
Using the NITE XML Toolkit on the Switchboard Corpus to study syntactic
choice: a case study

Jean Carletta*, Shipra Dingare*, Malvina Nissim*, Tatiana Nikitina†

*University of Edinburgh, HCRC Language Technology Group
2, Buccleuch Place, Edinburgh EH8 9LW, UK

J.Carletta,S.Dingare,M.Nissim@edinburgh.ac.uk

†Stanford University, Department of Linguistics
Margaret Jacks Hall, Building 460

Stanford CA 94305, USA
tann@stanford.edu

Abstract
The NITE XML Toolkit (NXT) provides library support for working with multimodal language corpora. We describe our experiences
in using it to study discourse effects on syntactic choice using the parsed Switchboard Corpus as a starting point, as a case study for
others who may wish to adopt similar techniques using NXT or one of the other libraries that are beginning to emerge. We discuss
conversion into the NXT data format; automatic annotation of markables and of constituent length; hand-annotation of markables for
animacy information structure, and coreferential links; and data analysis.

1. Introduction
The NITE XML Toolkit (Carletta et al., 2003) is a

recent library that has the aim of making it easier to
support multimedia corpus research, especially where
several types of annotation are present on the same data.
It is not particularly difficult to write tools with a specific
corpus design and task in mind, or to allow a certain
degree of tool configuration, such as tag renaming.
However, this practice tends to make tool development
expensive and result in suboptimal interfaces — small
differences in layout or behaviour can greatly affect
utility, especially where hand-annotation is involved.
Arguably, it also restricts progress by encouraging the
more corpus-oriented researchers to mark up linguistic
phenomena and to perform analyses for which support
already exists. Because NXT provides library routines
from which annotation and analysis tools can be built, it is
especially suited for new work on previously unsupported
types of annotation. However, its very flexibility makes it
harder to see how to use it than for other, more specific
tools. We have been using it on the Switchboard Corpus
as part of an ongoing study of syntactic choice in spoken
dialogue. In this paper, we describe how we performed
some common data processing tasks using NXT.

2. The research
Our research goal is to explore syntactic choice in the

dialogues in order to provide guidelines by which natural
language generators can choose among paraphrases,
focusing on the choice of active versus passive
construction, dative placement, and the use of prenominal
genitives versus “of” phrases. The linguistic literature
suggests that syntactic choice is influenced by the
animacy of the entities referred to and their newness in the
discourse (usually referred to as “information structure”).
In addition, it has been suggested that the length of a
syntactic constituent affects its placement. Thus our work
is structured in terms of identifying discourse entities, or
“markables”; annotating them for animacy, information
structure, and coreference; adding constituent length to

the existing syntactic annotation; for each type of
syntactic choice, finding sentences that exhibit the two
syntactic variants; and comparing the properties of
discourse entities that occur in them.

For this work we chose the Switchboard Corpus
(Godfrey, Holliman, & McDaniel, 1992), a collection of
spontaneous telephone conversations between speakers of
American English on predetermined topics, using the
subset of around 650 dialogues that had been parsed by
the Penn Treebank Project. The Linguistic Data
Consortium distributes this subset as “Treebank 3”, in a
format amenable to query by tgrep.

3. The NITE XML Toolkit
The core of NXT consists of two types of

functionality: routines that load, access, manipulate, and
save data according to a particular data model; and an
engine that evaluates queries expressed in NXT’s Query
Language (NiteQL). Several groups plan library support
with similar functionality, of which the Atlas project is
perhaps the closest in style (ATLAS Project, 2000). Data
handling functionality for at least one such library, the
Annotation Graph Toolkit (AGTK), has already been
released (AGTK: Annotation Graph Toolkit, n.d.). NXT
differs from AGTK in two ways. First, its data model and
query language are oriented towards those users who
build descriptive analyses of heavily cross-annotated
multimodal corpora in preparation for defining
appropriate statistical models, and therefore it allows easy
access to an expressive range of data relationships, at the
expense of processing speed. Second, it supplements the
data and query facilities with library routines for building
displays and interfaces based on Java Swing. The
libraries include a default top level interface that allows
one to choose an observation (in this case, a dialogue) and
a tool to run on it from those registered in the corpus
metadata; audio and video players; a search interface for
running queries and displaying the results; basic display
layouts such as text areas and trees that synchronize with
the data and with the media and search facilities; and
standard utilities for things like opening an observation

 1019

and saving some annotation. These libraries are intended
to make it possible to build tailored end user tools at low
cost. There is also a default data display that is never as
good as a tailored one but at least allows any corpus in the
correct format to be viewed and searched without further
programming.

