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Abstract
Recent work has aimed at discovering ontological relations from text corpora. Most approaches are based on the assumption that verbs
typically indicate semantic relations between concepts. However, the problem of finding the appropriate generalization level for the
verb’s arguments with respect to a given taxonomy has not received much attention in the ontology learning community. In this paper,
we address the issue of determining the appropriate level of abstraction for binary relations extracted from a corpus with respect to a given
concept hierarchy. For this purpose, we reuse techniques from the subcategorization and selectional restrictions acquisition communities.
The contribution of our work lies in the systematic analysis of three different measures. We conduct our experiments on the Genia corpus
and the Genia ontology and evaluate the different measures by comparing the results of our approach with a gold standard provided by
one of the authors, a biologist.

1. Introduction
A lot of effort has been devoted to discovering ontologi-
cal relations from text corpora in recent years (Mädche and
Staab, 2000; Yamaguchi, 2001; Kavalec and Svátek, 2005;
Ciaramita et al., 2005; Schutz and Buitelaar, 2005). Re-
lations together with ontological restrictions on their argu-
ments are needed for many applications, especially in the
field of natural language processing. Ontological restric-
tions can, for example, be used as a basis to capture the
selectional restrictions and preferences of verbs for disam-
biguation purposes. Relations as well as inference rules de-
fined on their basis have important applications in question
answering (Lin and Pantel, 2001). Further, relations auto-
matically derived from a corpus can assist a domain expert
in ontology engineering.
Most approaches to learning ontological relations from text
are based on the assumption that verbs typically indicate
semantic relations between concepts, e.g. (Kavalec and
Svátek, 2005; Ciaramita et al., 2005; Schutz and Buitelaar,
2005). However, the problem of finding the appropriate
generalization level for the verb’s arguments with respect
to a given taxonomy has not received much attention in the
knowledge acquisition community. In fact, the only works
we are aware of along these lines are the ones in (Faure
and Nedellec, 1998; Mädche and Staab, 2000; Ciaramita et
al., 2005). A very related problem is the acquisition of se-
lectional restrictions (compare (Ribas, 1995; Resnik, 1997;
Clark and Weir, 2002)). In this paper we address the is-
sue of determining the appropriate level of abstraction for
binary relations extracted form a corpus with respect to a
given concept hierarchy. For this purpose, as in (Ciaramita
et al., 2005), we reuse techniques from the subcategoriza-
tion and selectional restrictions acquisition communities.
We conduct our experiments on the Genia corpus and the
Genia ontology1. The contribution of our work lies in the
systematic analysis of three different measures. We evalu-
ate the different measures by comparing the results of our

1http://www-tsujii.is.s.u-tokyo.ac.jp/
˜genia/topics/Corpus/

approach with a gold standard provided by the third author,
a biologist.

2. Approach
In our approach, verb frames are extracted using Steven
Abney’s chunker CASS (Abney, 1996). From CASS’s out-
put, we extract tuples NP-V-NP and NP-V-P-NP. We con-
struct binary relations from these tuples, using the lemma-
tized verb

�
(with the preposition � if applicable) as cor-

responding relation label and the head of the NP phrases as
concepts for the domain and range of the relation. In partic-
ular, we only consider nouns as concepts which also appear
in the Genia ontology. Our aim is then to find the most
general and appropriate concept for the domain and range
of the relation on the basis of the different examples found
in the corpus. For illustration purposes, let us consider the
input sentences marked with (a) and the CASS output in
(b):

(1) a. This bipartite motif consists of an N-terminal
POU-specific domain.
b. consist(subj:bipartite motif, of: N-terminal
POU-specific domain )

(2) a. Infection leads to severe acute disease in macaques.
b. lead(subj:infection, to:disease, in: macaque)

(3) a. Lipoarabinomannan releases IL-6 in a
dose-response manner.
b. release(subj:Lipoarabinomannan, obj:IL-6,
in:dose-response manner)

While the NP-V-NP pattern can be generally mapped to
Subj-V-Obj structures without producing too many errors,
the NP-V-P-NP pattern generates substantial noise due to
PP-attachment ambiguities. Particularly, CASS does not
differentiate between PPs functioning as oblique arguments
of the verb (as in (1) and (2)) and facultative adjuncts (as in
(3)). However, we decided to keep this pattern and assume
that every PP attaches to the preceding verb. For each of
these patterns, we then create binary relations labeled with
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the verb V (and the preposition P if applicable), relying
on the semantic annotations of the Genia corpus to map
the arguments to corresponding concepts for the domain
and range of the relation. Tuples which would be extracted
from the CASS output above are for example:

consist of(motif, domain)
lead to(infection, disease)
release(Lipoarabinomannan, IL-6)
release in(Lipoarabinomannan, dose-response manner)

It is important to emphasize that we rely on the se-
mantic annotation in the Genia corpus to map the verbs’
arguments to concepts in the ontology.

