
Building a Linguistically Interpreted Corpus of Bulgarian: the BulTreeBank

Kiril Simov, Petya Osenova, Milena Slavcheva,
Sia Kolkovska, Elisaveta Balabanova, Dimitar Doikoff,

Krassimira Ivanova, Alexander Simov, Milen Kouylekov

BulTreeBank Project
http://www.BulTreeBank.org

Linguistic Modelling Laboratory, Bulgarian Academy of Sciences
Acad. G. Bonchev St. 25A, 1113 Sofia, Bulgaria

kivs@bgcict.acad.bg, petyaosenova@hotmail.com, milena@lml.bas.bg,
sia@ibl.bas.bg, elisavetabal@yahoo.com, dim doikoff@abv.bg,

krassy v@abv.bg, adis 78@dir.bg, mkouylekov@dir.bg

Abstract
In the field of Human Language Technology (HLT), the existence of linguistically interpreted real-world texts provides the license
necessary for a given language to enter the area of high-tech applications. The significance of BulTreeBank is the granting of an HLT
license to a “less processed” language like Bulgarian which, until recently, has been formally modelled and processed mainly on the
morphology level. The BulTreeBank project aims at the creation of syntactically annotated data for Bulgarian and the tools for their
production, management and automatic processing. It provides not only language resources, but develops an infrastructure of research
solutions, production scenarios and services.

1. Introduction
In recent years the existence of syntactically interpreted

corpora has become a crucial prerequisite for the develop-
ment of the linguistic theories and the variety of NLP ap-
plication tasks. Our treebank project (Simov, Popova and
Osenova, 2001) relies on the following methodological as-
sumptions:

� Fine-grained description. The linguistic descriptions
in the treebank are aimed to be rather detailed in or-
der to demonstrate the multilayered information flow
in the syntactic structure of the sentences. Thus not
only constituent labels, but dependency relations and
grammatical functions have been added.

� Theory dependency. On more detailed levels of lin-
guistic granularity it becomes necessary to exploit
some theory-dependent components, which assure the
consistency of the representation.

� Formal representation. Robustness on the level of
linguistic descriptions is achieved by the formal rep-
resentation of the annotation scheme elements. In our
opinion, the notion of formal representation refers to
the fact that the annotation scheme has a logical in-
terpretation, which allows for inference and check for
inconsistency of the annotated data. Our formal mech-
anism is a special representation of HPSG grammars
and sentence analyses as feature graphs (see (King and
Simov, 1998) and (Simov, 2001)) based on a logical
formalism for HPSG (see (King, 1989)).

� Partial analyses and predictions. The detailness
of the descriptions, the size of the treebank and the
desired high level of quality requires semi-automatic
facilities for the annotators during the annotation
process. Such a minimization of human labour is
achieved maily by exploiting all the possibilities for

providing automatic partial analyses of the input string
before the stage of the ’attachment-resolution’ annota-
tion.

In order to implement this methodology, we rely on an
interface between the constraint-based linguistic theory and
the principles of shallow parsing.

The theory. We have chosen Head-driven Phrase Structure
Grammar (HPSG) (see (Pollard and Sag, 1987) and
(Pollard and Sag, 1994)) as an underlying theory of
our treebank due to the following reasons:

� it allows for a simultaneous representation of the
constituent and dependency relations, combining
the tree structure with the feature graph encod-
ings.

� it also allows for a consistent description of lin-
guistic facts on every linguistic level. Thus, it
ensures an easy incorporation of the linguistic in-
formation, which does not belong to the level of
syntax.

� The formal basis of HPSG enables non-prob-
lematic translation to other formalisms.

� The universal principles of HPSG can be used to
support annotators’ work during the development
of the treebank.

The shallow parsing output. The results of the partial
processing stage have to be compatible with the HPSG
setup of the annotation in the treebank. This means
that the output structures together with the assigned
grammatical information correspond to the HPSG sort
hierarchy and yield HPSG principles. This inte-
gration is ensured by a mapping, which transforms
the morpho-syntactic positional tagset into an HPSG-
compatible one. It means that more fine-grained infor-

mation is added concerning the head-nonhead depen-
dency relations and the grammatical functions. Then
these specifications are further incorporated into the
chunk level phrases.

Parsing with a grammar. Usually the whole process of
annotation is considered a continuous subsequence of
steps from the tokenization stage to the full syntac-
tic analysis. However, taking into account the fact,
that we use a symbolic grammar as a parsing scheme,
we first concentrated on the named entity recogni-
tion task, aiming at initial linguistic interpretation of
the text elements. By this approach the coverage
and robustness were improved. Similar approach was
explored for LFG-based annotation scheme (Dipper,
2000).