Because NXT is designed for multimodal corpora, the
data model can express (and the query language can test,
and the interfaces can exploit) not just structural
relationships but also temporal ones. However, this
project is not using the signals or time-aligned
transcriptions that are available in other Switchboard
releases, and so we do not comment on these capabilities.

4. Conversion to NXT data format
NXT uses a stand-off XML data format that consists

of several XML files that point to each other. We
converted from the Penn Treebank bracketed format in
which the Switchboard corpus is distributed, using
TIGER, an XML-based tool for syntactic query that
comes with a ready-made Switchboard converter (Tiger
Project, n.d.), as an intermediate step. We did this so that
we had a starting point that was easier to parse. (In
retrospect, this was probably the wrong decision because
NXT’s XML is much more similar in structure to the
Treebank format than to TIGER’s graph-based XML, and
because it meant we are not in complete control of the
conversion process.) Conversion was performed using a
set of XSL stylesheets, one to extract each of the multiple
XML files associated with one dialogue. Writing the
converter took three to four person-days, most of which
was spent trying to understand the original data format.

In order to facilitate the kinds of processing which we
have in mind for the data over the longer term, we divided
our data into separate XML files representing the
orthographic transcription; syntax; turn structure;
disfluencies; and movement, or the relationship between
traces and their sources. Transcription consists of a flat
list of terminals: words, punctuation, traces, and so on.
Syntax starts with a flat list of parses and works down
through nonterminals, grounding in terminals (which are
in the transcription file, but are referenced by pointers that
indicate they are to be treated as if they were part of the
tree itself). Turn structure is simply a flat list of turns
that themselves contain parses as children, again via
pointers into the syntax file. Yet another file couples
reparanda and repairs into disfluencies by pointing to the
appropriate nonterminals using named roles. A
movement file similarly links sources with their target
traces.

This representation sounds awkward, but it has
advantages over the original arrangement of placing the
information in a single tree structure, with co-indexing for
the crossing links that are sometimes required for
disfluency and movement. First, it makes it easier to
query the crossing structures, since they are treated on a
par with other structures within the data. Although this
ease is not particularly important for the initial, syntactic
data, it is crucial for a correct understanding of discourse
phenomena such as coreference. Second, separating the
tags into their various types makes it conceptually simpler
to add data using external processes (part-of-speech
taggers, named entity recognizers, and the like); each
individual file is itself simple. Third, different people can

change different data files at the same time without
conflict, as long as neither edit the files they point to and
both are able to lock complete paths of files pointing to
the data they are revising. Fourth, a data set can be loaded
whole or in part, speeding up some processing. The NITE
XML Toolkit itself treats the data seamlessly no matter
whether it is in one file or many.

5. Automatic annotation
We use automatic annotation to identify markables

and add the length of syntactic constituents.

5.1. Markables

NXT provides a facility for automatic annotation

based on query language matches for queries expressed in
NiteQL. Once we had the published syntactic data
translated into NXT format, we were able to use this
facility to annotate markables corresponding to discourse
entities.

Although as a first pass, discourse entities might be
thought of as represented by noun phrases, there are in
fact a number of arguable exceptions and idiosyncracies
about the Switchboard data that make their identification
more complicated. Our analysts preferred to omit
adverbial noun phrases plus any that were labelled as
locative or directive (or were dominated by adverbial
phrases that were). Because this was spoken data, they
also preferred to omit any data marked as disfluent (“unf”)
or within disfluent (“edited”) constituents. In addition,
they wished to consider possessive pronouns (words with
part of speech “PRP$”) to be markables in their own right
if they were directly contained within markables.

A query that matches all markables except those that
derive from possessive pronouns can be expressed in
NiteQL as follows:

($n nt)(forall $up nt):
 (($n@cat == 'NP') or
 ($n@cat == 'WHNP')) and
 (not (($n@subcat ~ /.*ADV.*/) or
 ($n@subcat ~ /.*LOC.*/) or
 ($n@subcat ~ /.*DIR.*/) or
 ($n@subcat ~ /.*UNF.*/)))
 and ((($n != $up) and($up ^ $n)) ->
 ((not ($up@cat == 'EDITED')) and
 (not (($up@cat == 'ADVP') and
 (($up@subcat ~ /.*LOC.*/) or
 ($up@subcat ~ /.*DIR.*/))))))

In the query, subcategory conditions employ regular
expressions (using the ~ operator) rather than exact string
matches because occasionally one nonterminal had two
subcategories that we had not bothered parsing into
separate descriptors. The conditions involving $up which
do not relate to its categorization simply restrict matches
to nonterminal syntactic constituents that dominate (^) $n
but are not $n itself. Once we had established the query,
we were able to add markables to the data by running the
AddIndex utility, specifying the query and the tag name
“markable” at the command line. This utility adds new
tags with the given name, one for each match, that point to
whatever matched the first named variable in the query
using a role named “at”.

