
Automatic transformation of phrase treebanks to dependency trees

Michael Daum, Kilian A. Foth, Wolfgang Menzel
Natural Language Systems

Department of Computer Science
University of Hamburg

(micha|foth|wolfgang)@nats.informatik.uni-hamburg.de

Abstract
Word-to-word dependency structures are useful for consistent representation and comparable evaluation of parsing results. However,
most large-scale treebanks contain various variants of phrase structure trees, since automatic parsers usually produce constituent struc-
tures. We present a freely available extensible tool for converting phrase structure to dependencies automatically, and discuss its appli-
cation to the NEGRA treebank of German.

1. Introduction

With the rise of statistical methods in NLP, treebanks
have become an important resource for various tasks: they
are used to exemplify models of natural languages, to cal-
culate probabilities of alternative generation rules, or to in-
duce entire grammars. The most widespread use of large
treebanks is in developing and testing of automatic syntac-
tic parsers, because both the training and the evaluation of
a probabilistic parsing system require large amounts of an-
notated syntactic structures; but they are also useful as a
source of examples for the creation of entirely rule-based
NLP systems and other kinds of linguistic inquiry (Bouma
and Kloosterman, 2002).

Various formalisms are used in automatic syntax anal-
ysis (PCFG, LFG, TAG), but most large treebanks have
so far been compiled in some form of constituent struc-
ture. However, this kind of model may actually not be ideal
for comparing and evaluating the performance of automatic
parsers, and it has been suggested (Lin, 1995) that depen-
dency trees would allow for more meaningful error mea-
sures and comparisons. More recently (Beil et al., 2002)
confirm the need for this kind of evaluation.

Dependency and constituent structure are different
models of natural language, but they are similar enough
that it is conceivable to convert one model into the other
automatically. Rather than generate new treebanks that use
dependencies, we argue that it is useful to convert existing
data to dependency relations automatically. We describe
a freely available tool that can import the Penn treebank
(Marcus et al., 1994) and the NEGRA treebank (Skut et al.,
1997) formats and generate dependency descriptions from
them. It has been successfully used to convert the NEGRA
corpus of German into dependency trees that conform to an
existing dependency model of German.

2. Phrase structure and dependency
structure

If we describe an utterance as an ordered sequence of
words, a phrase structure tree is a set of phrases or con-
stituents, each of which has a set of associated other tree
elements (words or constituents). This very general defini-
tion is often extended or restricted in various ways:

• Usually, each constituent is labelled with a category
label such as VP or NP.

• The words of an utterance are often labelled with a
different set of labels corresponding to part-of-speech
tags.

• The relation between a tree element and its parent con-
stituent is sometimes labelled as well, with labels such
as “Subject” or “Direct Object”.

• Often, the condition is imposed that the yields of
two constituents must be either disjunct or subsets of
each other, i.e. any two overlapping constituents must
be properly nested. This ensures that a context-free
derivation can be written to motivate each phrase tree.

• Additional elements are sometimes permitted, such as
the secondary edges in the WSJ corpus, to model rela-
tions like ‘logical subject’ or anaphoric reference.

A dependency tree for the same utterance is character-
ized by a set of directed edges so that each word either mod-
ifies some other word or is regarded as the root of the entire
tree. Normally, each edge carries a label that character-
izes the relation, e.g. ‘Subject’ or ‘Object’. Usually, only
properly nested structures are allowed; this is achieved by
postulating the projectivity property for any pair of edges
(Schröder et al., 2000), which can however be abandoned
if necessary. Secondary edges can be defined much like in
phrase trees to model additional relationships.

The performance of automatic parsers is usually mea-
sured by their precision and recall, defined as the ratio of
computed to correctly computed and of correctly computed
to annotated partial structures. Either measure can easily be
increased to maximum in isolation by computing no or all
possible structures; therefore both measures must always
be considered in combination. Evaluation measures only
differ in what they consider a correct partial result; many
different approaches exist to extract and compare such sub-
structures (Briscoe et al., 1998).

(Lin, 1995) proposed to compare annotations and parser
output in dependency space and gave a general algorithm
for producing dependency trees from phrase trees if nec-
essary. In dependency space, precision and recall always
coincide, since each word can only be attached correctly or
not. Whereas in phrase structure space a wrong attachment

 1149

NP

PP

DT NN IN DT JJ NN
the man in the funny hat

−− HD

MO

AC −− −− HD

NP

PP

NP

DT NN IN DT JJ NN
the man in the funny hat

−− HD

MO

AC −− −− HD

MO
PN

ATTR

DET

PP

DET

the man in the funny hat

Figure 1: Ambiguous representations in phrase structure space.