The structure of the paper is as follows: Section 2 out-
lines the structure of the BulTreebank corpus and describes
the specific language data areas in it. In Section 3 the ar-
chitecture of the annotation process is presented. Section 4
describes the XML supporting software tool - the CLaRK
system.

2. Linguistically Interpreted Language Data
The BulTreeBank corpus consists of the following sub-

sets of linguistically interpreted language data: 1) a core set
of sentences; 2) a treebank; 3) a text corpus.

� Core set of sentences. Supplemented with detailed
syntactic descriptions, the core set of sentences is
intended to serve as a test-suite for software appli-
cations processing Bulgarian texts on the syntactic
level. The core set consists of 2500 sentences ex-
tracted mainly from Bulgarian grammar books: thus
they illustrate main classes of language phenomena.
Since the core set consists of manually analysed sen-
tences, it is used as a “golden standard” within the Bul-
TreeBank project. From one side it is the reference
manual for the human annotators at different steps of
their intervention in the production chain, and on the
other side it is a test bed for the grammar rules applied
in the different automated processes.

The basic linguistic phenomena covered in the core
set of sentences belong to the broadly defined cross-
linguistic classes of phenomena like: sentence and
clause types, predication, verb complementation,
diathesis, agreement, modification, modality, tense
and aspect, word order, coordination, negation.

The descriptions attached to the sentences contain the
specific manifestations of the phenomena in Bulgar-
ian. For instance, there are very rich paradigms of syn-
thetic and analytic verb forms which interact specifi-
cally with pronominals and particles and produce dis-
continuous segments according to the language spe-
cific linearization principles. Bulgarian is a pro-drop
languange in subject position, it allows object dou-
bling and multi-functional verbal clitics. A somewhat
exotic feature is the inflection-like definite article.

� Treebank. The treebank is a set of syntactically an-
notated sentences excerpted from naturally occurring
Bulgarian texts. The foreseen size of the treebank is
one million words. The sentences are selected regard-
ing two factors. Firstly, they are supposed to fit into
the classification of syntactic structures in Bulgarian
as defined in the core set of sentences. In case phe-
nomena are discovered which are new to the classifi-
cation in the golden standard, they may be added to
it. Secondly, the sentences in the treebank indicate the
statistical distribution of the types of syntactic struc-
tures defined in the core set of descriptions. Having
an evaluation of the frequency of occurrence of types
of syntactic phenomena, the treebank sentences can be
grouped in frequency classes. The exact methodology
of constructing the treebank will be worked out after a
series of experiments.

In the course of building the treebank, special attention
will be paid to resolving ambiguity problems in the
context of use of the sentences. This can be done by
including in the treebank not only isolated sentences,
but also whole paragraphs or even a number of con-
sequent paragraphs. When sentences are annotated in
context, a description of the disambiguating context
will be added to the syntactic description. At present
we envisage an informal description of the context to
be inserted in the syntactic annotation of sentences.
An attempt will also be made to formalize the context
description, in case we have the opportunity for that.

� Text corpus. The text corpus is a collection of differ-
ent types of texts having wide domain coverage. Its
size is 100 million words, which is, generally speak-
ing, the recommended size of a national corpus. The
text files are converted into XML format and contain
multi-layered linguistic annotation added incremen-
tally to the text data.

The first layer is paragraph level TEI conformant en-
coding of the logical structure of the texts. The second
layer is that of morphosyntactically analyzed word to-
kens. The subsequent layers of encoding of linguistic
information is achieved by the development and or-
dered application of partial grammars. They are for-
mulated as regular expressions and fulfil the following
tasks: sentence boundary delimitation; recognition of
numerical expressions and special symbols; recogni-
tion of proper names and foreign words; recognition of
abbreviations and attachment of their full names. The
tricky moment in the partial analyses is in the ordering
of applications of the partial grammars, since the lan-
guage phenomena that are processed are interrelated
and the decisions taken for a given application order
of the partial grammars define their interoperability
scenarios. Tests are carried out for measuring the ef-
ficiency of different grammar ordering. At all stages
of processing appropriate TEI conformant markup is
added.

3. The Architecture of the Annotation
Process

The syntactic annotation process within BulTreeBank
relies on the development of two formal grammars: 1) a
partial grammar for shallow parsing; 2) an HPSG-based
general grammar.