2.1. Generalizing Verb Frames

Having thus collected a number of labeled relations from
the corpus, our aim is to find the most appropriate general-
ization for the concepts within the domain and the range of
each relation on the basis of the different examples found
in the corpus. For this purpose, we experiment with three
different measures:

� the conditional probability of a concept given a verb
slot,

� the pointwise mutual information between a concept
and a verb slot,

� a � �
-based measure.

We briefly describe the three measures in the following sec-
tion and illustrate them on the basis of an example.

2.2. Measures

As an illustrating example, let us consider the object po-
sition of the verb activate. Let us further assume that the
objects appearing in the corpus for activate together with
their frequencies are the following:

protein molecule: 5
protein family or group: 10
amino acid: 10

The above example reflects the empirically observed fre-
quencies of concepts in the respective argument position
before the propagation of frequencies along the taxonomy,
i.e. the hierarchical structure of the Genia ontology is not
taken into account. In order to find the appropriate concept
for a certain slot with respect to the hierarchy, we examine
three measures which are described in the following and
illustrated according to this example.

2.2.1. Conditional Probability
The first method examined calculates for a certain slot � of
a verb � the conditional probability that a concept � appears
in this slot, propagating the frequencies along the concept
hierarchy (see Figure 1), and then chooses the concept max-
imizing this value:

�����
	���
�������
���� ������� �����
If there are several concepts with the same value, we choose
the most specific ones, leaving out the concepts which sub-
sume them. For our example we would get:

substance

compound

organic

amino_acid

protein

protein_moleculeprotein_family_or_group

Figure 1: Part of the Genia ontology

P(protein molecule � activate obj) =  �  = 0.2
P(protein family or group � activate obj) =

�"!
�  = 0.4

P(protein � activate obj) =
�  �  = 0.6

P(amino acid � activate obj) =
�  �  = 1

P(organic � activate obj) 1
P(compound � activate obj) = 1
P(substance � activate obj) = 1

So we would choose amino acid as the appropriate gener-
alization for the object position of activate.

2.2.2. Pointwise Mutual Information
The method based on the mutual information penalizes the
conditional probability value above in case the concept � is
very frequent. The underlying hypothesis is that a concept
occurring very frequently in the context of all verbs is not a
good generalization candidate for a specific verb. The best
concept is determined by the following formula:

� � �#� 
$���%�&
�� � �('*)��+�-,.� � �
� 
$���%�&
�� �0/+1 � � ������� �����

�����2�
Now assuming a probability ��� amino acid �3� 4 �  5.!  ! �687 9�:

for amino acid occurring as the object of activate and
���<;8� 1>=@?�ACB �0�ED �  5F!  ! � 687HGJI

for protein (compare Tables 1
and 2), we would get:

PMI(protein � activate obj) = /+1 � � !JK L!2K � D �
9M7NG

PMI(amino acid � activate obj) = /+1 � � �!2K �PO � G�7 Q�R
According to the PMI-measure, we would thus choose
protein as the most appropriate generalization.

2.2.3. A � �
-based measure

The measure based on the � �
-test substantially differs from

the other measures in the sense that it does not compare
conditional probabilities but contingencies between two
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Table 1: 2-by-2 � �
table for protein as range of activate

range(activate) range( � activate)
protein 15 400� protein 35 2600

Table 2: 2-by-2 � �
table for amino acid as range of activate

range(activate) range( � activate)
amino acid 25 800� amino acid 25 2200

variables. The procedure performs a test whether the two
variables are statistically independent or not. We apply � �

as proposed in (Clark and Weir, 2002), testing the contin-
gencies between � � and the concept � as well as its pos-
sible generalizations � � � , 7H7N7 � �� in an iterative manner. The
assumption is that we can generalize � to � �� as long as � �

reveals � � and � �� to be statistically dependent. A result is
considered significant with regard to a significance level� � 687 6��

if the � �
value within our 2 � 2 � �

-matrix ex-
ceeds the typically assumed critical value of 3.84.
The formula used for the � �

test is:

