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Abstract

This paper presents an analysis of the most frequently used approach in automatic phonetic segmentation — computing forced
alignments using HMMs and features similar to those used in speech recognition. We start by analyzing the segmentation accuracy of
context-dependent and context-independent HMMs, and proposing an explanation for the results. We focus our attention on the loss of
correspondence between phones and context-dependent HMMs. This effect was already proposed to explain the surprisingly worse
segmentation accuracy of context-dependent HMMs, given its clear superiority in speech recognition. We argue that this effect should
lead to systematic segmentation errors. Therefore, we propose a new method, called Statistical Correction of Context Dependent
Boundary Marks (SCCDBM), which partially corrects these systematic errors making segmentation results for context-dependent
HMMs followed SCCDBM clearly superior to those obtained with context-independent HMMs. This observation empirically proves
the existence of systematic segmentation errors and adds empirical evidence to the explanation for the worse segmentation accuracy of
context-dependent HMMs. Finally, we analyze how speaker adaptation improves segmentation accuracy, and how speaker adaptation
hardly modifies the systematic errors produced by context-dependent HMMs.

1. Introduction

Nowadays speech technology development strongly
relies on corpus-based methodologies. In a speech corpus,
almost as important as the speech itself is the information
complementing it. In particular, phonetic segmentation
and labeling are very useful because phones are usually
considered the smallest constituents of speech. To date,
the most precise way to obtain the phonetic segmentation
and labeling is manually. However, manual phonetic
labeling and (especially) segmentation are very costly and
require much time and effort. For that reason, they have
tried to be avoided.

In speech recognition Hidden Markov Models
(HMMs) have avoided the need for manual phonetic
segmentation. HMMSs produce a segmentation, which
although less precise than a manual segmentation, seems
to be precise enough to train the HMMs because HMM
training is an averaging process that tends to smooth the
effects of segmentation errors (Cox et al., 1998).

For speech synthesis, however, the phonetic
segmentation produced by HMMs is not precise enough.
In the development of both concatenative acoustic unit
inventories and prosodic models it is usual to select single
examples instead of relying on an averaging process. As a
consequence of the lack of averaging and error smoothing,
a segmentation error may produce an audible error in the
synthetic voice (Cox et al., 1998). This need for more
precise segmentation has led speech synthesis to rely on
manual segmentation for years. During the last few years,
however, the need to develop new voices and languages
quickly (Ljolje et al., 1997; Cox et al., 1998) and with the

maximum quality (which frequently requires large
inventories) has raised the interest in automatic
segmentation techniques to partially automate the

development of synthesis inventories and models.
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2. Goal of the paper

This paper presents an analysis of the use of HMMs
for automatic phonetic segmentation. It starts by
reviewing the state of the art. Then, it analyzes and tries to
explain the influence of the number of Gaussians per state
and context-dependency on segmentation results. The
theoretical explanation for the poorer segmentation
accuracy of context-dependent HMMs is reviewed. We
argue that this poorer accuracy is due to systematic errors
that could be partially corrected with a new statistical
correction method. We successfully test this possibility,
achieving with context-dependent HMMs and this method
higher segmentation accuracy than that achieved with
context-independent HMMs. Finally, the role of speaker
adaptation in automatic phonetic segmentation and how it
interacts with this new correction technique are analyzed.

3. State of the art

The most frequent approach for automatic phonetic
segmentation, and the one analyzed in this paper, is
performing forced alignments of the speech and the
orthographic transcription making use of phonetic HMMs
and cepstral features (most frequently Mel-Frequency
Cepstral Coefficients, MFCCs) very similar to those used
in speech recognition (Ljolje et al., 1997; Cox et al., 1998;
Angelini et al., 1993; Angelini et al., 1997).

There are two widely accepted adaptations of the
HMMs and features to the particular problem of phonetic
segmentation. One is using a higher frame rate than the
one used in speech recognition to reduce quantization
errors (Ljolje et al., 1997; Angelini et al., 1993; Angelini
et al., 1997; Chou et al., 1998). The other is using context-
independent HMMs instead of context-dependent HMMs
because they provide better segmentation accuracy (Ljolje
et al., 1997; Cox et al., 1998; Angelini et al., 1993;
Angelini et al., 1997; Chou et al., 1998).