1. Partial grammar for shallow parsing. We com-
piled several reliable regular-expression chunk gram-
mars for automatic identification of the non-recursive
phrases. They are applied in a cascade order. For ex-
ample, AP chunks and PP chunks are identified after
the NP chunk recognition. Thus AP chunks contain
only the elements, which are not a part of an NP chunk
and PP chunks are formed by combining a preposition
with a following NP. In accordance with Abney’s ideas
(see (Abney, 1991), (Abney, 1996)) about ’easy-first
parsing’ and ’islands of certainty’, we relied on the
presence of clear indicators for specifying the chunk
boundaries. For example, the adverb is not a clear in-
dicator for the beginning of an NP, unless it is trapped
between a preposition and a noun.

2. HPSG grammar. This grammar incorporates three
elements: universal principles, language specific prin-
ciples for Bulgarian and a lexicon. The HPSG gram-
mar component is used in the project as a general con-
straint over the possible output syntactic structures of
one and the same input sentence. The constraint is
activated during the editing stage of the annotation
process, checked by human experts. We also envis-
age to use information from it as a top-down filtering
over the partial grammars. It is encoded into an HPSG
grammar development tool, ensuring the appropriate-
ness conditions within the generated analyses.

The linguistic knowledge, encoded in the HPSG sort hi-
erarchy, forms the backbone of the syntactic descriptions
of the Bulgarian data. The sort hierarchy defines all possi-
ble linguistic structures that are further constrained by the
grammar and/or the information, entered by the annotators.
The annotation schemata, employed during the project, al-
low for composite tag definitions. Thus each tag in the
syntactic structure, being decomposable, ensures the distri-
bution of the grammatical information to the relevant sub-
structures.

The HPSG grammar itself is viewed as a definition plat-
form for the annotation scheme of the treebank. Hence,
the elements of the treebank are not really trees, but fea-
ture graphs. Being exemplifications of the phrase-structure
backbone, the trees are kept just for reasons of compatibil-
ity with other syntactic theories.

As it was mentioned above, the preparation of the anno-
tation scheme requires a proper handling of the following
specific tasks:

� Identification of the relevant for Bulgarian part of the
HPSG sort hierarchy as described in (Pollard and Sag,
1994); its modification with respect to the language-
specific phenomena. It should be noted that the
Bulgarian-specific part of the sort hierarchy will be

subject to change during the development of the tree-
bank according to the demands of the Bulgarian data.

� Representation of the HPSG Universal Grammar prin-
ciples from (Pollard and Sag, 1994). This very gen-
eral grammar is being used as a top constraint during
the annotation of the trees in the treebank. For exam-
ple, each headed phrase in the treebank has to satisfy
the Head Feature Principle of HPSG. This grammar
is being further extended by Bulgarian specific prin-
ciples. These specific principles handle, for instance,
the relatively free word order in Bulgarian, the clitic
behaviour and distribution etc.

� Adapting the lexical and grammatical information
from the morphological dictionary of Bulgarian
(Popov, Simov and Vidinska, 1998) to the sort hier-
archy and to the HPSG principles. This is done during
the definition of a tagset to be used within the project.

Hence, the underlying annotation scheme is based on
the appropriate language-specific version of the HPSG sort
hierarchy. On one hand, such an annotation scheme is very
detailed and flexible with respect to the linguistic knowl-
edge, encoded in it. But, on the other hand, because of the
massive overgeneration, it is not considered to be annotator-
friendly. Thus, the main problem is: how to keep the con-
sistency of the annotation scheme and at the same time to
minimise the human work during the annotation. Recall
that in our annotation architecture we rely on the cooper-
ative interface between the shallow parsing techniques and
HPSG grammar for reducing the unwelcome spurious anal-
yses.

The overall annotation process includes the following
steps:

Partial parsing step:

1. Sentence extraction from the corpus. The source of the
sentence extraction is the BulTreeBank text corpus.
As supporting modules, the CLaRK concordancer and
CLaRK grammar engine are relied upon. The con-
cordance software has an access to the morphological
information of the words and their syntactic labels, if
the relevant grammar had been applied. Thus it al-
lows for queries like: “Find all sentences in which a
conjunction is preceded by a verb and followed by an
NP.”

2. Automatic pre-processing. Each sentence needs first
to be pre-processed on all the levels, that precede
deeper syntactic annotation. The efficiency of these
pre-processing components influences the robustness
of next steps. For this reason, we tried to create a re-
liable pre-processing system, which includes the fol-
lowing modules:

(i) Morphosyntactic tagging: each word is marked
up with the appropriate morphological informa-
tion, namely: part of speech, gender, number,
tense, person, transitivity, etc.;

(ii) Named entity recognition: several named-entity
subgrammars have been already developed.
These subgrammars follow the ideas from the
information extraction and handle not only the
closed sets of expressions like numerical expres-
sions and dates, but also open class names like
“the city of Sofia” or “Prof. Petrov” and abbre-
viations. Each of these subgrammars assigns an
appropriate description to the signs and thus the
processing on the next level, i.e. chunk level, is
facilitated.