� � � �
�
	 �

�
� ����������� � �

� ���
where � ��� are the so called observed frequencies as cal-
culated on the basis of the corpus and given in row A and
column � in Tables 1 and 2 and ����� are the expected fre-
quencies calculated under the assumption of independence
between � � and � �� .
For the

9 � 9 case we have (compare (Manning and Schütze,
1999)):

����� ������ ! "� �!�$# �� � � �  "% ����  ! '& �  � %"���  ! '& � �  %"���  � & � �!� %"��� �  �& � �!� %
where ( is the sum of all the frequencies in the table. For
the examples in Table 1 and 2 we thus yield:

� � � �-
 B � ? ��
%� ="A ��
 =@? ��,�;8� 1>=@?�ACB � �
�*)

6�� 6 � G+�-, 9/.$6�6 � I�6�6�,
)
� � �

I8G+� � � 6 � )
6$6�6 � 90.

)
� � G$G�7 .$9

� � � �-
 B � ? ��
%� ="A ��
 =@? ��,P
$� A B 1 
�� A21 � �
�*)

6�� 6 � 90�-, 9�9�6�6 � Q$6�6�, 90� � �
Q$90� � � 6 � )

6$6�6 � 9$9�90� � G
)
7��$:

Thus, in both cases we get a significant result at a level of� � 687 6��
. The generalization from protein to amino acid

is thus a valid one according to the � �
-based measure. The

variations in the predicted concept for the range of activate
show that the measure chosen can indeed have a decisive
impact on the results.

3. Evaluation
In order to evaluate the different measures we propose, we
applied our preprocessing to the Genia corpus (Ohta et al.,
2002). Overall, the corpus contains 18.546 sentences with
509.487 words and 51.170 verbs. We use the semantic an-
notations of the Genia corpus to map the subject and ob-
ject of verb phrases to the Genia ontology. The domain
and range of the extracted relations are then generalized
with respect to the Genia ontology using the measures de-
scribed above. For the evaluation of the different measures,
one of the authors, a biologist, specified the ideal domain
and range for 100 binary relations corresponding to the 100
most frequent patterns extracted with the approach based
on CASS as described above. The average frequency of oc-
currence for the verbs of these 100 patterns is around 17.51,
with a minimum of 3 and a maximum of 148 occurrences.
Of these 100 relations, 15 were regarded as inappropriate
by our evaluator, such that the evaluation is carried out on
the remaining 85 relations.
Our biologist specified a number of concepts from the Ge-
nia ontology as the best generalization for the domain and
range of each relation denoted by the verb. In some cases,
she was also able to specify one single ’best concept’ out of
several possible candidates. In general, however, she spec-
ified a set of concepts generalizing each argument position.
The output of our approach is compared with this gold stan-
dard using the different measures described above in terms
of:

� direct matches for domain and range (DM),

� average distance in terms of number of edges in
the taxonomy between correct and predicted concept
(AD), and

� a symmetric variant of the Learning Accuracy (LA)
defined in (Hahn and Schnattinger, 1998).

The different measures are formalized in Figure 2. There, 3
denotes the set of relations in the output of our system. Fur-
ther, for �5463 we define 1�1 �87 � � � as the domain produced
by our system and 1$1 �890�+�-� as the domain as specified in
the gold standard; �-
 B � ? 7 � � � and �-
 B � ? 9 �+� � are defined
analogously. Please note that these functions all return sets.
The system returns more than one concept in case there is a
tie, and our annotator used more than one concept in most
cases, indicating the most appropriate wherever possible.
The learning accuracy :<; is inspired by the correspond-
ing measure introduced in (Hahn and Schnattinger, 1998).
However, we consider a slightly different formulation of
the learning accuracy as defined in (Mädche and Staab,
2000). The measure of Hahn and our learning accuracy
measure are not totally equivalent. The main difference is
that we measure the distance between nodes in terms of
edges – instead of nodes as in Hahn’s version – and we do
not need any case distinction considering whether the clas-
sification was correct or not. Additionally, in contrast to
Hahn’s learning accuracy, our measure is symmetric. The
learning accuracy between two concepts is defined as:

:<; ��
�,"=�� 	 � > � =@1 ; ,.�2�@?
G

> � =@1 ; ,.�J�A? > ��
�,.�2�A? > �
=-,.�2�B?
G
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where � � / �2����
 , =�� , i.e. � is the least common subsumer
of 
 and = in the taxonomy and > measures the distance
between two nodes as the number of edges between them.
In particular, the distance is defined as following:

> ��
�,"=�� 	 � > ��
 , / �2����
 , =��F�B? > �
=-, / �J�$��
�,"=��.�
where > measures the distance in terms of edges and obvi-
ously > �+
�,.
M� �

6
.