It is worth mentioning that there is a significant
number of authors that use completely different features
or techniques (Farhat et al., 1993; Zue et al., 1989;
Flammia et al. 1992, Karjalainen et al. 1998; Angelini et
al., 1993; Malfrere et al. 1998). Others combine HMMs
with other features or techniques (Boéffard et al., 1993;
Malfrére et al., 1998; Chou et al., 1998).

Performance of segmentation algorithms can be
assessed in an indirect way, for instance measuring the
word error rate of a recognizer that uses the segmentation
algorithm (Lee & Glass, 1998) or the subjective quality of
a speech synthesizer generated making use of automatic
segmentation (Cox et al., 1998; Boéffard et al., 1993).
However, the most common and direct form of evaluation
is comparing the segmentation to a manual segmentation
to compute the segmentation accuracy as the percentage
of boundaries with errors smaller than several values of
tolerance (Ljolje et al., 1997; Angelini et al., 1993).

A comparison of the most commonly reported figure
of merit (the percentage of boundaries with errors smaller
than 20 ms.) in several research works reveals that best
speaker-dependent results (around 96% of boundaries
with errors below 20 ms.) have been achieved with
HMMs (Angelini et al., 1997), synthesis and DTW
(Angelini et al., 1993) and HMMs and refinement rules
(Chou et al., 1998). For the speaker-independent case, best
results (around 90% of boundaries with errors smaller
than 20 ms.) have been obtained with HMMs (Angelini et
al., 1993; Angelini et al., 1997).

4. Baseline system

In HMM-based phonetic segmentation it is common to
use almost the same features, HMM topology and base
phone set used for speech recognition. Most works use a
higher frame rate than the one used in speech recognition
to reduce quantization errors (Section 3). Our system
computes a feature vector every 3 ms., using a 24 ms.
Hamming window and a pre-emphasis coefficient of 0.97.
The feature vector used in our system is the same used in
our recognizer: 12 Mel-Frequency Cepstral Coefficients
(MFCCs) with Cepstral Mean Normalization (CMN) and
normalized log energy, as well as their first and second
order differences, yielding a total of 39 components. For
the HMM topology, our system uses 5 states, transitions
from left to right and no skips. The high frame rate used
allows for the use of 5 states without imposing important
restrictions on phone duration. Output probability
distributions in HMM states are modeled with mixtures of
1 to 6 diagonal covariance Gaussians. Finally, as most
researches do, we rely on the same phone set used in our
recognizer (24 Castilian Spanish phones). Our baseline
system uses speaker-independent HMMSs trained on
carefully recorded speech (Section 9).

4.1. Results

Table 1 shows the segmentation accuracy (measured
as the percentage of boundaries with errors smaller than
several tolerance values in milliseconds) for context-
independent and context-dependent HMMs with different
numbers of Gaussians per state. These results were
obtained on four corpora (MI-80, M2-20, FI-20 and
M3Tot; see Section 9 for corpora description). Results in
bold face are the best results using different number of
Gaussians for either context-dependent or context-
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CD/CI # Gauss | <5 <10 <20 <50 | <100

1 2095 | 44.84 | 82.38 | 96.04 | 99.22

2 21.14 | 44.68 | 82.45 | 9639 | 99.38

Context- 3 2031 | 42.76 | 8126 | 96.58 | 99.45
Independent | 4 19.17 | 41.77 | 80.56 | 96.62 | 99.45
5 1838 | 41.11 | 80.01 | 96.77 | 99.55

6 18.12 | 40.38 | 79.41 | 96.89 | 99.58

1 26,61 | 48.94 | 77.89 | 97.45 | 99.52

2 26.68 | 48.93 | 77.95 | 97.45 | 99.52

Context- 3 2626 | 48.42 | 78.20 | 97.60 | 99.50
Dependent 4 26.01 | 48.07 | 77.77 | 97.45 | 99.50
5 25.86 | 48.03 | 77.61 | 97.53 | 99.55

6 2571 | 47.87 | 77.68 | 97.52 | 99.56

Table 1: Segmentation accuracy for context dependent and
independent HMMs with different numbers of Gaussians.

independent HMMs. Shaded results are the best results
obtained for a given number of Gaussians with either
context-dependent or context-independent HMMs.