VP

VP

PRP VBP RB VBN PRP
I have not seen him

SBJ HD MO

−−

−− −−
OBJA

AUX

ADVSUBJ

I have not seen him

OBJA

AUX

ADV

SUBJ

I have not seen him

Figure 2: Ambiguous representations in dependency space.

can cause several constituents to be considered erroneous,
it will always cause exactly one wrong dependency. This
error measure can therefore be considered more intuitively
adequate.

Dependency representation also makes it easy to evalu-
ate the performance of a parser selectively. If edge labels
are used, common tasks such as judging the performance of
a parser for subject detection are solved by counting only
the corresponding edges – a trivial modification of the nor-
mal evaluation method.

One other advantage of representing language as depen-
dencies is that some gratuitous ambiguities are avoided en-
tirely. Many of these are constructions where it is unclear
whether an embedded level of phrase structure should be
assumed or not (see Figure 1). For example, there is no
consensus about whether particular languages actually do
or do not have verb phrases; in a dependency representa-
tion this issue simply does not arise.

To be sure, there are also instances of ambiguities that
arise only in dependency representation. Typically these
are constructions where more than two constituents would
form a larger phrase (see Figure 2). Lin proposes the auto-
matic normalization of dependency trees to eliminate such
inconsequential differences in an extra step.

There are also some constructions where several depen-
dency structures are possible but none is preferable. For in-
stance, in conjunction phrases there is no consensus about
which word is the phrase head, and in fact every solution
causes problems from a linguistic perspective (see Figure
3). In such cases one representation is usually chosen arbi-
trarily.

CNP

NNP CC NNP
Lyn and Mary

−− HD −− CJCJ

Lyn and Mary

CJ

KON

Lyn and Mary

Figure 3: Different dependency structures for conjunction
phrases.

3. The Tool DEPSY
Lin’s proposed algorithm, taken from (Magerman,

1994), proceeds essentially as follows:

1. determine the head child of the root phrase node

2. apply the algorithm to all constituents of the head
child, and obtain its head word, which will constitute
the root word of the dependency tree

3. apply the algorithm to all siblings of the head child,
and subordinate their head words under the current
head word.

The head child of a phrase node is found by consulting
a head table that associates each phrase category with a
direction and a list of other categories; e.g. the head of a
PP might be defined as the first preposition to the left, and
the head of a VP as the first finite verb to the left. The
resulting dependencies are simple pairs of words, with no
edge labels. Also, only connected trees (where only one
root node exists) can be handled.

The tool DEPSY (Dependency Synthesizer) implements
this fundamental algorithm together with some extensions
to overcome its limitations. Extending the principle of
table-driven operation, the exact behaviour is controlled by
several tables beyond the head table:

• a table of additional conversion functions is consulted
for each node in the phrase tree before the fundamental
algorithm is applied.

• a label table is used during the transformation to
choose a label for each dependency edge.

• a second table of conversion functions is consulted for
each word in the dependency tree after the fundamen-
tal algorithm has been applied.

As an example of a useful conversion of phrase trees,
assume that PP phrases are annotated without an embedded
NP in a corpus (cf. Figure 1), which means that they can
have only one lexical head. The basic algorithm alone can-
not derive the desired dependency structure from the left
phrase tree. (Eisner, 1996) proposed inserting an embed-
ded NP into each PP to solve this problem. By adding this
conversion to our table of preprocessing functions we can

 1150

determine the head of the new NP normally, without chang-
ing the basic algorithm.

As suggested by Lin, conversions on dependency trees
can be defined to normalize gratuitous ambiguity. Assume
that the adverbial modifiers (MO) of a VP are all included
directly into a flat VP, but the annotation guideline for de-
pendency trees states they should modify the full verb if
possible. A conversion can be defined that moves adver-
bials down the auxiliary edges (AUX) where possible.

All of these tables and additional procedures are stored
in a separate plugin that is independent of the main algo-
rithm, so that the tool can easily be adapted different lan-
guages or different annotation styles of the same language.

DEPSY can process input in the ‘merged’ (.mrg) for-
mat of the Wall Street Journal Corpus as well as the ‘export’
format of the NEGRA corpus; other variants of constituent
notation are simple to add. It generates a simple line-based
dependency representation; an output format usable for our
own dependency parser (Schröder, 2002) is also available.
The entire program has been implemented in Perl for max-
imal portability.

4. Translating the NEGRA treebank
It is straightforward to transform a treebank into depen-

dency structures if the only goal is to create dependency
trees of some kind. However, with additional transforma-
tions it is also possible to make the output conform to an
already existing modelling of the target language. A set of
rules has been written that transforms the NEGRA corpus
to conform closely to a pre-existing broad-coverage depen-
dency model of German developed in the Hamburg partial
parsing project (Daum et al., 2003).