Due to the fact that our system as well as the annotator spec-
ified a set of possible concepts as domain and range of the
relations, we decided to consider three evaluation modes:
i) optimistic, ii) average, and iii) pessimistic. The opti-
mistic version compares that concept our system predicts
for a certain position of a relation with the concept in the
gold standard yielding the best result with respect to the
given evaluation measure. The pessimistic version chooses
the concepts in the output of the system and the gold stan-
dard yielding the worst measures, whereas the average av-
erages the results of the evaluation measures for all com-
binations of concepts in the system’s output and the gold
standard. Table 3 summarizes our results. It shows, for
each measure, the percentage of direct matches, as well as
the optimistic, average and pessimistic variants of the av-
erage distance and learning accuracy. The main conclusion
is that the conditional probability consistently outperforms
all other measures with respect to all evaluation modes.

4. Discussion and Related Work
Our results show that the conditional probability is a rea-
sonable measure to find the correct level of generalization
with respect to a given concept hierarchy for verb-based
relations extracted from a (semantically annotated) corpus.
The conditional probability outperforms the � �

based mea-
sure in terms of direct matches, average distance and learn-
ing accuracy, which in turn outperforms the pointwise mu-
tual similarity measure. An important observation is that in
many cases our human evaluator has chosen abstract con-
cepts, which are in general disfavored by the PMI-measure.
This explains why the PMI measure performs so poorly.
Our approach is similar to the work of Resnik (Resnik,
1997) and Ribas (Ribas, 1995) on acquiring selectional re-
strictions. Both have formulated the problem of finding the
right level with respect to WordNet as the one of finding
the maximum with respect to a given statistical measure.
Resnik examines a measure called association strength,
which takes into account the selectional strength of a verb,
i.e. the Kullback-Leibler divergence between the prior and
posterior distributions of a noun and a verb slot. Ribas ex-
amines a variety of measures and, as in our case, concludes
that the PMI and the � �

measure do not perform as well as
the other measures. McCarthy (McCarthy, 1997) presents
an approach based on the Minimum Description Length
(MDL) principle originally developed by Li and Abe (Li
and Abe, 1998). All the above approaches evaluate their
models on word sense disambiguation tasks and are thus
not directly comparable to the results of our approach. Fur-
ther, our approach relies on the semantic annotations of the
Genia corpus, such that we are not faced with sense ambi-
guity as the above approaches.

Recently, Ciaramita et al. (Ciaramita et al., 2005) have ap-
plied a variant of the model for acquisition of selectional
restrictions of Clark and Weir (Clark and Weir, 2002) to
the Genia corpus. The authors rely on the approach of
(Clark and Weir, 2002) to determine whether using a hy-
pernym instead of the hyponym leads to significantly dif-
ferent probabilities. They compare the probability ; �+� � �-,��>�
with ; �+�M� � � ,���� where � � is a superconcept of � . If ; � � � � � ,P�>�
and ; �+� � �-,��>� do not significantly differ, � � is regarded as an
appropriate generalization. The authors present a twofold
evaluation of their approach. On the one hand, they present
the learned relations to a biologist – actually the same as in
our case – for manual validation, coming to the conclusion
that 83.3% of the learned relations are correct, and further-
more 53.1% of the generalized relations have been general-
ized appropriately. Mädche and Staab (Mädche and Staab,
2000) present an approach relying on an algorithm for min-
ing generalized association rules to find conceptual rela-
tions between words at the appropriate level of abstraction
with respect to a given taxonomy. In their approach, trans-
actions are defined in terms of words occurring together
in certain syntactic dependencies. Generalization of argu-
ment positions is achieved by removing those association
rules subsumed by some other association rule. Mädche
and Staab achieve a best recall and precision of R=13% and
P=11% in terms of direct matches with respect to the gold
standard. The method of Yamaguchi (Yamaguchi, 2001)
essentially implements word space (Schütze, 1993) and as-
sumes that there is a relation between words which are sim-
ilar beyond a certain threshold. Yamaguchi states that out of
90 extracted concept pairs, 53 are ‘advisable’. This result
can be regarded as corresponding to a precision of about
59%. However, Yamaguchi does not address the problem
of finding the right level of abstraction and does not derive
labeled, but ‘anonymous’ relations. Schutz and Buitelaar
(Schutz and Buitelaar, 2005) apply shallow linguistic anal-
ysis to extract concept–verb–concept triples and filter these
on the basis of a � �

-based measure. They evaluate their
approach in terms of recall and precision with respect to
a gold standard, achieving a precision between 9.1% and
11.9%, depending on the evaluation set used. In general,
it is important to emphasize that there is a substantial dif-
ference between a priori and a posteriori evaluations. In
a priori evaluations, the gold standard is constructed inde-
pendently of the results of the system, and the system is
then evaluated with respect to the gold standard in a strict
way. In a posteriori evaluations, the results of a system are
presented to the evaluator, who then classifies the results
of the system. In the first case, the system can be penal-
ized still if its results are reasonable and just because an
answer diverges from the one in the gold standard. A poste-
riori evaluation differs in this respect as the results merely
depend on how inclined the evaluator is to regard the sug-
gestions of the system as correct. The difference between
a priori and a posteriori evaluation is illustrated by Schutz
and Buitelaar, who present their results both in terms of
a priori as well as a posteriori evaluation. With respect to
the a posteriori evaluation, they report an average precision
between 17.7% and 23.9%, yielding approx. 10% higher
results compared to the a priori evaluation. Examples for
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� ' � direct matches for domain ? direct matches for range9 � 3��
; � �

�������
> � 1�1 �87 �+� ��, 1�1 �69
�+�-�.�@? > � �-
 B � ? 7 � � ��,.�-
 B � ? 9 �+�-�.�9 � 3��

:<; �
� ����� :<; � 1�1 �67 �+�-��, 1�1 ��9
� � �F� ? : ; �+�>
 B � ? 7 �+�-��,F�-
 B � ? 9
� � �F�9 � 3��

Figure 2: Evaluation Measures

Table 3: Results for the different measures

DM AD LA
opt. avg. pess. opt. avg. pess.

Conditional 33.53% 1.21 1.76 2.22 70.40% 60.57% 53.24%
PMI 13.53% 3.28 3.76 4.19 48.65% 43.06% 38.62%� � 26.79% 2.63 3.44 4.15 56.71% 46.19% 38.48%

a priori evaluations are the ones of Mädche et al., Schutz
and Buitelaar as well as ours. Examples for a posteriori
evaluations are the ones of Ciaramita et al., Yamaguchi, but
also Schutz and Buitelaar. With respect to the directly com-
parable approach of Mädche and Staab, our approach gets
much higher results in terms of precision or direct matches,
i.e. 33.53% compared to 11%. The best a priori preci-
sion of Schutz and Buitelaar (11.9%) is comparable to the
one obtained by Mädche et al. However, the focus of the
latter approach was not on learning the right level of gener-
alization. Finally, we would also like to draw the attention
to the ASIUM system (Faure and Nedellec, 1998) which
addresses the question from a clustering perspective, cap-
turing and generalizing selectional restrictions with respect
to hierarchically organized word clusters.

5. Conclusion and Further Work
The contribution of our paper is a systematic analysis of dif-
ferent probabilistic and statistical measures for the purpose
of finding the appropriate generalization level for ontologi-
cal relations extracted from a corpus with respect to a given
taxonomy. Our conclusion is that the conditional probabil-
ity performs better than other measures such as PMI or a
� �

-test. We have so far conducted experiments on the Ge-
nia corpus and ontology. In general, we have also observed
that it seems quite difficult to find the appropriate general-
ization due to the fact that the Genia ontology is very small
and lacks a reasonable hierarchical structure. Therefore, it
remains an open question if our results would transfer to on-
tologies with a richer structure. The main drawback of our
approach is that it is currently restricted to binary relations.
Furthermore, the domain and range of a relation can actu-
ally not be regarded as independent from each other. How-
ever, according to our current observations, an approach to
generalizing domain and range dependently could be seri-
ously affected by data sparseness in the Genia corpus. Con-
cerning the approximation of the conditional probabilities,
some more elaborate linguistic analysis or even smooth-
ing techniques should be explored. Finally, other structures

than verb frames could be considered for deriving relations.
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