With respect to the number of Gaussians per HMM
state several trends can be observed for both context-
dependent and context-independent HMMs. More
Gaussians tend to produce better results when large
tolerances (comparable to the duration of a phone) are
considered, and worse results for small tolerances. For
small tolerances, results steadily degrade as the number of
Gaussians increase. This degradation is much faster for
context-independent HMMSs. For large tolerances, the
tendency for improvement as the number of Gaussians
increases is also stronger for context-independent HMMs.

With respect to context dependency, our experimental
results show that context-independent HMMSs only
outperform context-dependent ones when the tolerance
considered is around 20 ms. We have analyzed these
results in more detail (analyzing results for 20 values of
tolerance from 5 ms. to 100 ms., although the complete
results are not presented here) finding three different
tolerance zones where certain HMMs behave best. For
small tolerances (5-10 ms.) context-dependent HMMs
with fewer Gaussians behave best. For medium tolerances
(15-30 ms.) context-independent HMMs with fewer
Gaussians are better. Finally, for large tolerances (>35
ms.) context-dependent HMMs with more Gaussians tend
to produce better results. This behavior, found in a global
evaluation of phonetic segmentations using four speakers,
was also found when results were analyzed speaker by
speaker, with only small variations in the tolerance zones.

4.2. Factors influencing segmentation error

A possible explanation for the results obtained is based
on the concurrency of different factors that are more or
less important depending on the tolerance considered for
the definition of the segmentation accuracy:

4.2.1. Coarticulation effects

Context-dependent HMMs can model coarticulation
effects that cannot be modeled by context-independent
HMMs, thus allowing a more detailed transition modeling
that would explain the higher accuracy of context-
dependent HMMs for small tolerances.



4.2.2. Loss of correspondence between phones and
context-dependent HMMss

The fact that context-independent HMMs are preferred
for speech segmentation (Section 3) is somewhat
surprising, given that context-dependent HMMs model
more accurately the spectrum dynamics and produce
better results in speech recognition. This apparent paradox
was explained theoretically in (Ljolje et al., 1997), where
it was argued that the cause is the loss of correspondence,
during the training process, between the context-
dependent HMMs and the phones. Context-dependent
HMMs are always trained with realizations of phones in
the same context. For that reason, the HMMSs don’t have
any clues to discriminate between the phone and its
context. As a result the HMM (particularly the lateral
states) can end up modeling part of other phones or not the
whole phone. Context-independent HMMs, on the other
hand, are trained with realizations of phones in different
contexts. For that reason they should be able to
discriminate between the phone to model (invariable in all
training examples) and its context (which varies).

This would explain the better performance of context-
independent HMMs in the intermediate range of
tolerances (the range of tolerances most frequently
reported in the literature).

4.2.3. Phone recognition accuracy

Large segmentation errors (comparable to the duration
of a phone) are mostly due to phone misrecognition.
Therefore, an increased phone recognition accuracy will
lead to higher segmentation accuracy for large tolerances.

This would explain why context-dependent HMMs
with more Gaussians tend to be better in the range of large
tolerances and also why segmentation accuracy increases
faster for context-independent than for context-dependent
HMMs in that range — an increase in the number of
Gaussians increases phone recognition accuracy more for
context-independent HMMs than for context-dependent
HMMs.

4.2.4. Spectral modeling near phone transitions

Results in the range of small tolerances tend to
degrade as the number of Gaussians increase. One
possible explanation for this observation may be that the
spectrum near phone transitions is very variable and is
better modeled with a reduced number of Gaussians. This
would also explain why the degradation is faster for
context-independent models, where the variation to model
is larger due to coarticulation effects.