 1020

Once these markables had been added, it was a simple
matter to find the possessive pronoun cases:

($w word)(exists $n nt)
(exists $m markable)(forall $up nt):
 ($w@pos = 'PRP$') and ($n ^ $w) and
 ($m >'at' $n) and
 (($up != $n) ->
 (not (($n ^ $up) and ($up ^ $w))))

It took discussion among the analysts to determine the
exact constraints to express, in which they were aided by
our ability to create HTML displays of the chosen
markables in context using a simple XSLT stylesheet. A
better option, available now but not at the time, is using
the syntactic display and search menu available for data
analysis (see section 7).

5.2. Constituent length
Our research requires a measure of constituent length

in terms of number of words. This would most reasonably
be represented using a new descriptor on the constituents
themselves, but NXT only comes with command line
utilities for adding new tags that point into a data set, not
for adding attribute values. Building a utility that adds
descriptors of a given name for matches to one query
based simply on the frequency of results to another within
the match would be easy, but anything more generic
would be difficult to provide at the command line. For
this reason, we chose to add constituent length using a
stylesheet. This approach gives us a simple framework
that can be reused, with access to the many and various
calculation methods available in XSLT (arithmetic,
filtering based on tag properties, sorting, counting, and so
on).

6. Hand annotation
Our hand annotation for markables gives their

animacy (based on Garretson, O'Connor, Skarabela, &
Hogan, to appear) and information structure, including
coreferential links (based on a scheme described
elsewhere in this volume, Nissim, Dingare, Carletta, &
Steedman, 2004).

Figure one, given at the end of the paper, shows our
annotation tool for information structure and coreference;
this is the most complex of our coding interfaces. Our
information structure coding requires each markable to be
given one of an enumerated list of status descriptors
(“old”, “mediated”, and “new”, along with buckets of
various kinds) and optionally, a type subcategorization
(“event”, “general”, and so on). In the data display,
markables are shown in parentheses, with the nesting
depth of the markable indicated by colour. Markables for
which no information status coding has been added are
indicated with a small round dot, and the status and type
subcategory for the currently selected markable are
highlighted with larger balls on the menus. Apart from
these indicators, the existing coding is not displayed
because the annotators felt that it hindered their reading of
the text.

Coreference annotation, then, requires the annotator to
link pairs of markables as anaphor and antecedent. In
normal practice, one notices a coreference relation when
one is processing the anaphor. For this reason, when a
link is added, the tool assumes that the currently selected
markable should be the anaphor and, if the user
immediately selects another markable, assigns it to be the
antecedent. When a link is selected, the antecedent is
highlighted in pink, and the anaphor in grey.

Our animacy coding tool is similar in style but only
allows the user to add a simple animacy descriptor (such
as “human”, or “organization”) to each markable, again
from an enumerated list. Because only one coding
decision was needed for each markable, this interface
moves to the next markable automatically

This arrangement of tools and the individual tool
designs arose out of careful discussion between the tool
developers and the end users, with a particular focus on
minimizing mouse clicks. The annotation tools
themselves were well-received. A separate “checking”
mode for each tool displays the entire coding at a glance.
NXT comes with a range of sample applications for
varying interface designs that is growing all the time, and
which should, along with current documentation efforts,
cut development costs further.

7. Data analysis
In NXT, the query language is the key to data analysis.

We cite queries at length in section 5.1 for the reader’s
inspection because in our experience, assuming users
understand how a corpus has been encoded (the tag and
attribute names and how tags relate to each other), they
either understand queries readily or find them very
difficult indeed.