(iii) Part-of-speech disambiguator: for each ambigu-
ous word the most probable part-of-speech is pre-
dicted (see (Simov and Osenova, 2001));

(iv) Partial parsing: the minimal constituents are
identified;

We aim at a result of a 100 % accurate partial parsed
sentence. The accuracy is checked and validated by a hu-
man annotator with the assistance of the appropriate soft-
ware modules.

HPSG step:

The result from the previous step is encoded into an
HPSG compatible representation with respect to the HPSG
sort hierarchy. Then it is sent to an HPSG grammar tool,
which takes the partial sentence analyses as an input and
evaluates all the attachment possibilities for them. The out-
put is encoded as feature graphs.

Resolution step:

Here the output feature graphs from the previous step
are further processed in the following way:

1. their intersection is calculated. The intersection ex-
ists because all analyses include the partial parsing
from the first step and the HPSG grammar tool can
not delete information from it;

2. then, on the basis of the differences, a set of constraints
over the intersection is introduced;

3. during the actual annotation step, the annotator’s task
is to extend the intersection to full analysis by adding
the missing information. The constraints determine
the appropriate extensions and also propagate the in-
formation, added by the annotator, in order to min-
imise the number of the incoming possibilities. To
give a simple example, if the annotator has had to
specify one of two daughters as the head daughter, the
system will automatically percolate the relevant head-
features to the mother node and further up the syntac-
tic structure.

This architecture is being currently implemented by es-
tablishing an interface between two systems: CLaRK sys-
tem for XML based corpora development (see (Simov et.
al., 2001) and next section) and TRALE system for HPSG
grammar development (see (Götz and Meurers, 1997)).

We will use the two systems as follows:

� CLaRK system for:

– Language resource creation, management and
exploration

– Minimisation of human work during the annota-
tion steps

– Facilities for semantic validation of the informa-
tion in language resources (content checking in
addition to structure checking)

� TRALE system for:

– Representation of the HPSG Grammar

– Logical inference

Obviously, the precision of the information added with
each step, decreases. We can be quite certain about the ac-
curacy of the analyses on the morphological level, but the
syntactic analyses are incorrect in a large number of cases
or contain a high degree of ambiguity. Therefore, each con-
secutive step requires increased human intervention, with
most of it needed on the syntactic level. The aim of the pre-
processing is to minimize the amount of this human effort.

To avoid the possible combinatorial explosion on the
last level, we plan to apply special compilation techniques
which will distribute syntactic information locally onto the
overall structure and will encode part of that information as
constraints over the structure.

Annotation Process Example

Here we give an example with an ambiguous sentence
in order to highlight better the annotation steps and tech-
niques, described above. Note that the HPSG output is sim-
plified and instead of feature graphs we are using context
grammar trees in order to demonstrate the main idea.

Sentence extraction

<S>the man saw the boy with the telescope
in the garden</S>

Automatic pre-processing
The chosen sentence is tokenized, then the part of

speech is assigned to all words in it and some partial gram-
mar for determination of the non-recursive noun phrases is
run. The result is:

<S>
<NP><D>the</D><N>man</N></NP>
<V>saw</V>
<NP><D>the</D><N>boy</N></NP>
<P>with</P>
<NP><D>the</D><N>telescope</N></NP>
<P>in</P>
<NP><D>the</D><N>garden</N></NP>
</S>

HPSG grammar processing.
The set of all possible syntactic analyses of the partially

parsed sentence are returned by the HPSG grammar. This
is a set of feature graphs. Each graph in the set is converted
to an XML representation. Let us suppose for our example
that the grammar returns only three analyses:

Analysis 1:

<S>
<NP><D>the</D><N>man</N></NP>
<VP>
<VP>
<VP>

<V>saw</V>
<NP><D>the</D><N>boy</N></NP>

</VP>
<PP>

<P>with</P>
<NP>
<D>the</D><N>telescope</N>

</NP>
</PP>

</VP>
<PP>

<P>in</P>
<NP><D>the</D><N>garden</N></NP>

</PP>
</VP>
</S>

Analysis 2:

<S>
<NP><D>the</D><N>man</N></NP> <VP>
<VP>

<V>saw</V>
<NP>

<NP><D>the</D><N>boy</N></NP>
<PP>
<P>with</P>
<NP>

<D>the</D><N>telescope</N>
</NP>

</PP>
</NP>

</VP>
<PP>

<P>in</P>
<NP><D>the</D><N>garden</N></NP>

</PP>
</VP>
</S>

Analysis 3:

<S>
<NP><D>the</D><N>man</N></NP>
<VP>
<VP>

<V>saw</V>
<NP><D>the</D><N>boy</N></NP>

</VP>
<PP>

<P>with</P>
<NP>
<NP>
<D>the</D><N>telescope</N>

</NP>
<PP>

<P>in</P>
<NP>

<D>the</D><N>garden</N>

</NP>
</PP>

</NP>
</PP>

</VP>
</S>

Manual annotation
The intersection of all possible analyses is calculated

and represented as an XML document:

<S> <NP><D>the</D><N>man</N></NP>
<V>saw</V>
<NP><D>the</D><N>boy</N></NP>
<P>with</P>
<NP><D>the</D><N>telescope</N></NP>
<PP>

<P>in</P>
<NP><D>the</D><N>garden</N></NP>

</PP>
</S>

Note that the intersection of the three analyses contains
more syntactic information than the partial analysis. This
is so, because the PP ‘in the garden’ is shared by all the
three analyses. The information from the possible analy-
ses, which is not included into the intersection, is stored as
constraints over this document. Then the annotator is asked
to complete the intersection to a full analysis. For example,
if we mark ‘the telescope in the garden’ as a single NP, then
exactly one analysis is determined and it is not necessary to
add more information. Note that in this simple example
all the analyses are visible, but in a real case there could
be thousands of analyses and their inspection one by one
would not be feasible for the annotator without a software
support.

4. Software Support - the CLaRK System
In this section we describe the main facilities of the

CLaRK system which is the main software used within the
BulTreeBank project. CLaRK is an XML-based software
system for corpora development. It incorporates several
technologies:

� XML technology;

� Unicode;

� Regular Grammars;

� Constraints over XML Documents.

4.1. XML Technology

At the heart of the CLaRK system is the XML technol-
ogy implemented as a set of utilities for structuring, manip-
ulation and management of data. We chose the XML tech-
nology because of its popularity, its ease of understanding
and its already wide use in description of linguistic infor-
mation. Besides the XML language processor itself, we im-
plemented an XPath language engine for navigation in doc-
uments and an XSLT language engine for transformation of
XML documents. We started with basic facilities for cre-
ation, editing, storing and querying of XML documents and

developed further this inventory towards a powerful system
for processing not only single XML documents but an in-
tegrated set of documents and constraints over them. The
main goal of this development is to allow the user to add
the desirable semantics to the XML documents.

The core of CLaRK is an XML editor, which is the main
interface to the system. Each loaded into the editor docu-
ment is presented to the user in two or more views. One
of these views reflects the tree structure of the document.
The other views of the document are textual. Each textual
view shows the tags and the text content of the document.
The tags in the textual view are separated from the rest of
the text and can not be edited. The user has the possibility
of attaching to each textual view a filter, which determines
the tags and the content of the elements to be displayed in
the view. This option allows hiding some of the informa-
tion in the document and concentrating on the rest of it. To
the different textual views of the same document the user
can attach different filters. The editor supports a full set of
editing operations as copy, cut, paste and so on. These op-
erations are consistent with the XML structure of the doc-
ument. Thus the user can copy or delete a whole subtree.
Some of these editing operations as search and replace are
defined in terms of XPath expressions. Thus the user can
search not only in the textual content of the document but
also with respect to the XML mark-up.

4.2. Tokenization

XML considers the content of each text element as a
whole string that is unacceptable for corpus processing. For
this reason it is required for the wordforms, punctuation
and other tokens in the text to be distinguished. In order to
cope with this problem, the CLaRK system supports a user-
defined hierarchy of tokenizers. At the very basic level the
user can define a tokenizer in terms of a set of token types.
In this basic tokenizer each token type is defined by a set of
UNICODE symbols. Above this basic level tokenizers the
user can define other tokenizers for which the token types
are defined as regular expressions over the tokens of some
other tokenizer, the so called parent tokenizer. For each
tokenizer an alphabetical order over the token types is de-
fined. This order is used for operations like the comparison
between two tokens, sorting and similar.