5. Statistical correction of context-dependent
boundary marks (SCCDBM)

If the explanation for the decreased accuracy of
context-dependent HMMs in phonetic segmentation
(Section 4.2.2) is true, the root of this decreased accuracy
is that context-dependent HMMs actually model the phone
and part of its context or only part of the phone. This
problem should lead to systematic segmentation errors.
Therefore, it should be possible to statistically model the
errors and use the resulting model to partially cancel them.
This possibility gives rise to a new technique that we call
Statistical Correction of Context Dependent Boundary
Marks (SCCDBM). This technique comprises two steps: a
training phase, where some statistical averages are
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Figure 1: Statistical Correction of Context Dependent
Boundary Marks (SCCDBM): Training phase.

estimated, and a boundary correction phase, where the
phone boundaries produced by context-dependent HMMs
are moved according to those estimated averages.

Training (Figure 1) relies on a manually segmented
corpus that is also automatically segmented at the state
level using the context-dependent HMMs of interest.

Let’s denote the set of training utterances as

U={u,..,u,} (1)

the phonetic labeling of an utterance u (which is
considered known) as

PL'={p . ....P"} )
the manual segmentation associated to an utterance u as
_ Msu
MS'= { ti }i:o,...,Pu (3)

and the automatic HMM-based segmentation of an
utterance u at the state level (our HMMs have 5 states) as

AS =10, 11 2", 1317, @)
t4iAaJ’ t5|Aw }i—l ..., Pu
where 10" and 15" correspond to the automatic
boundaries for the phone p,".
The first form of SCCDBM we tested computed the
following segmentation errors for each phone p,".

. ) D tIA:ISu _tOiASu EE
eL (pz ) =max @’ min S’ t]jAlSu _ toiASu

( “) ) % t 5iASu _ til\'ﬁu EE
e.(p) = max[P,min,——"—~
K 0 155 — 14/

(5

Then, it computed the following averages for each of
the context-dependent HMMs (determined by the left, p,
central, pc, and right, pg, phones).



Method <5 <10 | <20 | <50 | <100 Adaptation Technique | <5 <10 | <20 | <50 | <100
Context Indep. (CI) | 21.75 | 49.48 | 83.85 | 96.58 | 99.46 No adaptation 43.43 1 71.63 | 91.18 | 97.58 | 99.65
Context Dep. (CD) | 26.01 | 51.65 | 78.37 | 97.09 | 99.41 MLLR 32 46.02 | 75.61 | 92.56 | 98.62 | 100

CD + SCCDBM 41.32 | 67.81 | 88.90 | 98.67 | 99.80 MLLR 64 46.71 | 75.78 | 93.08 | 98.96 | 100
MAP 44.64 | 73.70 | 92.39 | 98.62 | 100

Table 2: Segmentation accuracy achieved with MLLR 32+MAP | 47751 77.16 | 93.60 | 99.13 | 100
Statistical Correction of Context Dependent Boundary MLLR 64 + MAP | 47.06 | 76.82 | 93.60 | 9931 | 100

Marks (SCCDBM).

A 1
Pr:Pc:Pr — u
EL’ L= Z e (pi )
N o pe Py MV PLEPLLPIEDe Pl =Pr
) | (6)
PrsPcsPr — u
Bt =2 e (p))
N Prpepx U PLA=PraPi=PePia=Pr
where N 21 pe.py 18 the number of training examples.

In the boundary correction phase, the automatic
boundary between p* and p,,," in a test utterance x different
from the ones used for training, is moved from its original
position (£5" = 10,,,") to the position

tSCCDBMr — t()ASx + EZJ, D -Piaa [@]ASX _toASv)

i i+l i+l i+l

— EA}I;,Y,‘.P,YW,'.\ [@5[45& _ t4]ASx) (7)

Although this first form of SCCDBM improved
segmentation results, it required a huge amount of data to
obtain reliable estimates. We later reduced the number of
parameters to estimate and obtained increased correction
capability making use of the state-sharing scheme used in
our context-dependent HMMs. Instead of computing the
averages in (6) for each triphone we computed similar
averages for each different initial and final HMM state.
This is the SCCDBM form for which results are presented
in this paper.