NXT is designed so that when the search facility is
called from an application that has a data display, if one
selects a match or set of matches in the query result tree,
the corresponding sections of the data display will also be
highlighted. Although this facility is currently only
implemented for data displays based on text areas, it is
invaluable for writing and testing queries. We used this
facility to develop, for instance, queries that select for
different complex syntactic constructions, using a data
display of the syntax trees themselves. NXT then
includes command line utilities for counting query
matches. It is also possible to save the query result tree,
which is amenable to normal XML processing or which
can without much difficulty be loaded back into NXT
with the original data set, making it amenable to treatment
by the query language.

Satisfaction with NXT for data analysis depended on
what the individual needed to do with it. In brief, those
who wrote queries that could not have been expressed in
tgrep were happy with the system because they would
have had no other way to perform their analysis short of
programming, whereas other users felt that they would
have been better off using tgrep on the original data
format. Their dissatisfaction arose partly from a lack of
familiarity with the query language, but also from its
relative verboseness and its slowness.

 1021

Consider the query for “any noun phrase that does not
dominate a verb phrase dominating a prepositional
phrase.” This is easily expressed in tgrep as “NP !< (VP
< PP)”. The same query in NXT, using our corpus
representation, would be:

($np nt)(forall $vp nt)(forall $pp nt):
 (($np ^ $vp) && ($vp ^ $pp) && ($vp@cat==VP)
 && ($np@cat==NP)) -> ($pp@cat!=PP)

Although the query length would be halved if we were
to represent np, vp, and pp as separate tags rather than nt
(non-terminal) tags with category descriptions, this is still
less succinct. Verbosity was a particular problem for
queries involving immediate sisterhood and leftmost
daughters, since these operators are not yet supported
directly in the NXT query language.

Tgrep is so succinct because it is designed specifically
for syntax trees. On the other hand, because it is special
purpose, tgrep does not allow the full use of variables and
boolean operators, and therefore cannot execute queries
such as “return a noun phrase that dominates or is
dominated by a verb phrase” in one search, or express
relationships holding between more than two nodes in a
tree, for example, “return a noun phrase which is the
daughter of a verb phrase and is coindexed with the
subject of that verb phrase”. Tgrep also does not offer
any full equivalent to NXT’s existential and forall
statements; consequently, it is not possible to search for “a
verb phrase dominating only noun phrases” (except by
enumerating all of the types not to dominate) or “the first
NP daughter”. These queries can be expressed directly
when using NXT.

Tgrep is fast because queries are limited to individual
sentences. NXT can express queries that require not just
complete dialogues but complete corpora to be considered
as one data set. At present, the NXT implementation does
not analyze queries in order to minimize the data set it
checks over. For this reason, we have found it essential to
limit querying to one dialogue at a time, especially when
using multiple instances of the forall and exists operators,
and still at times to expect to use batch processing and
indexing to save results we wish to re-use.

8. Acknowledgments
This work was carried out under funding from the

European Commission (IST-2000-26095, Natural
Interactivity Tools Engineering) and from Scottish
Enterprise (The Edinburgh-Stanford Link, Paraphrase
analysis for improved generation).

9. References
AGTK: Annotation Graph Toolkit. (n.d.). Retrieved 1

Mar, 2004, from http://agtk.sourceforge.net/.
ATLAS Project. (2000, 6 Feb 2003). Retrieved 1 Mar,

2004, from http://www.nist.gov/speech/atlas/.
Carletta, J., Evert, S., Heid, U., Kilgour, J., Robertson, J.,

& Voormann, H. (2003). The NITE XML
Toolkit: flexible annotation for multi-modal
language data. Behavior Research Methods,
Instruments, and Computers, 35(3), 353-363.

Garretson, G., O'Connor, M. C., Skarabela, B., & Hogan,
M. (to appear). Coding practices used in the
project Optimal Typology of Determiner
Phrases, from Boston University Noun Phrase
Corpus website, http://npcorpus.bu.edu/.

Godfrey, J., Holliman, E., & McDaniel, J. (1992, March).
Switchboard: Telephone speech corpus for
research development. Paper presented at the
International Conference on Acoustics, Speech,
and Signal Processing, San Francisco, CA, USA.

Nissim, M., Dingare, S., Carletta, J., & Steedman, M.
(2004). An Annotation Scheme for Information
Status in Dialogue. Paper presented at the Fourth
Language Resources and Evaluation Conference,
Lisbon, Portugal.

Tiger Project. (n.d., 17 Nov 03). Linguistic Interpretation
of a German Corpus. Retrieved 1 Mar, 2004,
from http://www.ims.uni-stuttgart.de/projekte/
TIGER/.

Figure 1: Screenshot of the information status coding tool.

 1022