Many of the transformations are obvious, such as turn-
ing subject constituents (edge label SB) into dependencies
labelled SUBJ. Others require the application of additional
conversions before or after the basic algorithm. Conver-
sions equivalent to all three examples of the previous sec-
tion are actually part of this rule set. Altogether about
twenty different conversion routines are used on phrase
trees and another twenty on dependency trees.

In parallel with the development of the translation rules,
the resulting dependency trees were revised by human an-
notators familiar with the annotation guidelines for our de-
pendency grammar. The object was to produce dependency
trees that conform to our annotation guidelines while adher-
ing to the structure chosen by NEGRA’s annotators as much
as possible. In the first 3,000 automatically transformed
trees, about one dependency edge in 100 had to be hand-
corrected1. This accuracy is higher than many reports of
inter-annotator agreement because inherent ambiguity has
already been resolved by the NEGRA annotators. It cer-
tainly suggests that the practice of automatic translation is
acceptable for practical purposes.

When applying our existing constraint grammar to the
converted dependency trees, all disagreements between the

1This figure drops to 98% if the dependency labels are also
considered. This is in part due to information missing in the NE-
GRA corpus, e.g. our grammar distinguishes prepositional objects
from modifying prepositionals, while NEGRA annotates them in-
differently as ‘MO’.

two language models are automatically flagged as con-
straint violations. Each such case points either to an error in
the translation rules, insufficient coverage in the constraint
grammar, or to a mis-annotation in the original tree.

Various types of constructions were found in the NE-
GRA treebank that were not covered by our model of Ger-
man. The majority of them have meanwhile been incorpo-
rated into the German dependency grammar. Conversely,
many cases of inconsistently used edge and node tags were
found in the original NEGRA corpus. While many of
these correspond to actual disagreements in modelling (of-
ten in connection with the complex POS tag set of German),
there are also many obviously wrong or inconsistent assign-
ments in the NEGRA treebank. Altogether about 400 such
changes were necessary in the first 3.000 sentences of the
NEGRA corpus, ranging from avoidable agreement errors
to phrase node subordinations that are in clear violation of
NEGRA’s own guidelines, and easily corrected.

5. Related work
A number of approaches to (semi-)automatically trans-

form phrase-structure annotations to dependency trees and
vice versa has been developed, most of them for English
corpus data. (Eisner, 1996) e.g. uses dependency structures
derived from the Penn Treebank to train a corresponding
stochastic parser, while others, e.g. (Collins, 1999), fol-
lowing Lin’s original proposal, transform both the gold
standard and the parsing result into dependency space to
carry out a linguistically more motivated comparison there.
More recently this approach was applied to evaluate a par-
tial parser for German on TIGER-Treebank data (Kübler
and Telljohann, 2002) and it was argued that a dependency-
based evaluation could considerably increase the validity
also for partial parsing results.

Usually, bare-bone dependencies are used to make the
desired comparisons. Even if the transformation procedure
of (Kübler and Telljohann, 2002) has been designed to also
obtain some edge labels, this information is apparently ig-
nored when measuring the quality of parsing results. As
long as only attachment problems are considered the trans-
formation can be based solely on a head percolation table
(Magerman, 1994), which contains the necessary informa-
tion to uniquely identify the head of each phrase.

Few transformation procedures consider edge labels,
which are useful to distinguish different kinds of depen-
dency relations. (Xia et al., 2000) use an additional argu-
ment and tagset table to also distinguish between arguments
and adjuncts in English sentences. (Kübler and Telljohann,
2002) are able to determine edge labels from an even richer
set of categories, although this is done only for dependen-
cies from the finite verb. Using a fully elaborate set of an-
alytical functions, the transformation procedures for deriv-
ing Praguian tectogrammatical annotations from PTB-style
phrase structure trees are most similar to the approach de-
scribed in this paper. Dependency relations are assigned
by a procedure taking into account the POS of the depen-
dent node and the sequence of all its ancestors in the phrase
tree as well as the POS and other lexical information of
its parent in the dependency tree (Žabokrtský and Smrž,
2003). (Žabokrtský and Kučerová, 2002) report an attach-

 1151

ment accuracy of 94% and a label accuracy of 82% when
comparing the transformation results for English PTB an-
notations against manually corrected ones, a quality level
which is still considerably lower than the one achieved with
the DEPSY tool.

Finally, there are a few cases of programs which trans-
form in the opposite direction. They are needed if the tree-
bank data are given in dependency format as this is the
case for the Prague Dependency Treebank. (Collins et al.,
1999) produce phrase structure descriptions from depen-
dency trees, where the derived trees have been designed to
be as flat as possible. The transformed data has been used
to train and evaluate a stochastic parser for Czech. (Xia
and Palmer, 2001) have shown that the algorithm used by
(Collins et al., 1999) is actually a special case of a more
general one, using also tree-bank specific information such
as the types of the arguments or modifiers a head can take.
Using the extended model they achieved 88% precision and
86% recall when evaluating a “round-trip” transformation
on the Penn Treebank.