Results have been obtained training the SCCDBM
with one speaker (M3Tof) and applying that model to
correct the segmentations produced by context-dependent
HMMs on three other speakers (A1-80, M2-20 and FI1-20;
see Section 9 for corpora description). Table 2 presents
the segmentation accuracy (percentage of automatic
boundaries with errors smaller than several tolerances)
obtained with context-dependent HMMSs, context-
independent HMMSs, and context-dependent HMMs
followed by SCCDBM. Results presented were obtained
with one Gaussian per state. We can observe that this
technique substantially improves segmentation results for
context-dependent HMMSs. Moreover, observing the white
bars in Figure 3, which represent the relative reduction of
segmentation errors when SCCDBM is applied (see
Section 7 for a more detailed description of Figure 3),
apart from the 80% improvement found for very large
tolerances (due to the correction of the majority of very
few large errors), it can be seen that the most important
improvements achieved with SCCDBM are in the
intermediate range of tolerances, where we found the
effect of the loss of correspondence between phones and

context-dependent HMMs to be dominant in our
experiments. All these results constitute empirical
evidence that context-dependent HMMs produce
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Table 3: Segmentation accuracy achieved with different
speaker adaptation techniques.

systematic segmentation errors, and support the argument
of the loss of correspondence between phones and
context-dependent HMMSs as the cause for the worse
segmentation performance reported for this kind of
HMMs. Results obtained with context-dependent HMMs
followed by SCCDBM are better than those obtained with
context-independent or with context-dependent HMMs
alone for all the tolerances (Table 2). The same
conclusions were found using other corpora for training
and testing the SCCDBM, and also for other numbers of
Gaussians per state. This result seems to indicate that
SCCDBM can reduce so much the influence of the
segmentation errors produced by the loss of
correspondence between phones and context-dependent
HMMs that they are no longer dominant for any range of
tolerance. Our speaker-independent result for errors
smaller than 20 ms. (88.90%) is very close to the best
results found in the literature (around 90%). For one of the
speakers analyzed we found 91.18% of segmentation
errors smaller than 20ms.

6. Speaker adaptation for speech
segmentation

This section analyzes how two popular speaker adaptation
techniques, Maximum Likelihood Linear Regression
(MLLR) (Leggetter & Woodland, 1995) and Maximum A
Posteriori (MAP) (Gauvain & Lee, 1994) behave in
phonetic segmentation. Table 3 presents our experimental
results for a female speaker (F/-20). These results were
obtained with context-dependent HMMs with 3 Gaussians
per state, and include SCCDBM trained for the speaker-
independent HMMs on corpus M37ot. Results show that
MAP, MLLR and combinations of both speaker
adaptation techniques improve segmentation accuracy for
all tolerance values. Similar conclusions are reached with
other corpora and other numbers of Gaussians per state.
Figure 2 represents the relative reduction of segmentation
errors achieved for the corpus F7-20 with different
speaker adaptation techniques. These results were
obtained with 3 Gaussians per state and all include
SCCDBM trained for the speaker independent HMMs on
the corpus M3Tot. It can be observed that the most
important improvements are in the range of large
tolerances, where the dominant factor in the segmentation
performance (Section 4.2) is the phone recognition
accuracy. This is consistent with the proven ability of
these speaker adaptation techniques to increase phone
recognition accuracy of HMMs. We can also appreciate in
Figure 2 that this very important improvement in the range
of large tolerances is not accompanied by an important
improvement in the range of small tolerances, perhaps
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Figure 2: Relative reduction of segmentation errors
achieved with different speaker adaptation techniques.

because the more detailed modeling achieved with speaker
adaptation is not very useful near the boundaries, where
spectral variability is very high. Our speaker-dependent
results for a tolerance of 20 ms. are reasonably good
(93.6%) but still smaller than the best results found in the
literature (around 96%).

7. Speaker adaptation and SCCDBM

To obtain both Table 3 and Figure 2 we have applied
SCCDBM trained on the speaker-independent HMMs to
correct the segmentations produced by speaker-adapted
HMMs. This is based on the assumption that speaker
adaptation doesn’t affect substantially the systematic
segmentation errors produced by the loss of
correspondence between phones and context-dependent
HMMs. A verification of this hypothesis can be seen in
Figure 3, where the relative reduction of segmentation
errors achieved by applying SCCDBM is compared when
SCCDBM s applied to correct a segmentation produced
by the same speaker-independent HMMs for which it was
trained and when the same SCCDBM is applied to correct
the segmentations produced by speaker-adapted versions
of those HMMs. SCCDBM was trained on corpus M3Tot
and results are computed on corpus F/-20. The HMMs
used have 3 Gaussians per state. It can be observed that
the improvements achieved are almost the same regardless
of the use or not of these speaker adaptation methods. This
confirms our assumption that the speaker-adaptation
techniques used don’t affect substantially the systematic
errors produced due to the loss of correspondence between
phones and context-dependent HMMs.