Sometimes in different parts of one and the same docu-
ment the user might need to apply different tokenizers. For
instance, in a multilingual corpus the sentences in differ-
ent languages have to be tokenized by different tokenizers.
In order to allow this flexibility, the system allows for at-
taching tokenizers to the documents via the DTD of the
document. To each DTD the user can attach a tokenizer
which will be used for tokenization of all textual elements
of the documents corresponding to the DTD. Additionally,
the user can overwrite the DTD tokenizer for some of the
elements, attaching to them other tokenizers.

4.3. Regular Grammars

The basic CLaRK mechanism for linguistic processing
of text corpora is the regular grammar processor. The appli-
cation of the regular grammars to XML documents is con-
nected with the following problems:

� how to treat the XML document as an input word for
a regular grammar;

� how the return-up grammar category to be incorpo-
rated into the XML document; and

� what kind of ‘letters’ to be used in the regular ex-
pressions so that they correspond to the ‘letters’ in the
XML document.

The solutions to these problems are described in the
next paragraphs.

First of all, we accept that each grammar works on the
content of an element in an XML document. The content
of each XML element (excluding the EMPTY elements on
which regular grammar cannot be applied) is either a se-
quence of XML elements, or text, or both. The input word
for a grammar is calculated in the following way: each tex-
tual element of the content is tokenized by an appropriate
tokenizer and each XML element is substituted by a list of
values returned by an XPath expression and evaluated over
the node. In order to recognize whether a value in the input
word is from a text or from an element, the CLaRK system
requires that the values of an XML element were enclosed
in angle brackets: <...>. For instance, the content of the
following element:

<s>John <v>loves</v> Mary</s>

forms the following input word under appropriate tok-
enizers and XPath values:

"John" " " < "v" > " " "Mary"

In order to map the values in the input word, we use
token descriptions in the regular expressions. The simplest
token descriptions are the tokens themselves. Additionally,
in the token description we can use wildcard symbols # for
zero or more symbols, @ for zero or one symbol, and token
categories. Each token description in a regular expression
is matched exactly to one token in the input word. It is
important to see that the value of an XML element is not
just the tag of the element. For example, if we have the
following element:

<s>
<w g="N">John</w>
<w g="V">loves</w>
<w g="N">Mary</w>
</s>

then the sequence of tags is simply <"w"> <"w"> ...,
which is not intended to be an input word for a grammar.
In order to get the values of the attributes of the elements,
we have to use the following XPath expression: attribute::g.
And then the input word will be: <"N"> <"V"> <"N">.
Writing complex XPath expressions, the user can determine
very complicated values for the XML elements depending
of the context of their use.

The last problem when applying grammars over XML
documents is how to incorporate the category assigned to a
given rule. In general we accept that the category has to be
encoded as an XML mark-up of arbitrary complexity. For
instance, the following simple tagger (example is based on
(Abney, 1996)):

"the"|"a" -> Det
"telescope"|"garden"|"boy" -> N
"slow"|"quick"|"lazy" -> Adj
"walks"|"see"|"sees"|"saw" -> V
"above"|"with"|"in" -> Prep

can be encoded in CLaRK system as:

"the"|"a" -> <Det>\w</Det>
"telescope"|"garden"|"boy" -> <N>\w</N>
"slow"|"quick"|"lazy" -> <Adj>\w</Adj>
"walks"|"see"|"sees"|"saw" -> <V>\w</V>
"above"|"with"|"in" -> <Prep>\w</Prep>

where \w is a variable for the recognized word. The
mark-up defining the category can be as complicated as
necessary. The variable \w can be repeated as many times
as necessary (it can also be omitted).

4.4. Constraints over XML documents

Several mechanisms for imposing constraints over
XML documents are available. The constraints cannot be
stated by the standard XML technology. The following
types of constraints are implemented in CLaRK: 1) finite-
state constraints - additional constraints over the content
of given elements based on a document context; 2) num-
ber restriction constraints - cardinality constraints over the
content of a document; 3) value constraints - restriction of
the possible content or parent of an element in a document
based on a context. The constraints are used in two modes:
checking the validity of a document regarding a set of con-
straints; supporting the linguist in his/her work during the
building of a corpus. The first mode allows the creation of
constraints for the validation of a corpus according to given
requirements. The second mode helps the underlying strat-
egy of minimisation of the human labour.

General syntax of the constraints in the CLaRK system
is the following:

(Selector, Condition, Event, Action)

where the selector defines in which node(s) in the docu-
ment the constraint is applicable; the condition defines the
state of the document when the constraint is applied. The
condition is stated as an XPath expression which is evalu-
ated with respect to each node selected by the selector. If
the evaluation of the condition is a non-empty list of nodes
then the constraints are applied; the event defines some con-
ditions of the system when this constraint is checked for
application. Such events can be: the selection of a menu
item, the pressing of key shortcut, some editing command
as enter a child or a parent and similar; the action defines
the way of the actual application of the constraint.

