probability of the tag
sequence:

The PCFG parser is based on the CYK algorithm

(Collins, 1999) and returns the best parse. Rule
probabilities are calculated for the pre-processed treebank
resource using simple maximum likelihood estimators.
The probability of a rule is simply the number of times the
rule occurs in the corpus divided by the number of
occurrences of all rules expanding the same left hand side.

Using CFG independence assumptions, the probability
of a tree is the product of the probabilities of the rules in
the tree.

Both the tagger and the parser can be used in stand

alone mode (you can tag text and you can parse already
tagged text) or interfaced (the tagger is used to tag raw
text and the tagged version is then parsed by the parser).
The tagger and the parser can be used in semi-automatic
corpus/treebank development with manual correction of
the output.

4. Conclusions and Further Work
The TTS tool suite is designed to provide a query and

display interface to (variants of) the Penn-II treebank
resource or to resources generated with the tagger and
PCFG parser provided. CFG rules can be clicked and the
desired display (containing trees, subtrees rooted by rule,
yield, yield in context) is generated. Search can be refined
by constraining the rule terminal yield to contain
particular strings. CFG Rules can be ordered by frequency
and the user can set frequency thresholds. The tool set
provides an HMM tagger and a probabilistic parser to
process new text. The HMM tagger is available in both bi-
and trigram versions. Bi- and trigram transitions as well as

Figure 7. TTS displaying the results of a parse of new text

∑
=

→

→=→ n

i
i

j
j

RHSLHS

RHSLHSRHSLHSP

1
)(#

)(#)(

∏
=

=
n

i
iRulePTREEP

1
)()(

∏
=

−−=
n

i
iiiiinini twPtwtPwwttP

1
1,1,,)|()|()...|...(

lexical probabilities are computed from the tagged version
of the Penn-II resource. The probabilistic CFG chart
parser is based on the CYK algorithm and operates on
CFG rule sets and lexical entries extracted from the Penn-
II treebank.

TTS can support quality control in treebank and
computational grammar development. A treebanker or
grammar developer can query CF-PSG rules and the
system retrieves and displays complete trees which
contain instances of the rule from manually annotated text
in the treebank or from the output generated by the tagger
and the PCFG parser. Alternatively, the system is able to
display local subtrees (including their yield) headed by
rules queried. As a third possibility, the system can
display terminal strings (the yield of rules queried) with or
without context and thus provides some of the
functionality of a basic concordancing tool triggered by
CF-PSG rule rather than string query. This enables a
treebanker or grammar developer to proof, profile and
control the coverage and application of CFG rules in a
parse annotated corpus. TTS can be used in a data based
teaching scenario to give students access to graphical
representations of parse annotated text. Students can
explore rule types and search the parse annotated corpus
for rule token applications.

A web-based demo version of the CF-PSG rule query
and display part of the TTS system can be accessed with
Java enabled browsers at

 http://www.compapp.dcu.ie/~acahill/ica/

The system interface, indexing, retrieval, tagger and

parser components are implemented in Java and Perl. To
display retrieved trees we use the InterArbora module
based on the Thistle display engine provided by the
Language Technology Group in Edinburgh (LTG, 2001).

In future work we hope to be able to port the TTS
system to other treebanks such as the SUSANNE corpus
(Sampson, 1995) and to make the system available as
freeware to interested users.

5. References
Cahill, A., McCarthy, M., van Genabith, J., and Way, A.

2002. Automatic Annotation of the Penn II Treebank
with LFG F-Structure Information. In LREC 2002
Workshop on Linguistic Knowledge Acquisition and
Representation: Bootstrapping Annotated Language
Data, Las Palmas, Canary Islands, Spain, June 1st 2002.

Charniak,E. 1993. Statistical Language Learning, MIT

Press

Charniak,E. 1996. Treebank Grammars. Proceedings of

the Thirteenth National Conference on Artificial
Intelligence (AAAI-96), MIT Press, pp.1031-1036

Collins, M. 1996 A New Statistical Parser Based on

Bigram Lexical Dependencies 34th Annual Meeting of
the Association of Computational Linguistics, Santa
Cruz, CA, pp184-191.

Collins, M. 1999 Head-driven Statistical Models for

Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania, Philadelphia.

Frank,A. 2000. Automatic F-Structure Annotation of

Treebank Trees, LFG-2000, 19 July - 20 July 2000,
CSLI Publications, Stanford, CA, http://www-
csli.stanford.edu/publications/

Kaplan R.M, Bresnan, J. 1982. Lexical Functional

Grammar. The Mental Representation of Grammatical
Relations, MIT Press, pp.173-281

The Language Technology Group, 2001. 2, Buccleuch

Place, Edinburgh EH8 9LW, UK.
http://www.ltg.ed.ac.uk/index.html (20/11/01)

Marcus,M., Santorini,B and Marcinkiewicz, M.A. 1993 .

Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2);
pp.313-330

Sadler,L., van Genabith, J. and Way, A. 2000. Automatic

F-Structure Annotation from the AP Treebank; LFG-
2000, 19 July – 20 July 2000, CSLI Publications,
Stanford,CA,
http://www-csli.stanford.edu/publications/

Sampson, G. 1995. English for the Computer: The

SUSANNE Corpus and Analytic Scheme, Clarendon
Press, Oxford.

Sampson, G. 2001. Empirical Linguistics, Continuum

International, London and New York.

http://www.ltg.ed.ac.uk/index.html
http://www-csli.stanford.edu/publications/

	1712: 1712
	1713: 1713
	1714: 1714
	1715: 1715
	1716: 1716
	1717: 1717