8. Conclusions

We have analyzed segmentation results for context-
dependent and context-independent HMMs with different
numbers of Gaussians per state and have proposed an
explanation for the results based on the concurrency of
several factors that are dominant for certain sizes of
segmentation errors. We have addressed one of these
factors, the loss of correspondence between phones and
context-dependent HMMSs  (which  explains  the
surprisingly poor segmentation results found for context-
dependent HMMs), and have proposed and successfully
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Figure 3: Relative reduction of segmentation errors
achieved with SCCDBM trained for speaker-independent
HMMs and applied to correct speaker-independent and
speaker-adapted HMM-based segmentations.

tested a new technique, Statistical Correction of Context
Dependent Boundary Marks (SCCDBM) that reduce the
influence of this factor, making context-dependent HMMs
plus SCCDBM clearly outperform context-independent
HMMs for all error sizes considered. Then, we have
analyzed speaker adaptation techniques, finding that they
are able to correct very large segmentation errors but are
not very effective to reduce small or intermediate
segmentation errors. In particular, we have found that
speaker  adaptation  techniques hardly influence
segmentation errors that SCCDBM is able to correct.
Figure 4 shows the discrepancies found between two
completely independent manual phonetic segmentations of
corpus M1-40-2 (which can be interpreted as the manual
segmentation accuracy) and the segmentation accuracy of
the HMM based methods analyzed in this paper: baseline
(speaker-independent, context-dependent HMMs with 3
Gaussians per state), baseline plus SCCDBM, and
baseline plus speaker adaptation (MLLR32+MAP) plus
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Figure 4: Comparison of manual and automatic
segmentation accuracy for the baseline HMMs (BL), the
baseline HMMs plus SCCDBM, and the baseline HMMs

with speaker adaptation (SpkAdap) and SCCDBM.



SCCDBM. SCCDBM was trained on corpus M3Tot while
results are presented for corpus M1-40-2 (see Section 9 for
corpora description). Improvements achieved over the
baseline system by introducing SCCDBM and speaker
adaptation are very important and lead to results close to
the performance of a manual segmentation in the range of
large tolerances. For small tolerances, however, results are
still far away from manual accuracy. To improve
segmentation accuracy for small tolerances, we have
successfully used local refinement techniques (Toledano
et al. 1998; Toledano, 2000; Toledano & Hernandez,
2001) whose description is beyond the scope of this paper.

9. Corpora used

All the corpora used are in Castilian Spanish.

Speaker-independent HMMs were trained using a
corpus containing 10 utterances and 75 isolated words for
each of 1037 speakers, 619 male and 418 female. Speech
was recorded with a microphone at 16 KHz in a clean
environment and downsampled to 8 KHz.

Speaker adaptation experiments were carried out using
four orthographically labeled mono-speaker corpora:
MITot (389 sentences, 2531 words, 11090 phones, male
speaker), M2Tot (454 sentences, 3089 words, 13490
phones, male speaker), '/ Tot (532 sentences, 3685 words,
16199 phones, female speaker) and M3Tot (115 sentence
sequences, 4086 words, 20175 phones, male speaker).

For segmentation evaluation some subsets of these
mono-speaker corpora were phonetically labeled and
segmented by hand: M7-80 (80 sentences, 2464 phones,
segmented by labeler LabA), several subsets of it as MI-
40-2 (40 sentences, 1221 phones, segmented by LabA4 and
LabB to evaluate discrepancies in manual segmentations)
and M1-40-1 (40 sentences, 1242 phones, segmented by
LabA), three sets that only differ in the speaker M1-20 (a
subset of MI-40-1), M2-20, FI-20 (20 sentences, 599
phones, segmented by LabA), and M3Tot, manually
segmented by a group of labelers.
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