Here we present constraints of type ”Some Children”.
This kind of constraints deal with the content of some el-
ements. They determine the existence of certain values
within the content of these elements. A value can be a token
or an XML mark-up and the actual value for an element can
be determined by the context. Thus a constraint of this kind
works in the following way: first it determines to which el-
ements in the document it is applicable, then for each such
element in turn it determines which values are allowed and

checks whether in the content of the element some of these
values are presented as a token or an XML mark-up. If
there is such a value, then the constraint chooses next ele-
ment. If there is no such a value, then the constraint offers
to the user a possibility to choose one of the allowed values
for this element and the selected value is added to the con-
tent as a first child. Additionally, there is a mechanism for
filtering of the appropriate values on the basis of the context
of the element.

This kind of constraints is very useful for filling of the
content of elements with predetermined set of values as,
for example, in dictionary construction. Within BulTree-
Bank, we use these constraints for manual disambiguation
of morpho-syntactic tags of wordforms in the text. For each
wordform we encode the appropriate morpho-syntactic in-
formation from the dictionary as two elements: <aa> el-
ement which contains a list of morpho-syntactic tags for
the wordform separated by a semicolon, and <ta> element
which contains the actual morpho-syntactic tag for this use
of the wordform. Obviously the value of <ta> element has
to be among the values in the list presented in the element
<aa> for the same wordform. ”Some Children” constraints
are very appropriate in this case. Using different conditions
and filters on the values we implemented and used more
than 50 constraints during the manual disambiguation of
wordforms in the “golden standard” of the project. It is im-
portant to mention that when the context determines only
one possible value for some word, it is added automatically
to the content of <ta> element and thus the constraint be-
comes a rule.

4.5. Additional Facilities

Besides the basic tools presented so far, there is a great
number of additional facilities for supporting corpus devel-
opment implemented in the CLaRK system. The Extractor
is a tool for extracting elements from XML documents in
a new document. For instance this can be used to extract
all sentences in certain documents that meet some condi-
tion. The condition is stated as an XPath expression. The
Remove tool allows the user to delete some elements that
meet a certain condition stated again as an XPath expres-
sion. The Sorting tool is concerned with sorting elements
of a document according to some keys defined over these
elements. The sorting is defined in terms of two XPath ex-
pressions. The first expression determines which elements
will be sorted. This expression is evaluated with respect to
the root of the document as a context node. The second
XPath expression defines the key for each element and it is
evaluated for each node returned by the first XPath expres-
sion. The list of nodes returned by the first expression is
sorted according to the keys of the nodes. Afterwards the
nodes are returned in the document in the new order.

A concordance tool is implemented on the basis of the
XPath engine, regular grammar engine and a sorting mod-
ule. The first step in a concordance construction is to ex-
tract the relevant information from some documents. This
is done by an XPath expression which is evaluated and the
returned list of nodes is stored as a separate document. The
extracted elements are ordered in an appropriate way. For
example, in case of appropriately marked-up corpus one

can extract all verbs and order them with respect to the first
noun on the right hand side of the verb (not necessarily the
first word on the right hand side).

4.6. Cascade Processing

The central view of the use of the CLaRK system is
that an XML document under processing can be seen as a
“blackboard” on which different tools can write some infor-
mation, reorder it or delete it. The user can order the appli-
cations of the different tools so as to achieve the necessary
processing. We call this possibility cascade processing af-
ter the cascade regular grammars. In this case we can order
not just different grammars but also other tools like con-
straints, removal operations, transformations and sorting.
In this section we present two uses of this paradigm within
the BulTreeBank project.

The first one is concerned with sentence boundary
delimitation. This is a well known problem due to the fact
that some abbreviations end with a full stop which can
also be end of a sentence. We solve this problem in the
following way. First we run a grammar which recognizes
the abbreviations in the text and annotates them. The
annotation contains information about the abbreviation full
stop, but it cannot be deleted from the token list because
the same full stop can also be the end of a sentence.
In order to distinguish such full stops, the grammar for
the abbreviations leaves the full stops in the token lists,
but it changes their mark-up. For example, if we have
in the text the Bulgarian abbreviation <w>str</w>
<pt>.</pt>, after running the grammar we will
have <abbr><w>str</w> <pt>.</pt></abbr>
<pt type="abbr">.</pt>. On the next step of pro-
cessing, the grammar for sentence boundary delimitation
will consider also the full stops marked-up with the above
type attribute. If the grammar recognizes some of these
full stops as the end of sentences, it will replace their
mark-up with mark-up for the end of the sentence. After
the grammar for sentence delimitation is applied, we run a
removal operation to delete all full stops that are part of an
abbreviation, but not end of a sentence.