6. Conclusions
We presented DEPSY, a tool for transforming phrase

structure annotations to dependency trees, which can be
adapted to different treebank formats and annotation guide-
lines. The tool has been designed

• to be used for a large scale evaluation of a dependency-
based parser for German on currently available corpus
data,

• to facilitate parser comparison across the two basic
model classes for structural descriptions, and

• to contribute to an emerging standard of parser eval-
uation for German sentences as it already exists for
English with the widely accepted Penn Treebank set-
ting.

Furthermore, we intend to enrich the NEGRA corpus
with detailed morphological information beyond POS tags,
which is currently available for only 16% of the NEGRA
sentences. With the syntax structure known, it is straight-
forward to let our parser compute the most fitting morpho-
logical variant for each word and this additional informa-
tion can then be transferred back to the NEGRA format.

DEPSY is freely available and can be downloaded
from http://nats-www.informatik.uni-hamburg.

de/download.

7. References
Beil, Franz, Detlef Prescher, Helmut Schmid, and Sabine

Schulte im Walde, 2002. Evaluation of the Gramotron
parser for German. In Proc. LREC Workshop: Beyond
PARSEVAL, May 29-31. Las Palmas, Gran Canaria.

Bouma, Gosse and Geert Kloosterman, 2002. Querying de-
pendency treebanks in XML. In Proc. 3rd Int. Conf. on
Language Resources and Evaluation, LREC-2002. Las
Palmas, Gran Canaria.

Briscoe, Ted, John Carroll, and Antonio Sanfilippo, 1998.
Parser evaluation: A survey and a new proposal. In Proc.

1st Int. Conf. on Language Resources and Evaluation,
LREC-1998. Granada, Spain.

Collins, Michael, 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania, Philadephia, PA.

Collins, Michael, Jan Hajič, Lance Ramshaw, and
Christoph Tillmann, 1999. A statistical parser for czech.
In 37th Annual Meeting of the Association for Computa-
tional Linguistics, ACL-1999. College Park, Maryland.

Daum, Michael, Kilian Foth, and Wolfgang Menzel, 2003.
Constraint based integration of deep and shallow parsing
techniques. In Proc. 11th Conference of the European
Chapter of the ACL. Budapest, Hungary.

Eisner, Jason M., 1996. An empirical evaluation of proba-
bility models for dependency grammars. Technical Re-
port IRCS-96-11.

Kübler, Sandra and Heike Telljohann, 2002. Towards a
dependency-oriented evaluation for partial parsing. In
Beyond PARSEVAL, Workshop on LREC-2002. Las Pal-
mas, Gran Canaria.

Lin, Dekang, 1995. A dependency-based method for eval-
uating broad-coverage parsers. In Proceedings of IJCAI.
Montreal, Canada.

Magerman, David M., 1994. Natural Language Parsing
as Statistical Pattern Recognition. Ph.D. thesis, Stanford
University.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz, 1994. Building a large annotated corpus
of english: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

Schröder, Ingo, 2002. A Framework for Gradation in Nat-
ural Language Analysis Using Constraint Optimization.
Ph.D. thesis, Universität Hamburg, Department of Com-
puter Science.

Schröder, Ingo, Wolfgang Menzel, Kilian Foth, and
Michael Schulz, 2000. Modeling dependency grammar
with restricted constraints. Traitement Automatique des
Langues (T.A.L.), 41(1):113–144.

Skut, Wojciech, Thorsten Brants, Brigitte Krenn, and Hans
Uszkoreit, 1997. Annotating unrestricted german text.
In Proc. 6. Fachtagung der Sektion Computerlinguistik
der Deutschen Gesellschaft für Sprachwissenschaft. Hei-
delberg, Germany.

Žabokrtský, Zdeněk and Ivona Kučerová, 2002. Trans-
forming Penn Treebank phrase trees into (Praguian) tec-
togrammatical dependency trees. Prague Bulletin of
Mathematical Linguistics, 78:77–94.

Žabokrtský, Zdeněk and Otakar Smrž, 2003. Arabic syn-
tactic trees: From constituency to dependency. In 11th
Conf. of the European Chapter of the ACL, EACL-2003.
Budapest, Hungary.

Xia, Fei and Martha Palmer, 2001. Converting dependency
structures to phrase structures. In Proc. Int. Conf. on Hu-
man Language Technology, HLT-2001. San Diego, CA.

Xia, Fei, Martha Palmer, and Aravind Joshi, 2000. A uni-
form method of grammar extraction and its application.
In Proc. Joint SIGDAT Conf. on Empirical Methods in
Natural Language Processing and Very Large Corpora,
EMNLP/VLC-2000. Hong Kong.

 1152