The second use of this approach deals with the fact
that some sequences of words can be automatically disam-
biguated. Sometimes such sequences of words cannot be
constituents, and their eventual grouping is not part of the
analysis of the sentences. In this case we proceed in follow-
ing way. First we write a grammar that groups together such
words and marks them up in an appropriate way. Then we
run a sequence of constraints that disambiguates the words
within such a group. After the constraints, we run a removal
operation to delete the group mark-up. An example of such
a case is the so called ‘da’-construction in Bulgarian. It in-
cludes the conjunction ‘da’, a number of clitics and a verb
form. Within such groups, ‘da’ is ambiguous between a
conjunction and a particle, but it is defined as a conjunc-
tion. Most of the clitics are ambiguous between personal
pronouns and possesive pronouns, but in this context they
can be personal pronouns only. The verb can only be in the
present tense. Using such a mechanism, we succeeded to
reduce the number of ambiguities with more than 10%.

5. Acknowledgements
The work reported here is done within the BulTreeBank

project. The project is funded by the Volkswagen Stiftung,
Federal Republic of Germany under the Programme “Co-
operation with Natural and Engineering Scientists in Cen-
tral and Eastern Europe” contract I/76 887.

6. References
Steve Abney. 1991. Parsing By Chunks. In: Robert

Berwick, Steven Abney and Carol Tenny (eds.),
Principle-Based Parsing. Kluwer Academic Publishers,
Dordrecht.

Steve Abney. 1996. Partial Parsing via Finite-State Cas-
cades. In: Proceedings of the ESSLLI’96 Robust Parsing
Workshop. Prague, Czech Republic.

Dipper, S. 2000. Grammar-based Corpus Annotation. In
Proceedings of the Workshop on Linguistically Inter-
preted Corpora, Luxembourg, August 6

Thilo Götz and W. Detmar Meurers. 1997. The ConTroll
system as large grammar development platform. In Pro-
ceedings of the ACL/EACL post-conference workshop
on Computational Environments for Grammar Develop-
ment and Linguistic Engineering. Madrid, Spain.

Paul J. King. 1989. A Logical Formalism for Head-Driven
Phrase Structure Grammar. Doctoral thesis, Manchester
University, Manchester, England.

Paul J. King and Kiril Iv. Simov. 1998. The automatic de-
duction of classificatory systems from linguistic theo-
ries. In Grammars, volume 1, number 2, pages 103-153.
Kluwer Academic Publishers, The Netherlands.

Carl J. Pollard and Ivan A. Sag. 1987. Information-Based
Syntax and Semantics, vol. 1. CSLI Lecture Notes 13.
CSLI, Stanford, California, USA.

Carl J. Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago Press,
Chicago, Illinois, USA.

D. Popov, K. Simov, and S. Vidinska. 1998. A Dictionary
of Writing, Pronunciation and Punctuation of Bulgarian
Language, Atlantis SD, Sofia, Bulgaria.

Kiril Simov. 2001. Grammar Extraction from an HPSG
Corpus. In: Proc. of the RANLP 2001 Conference,
Tzigov chark, Bulgaria, 5-7 Sept., pp. 285-287.

Kiril Simov, Zdravko Peev, Milen Kouylekov, Alexander
Simov, Marin Dimitrov, Atanas Kiryakov. 2001. CLaRK
- an XML-based System for Corpora Development. In:
Proc. of the Corpus Linguistics 2001 Conference, pages:
558-560.

Kiril Simov, and Petya Osenova. 2001. A Hybrid System
for MorphoSyntactic Disambiguation in Bulgarian. In:
Proc. of the RANLP 2001 Conference, Tzigov chark,
Bulgaria, 5-7 Sept., pp. 288-290.

K. Simov, G. Popova, and P. Osenova. 2001. HPSG-based
syntactic treebank of Bulgarian (BulTreeBank). In: “A
Rainbow of Corpora: Corpus Linguistics and the Lan-
guages of the World”, edited by Andrew Wilson, Paul
Rayson, and Tony McEnery; Lincom-Europa, Munich,
pp. 135-142.

	1729: 1729
	1730: 1730
	1731: 1731
	1732: 1732
	1733: 1733
	1734: 1734
	1735: 1735
	1736: 1736

