
Rule-Based Chunking and Reusability

Claire Grover and Richard Tobin

School of Informatics
University of Edinburgh

{C.Grover, R.Tobin}@ed.ac.uk

Abstract

In this paper we discuss a rule-based approach to chunking implemented using the LT-XML2 and LT-TTT2 tools. We describe the tools
and the pipeline and grammars that have been developed for the task of chunking. We show that our rule-based approach is easy to adapt
to different chunking styles and that the mark-up of further linguistic information such as nominal and verbal heads can be added to the
rules at little extra cost. We evaluate our chunker against the CoNLL 2000 data and discuss discrepancies between our output and the
CoNLL mark-up as well as discrepancies within the CoNLL data itself. We contrast our results with the higher scores obtained using
machine learning and argue that the portability and flexibility of our approach still make it a more practical solution.

1. Introduction
Chunking is frequently assumed to be a mature technology
with machine learning systems, especially statistical ones,
considered to provide adequate results. However, there re-
main reusability issues when porting to new domains, port-
ing to new definitions of the chunking task or reconfiguring
interactions between processing steps. In this paper we de-
scribe a rule-based approach founded on XML tools and
argue that it provides a degree of flexibility with respect to
reusability that makes it preferable to machine learning ap-
proaches. In Section 2 we introduce the chunking task. In
Sections 3 and 4 we describe our XML text processing tools
and our use of them in implementing a chunker. We present
evaluation results in Section 5 and discuss the implications
of our findings in Section 6.

2. Chunking
Chunking is a kind of shallow syntactic analysis where cer-
tain sequences of words in a sentence are identified as form-
ing phrases of various types, such as noun phrases, verb
phrases, adjective phrases etc. (Abney, 1991; Ramshaw and
Marcus, 1995; Tjong Kim Sang and Buchholz, 2000). Typ-
ically, the structures are flat and non-recursive and not all
words in a sentence need belong to a phrase. The phrases
are truncated versions of typical phrase-structure grammar
phrases where no post-head material, whether argument or
adjunct, is included. Since the phrases do not correspond to
the traditional phrase-structure phrases, they are sometimes
referred to as ‘groups’ and we will follow this convention
here. To illustrate, the following sentence has been divided
into noun, verb, prepositional and adjective groups. Punc-
tuation and the initial “But” are not included in a group.

But NG[the rapid spread]PG[of] NG[avian flu]
V G[may seem]AG[unlikely] .

In more complex examples there are many decisions to be
made about where the boundaries of a group should lie
and, as a consequence, there are many different ‘styles’ of
chunking. We raise issues relating to chunking styles when
we discuss evaluation in Section 5.

Chunking is a useful level of analysis for a number of tasks.
It is closely related to the task of Named Entity Recognition
(NER) and can contribute to improving the performance of
NER taggers (Zhou and Su, 2002). With additional access
to information about the heads of groups it can be used as a
computationally inexpensive way of getting to a shallow se-
mantic representation (Abney, 1996; McNeill et al., 2006).
Chunking systems may be rule-based (Abney, 1996; Finch
and Mikheev, 1997) or based on machine learning. Ma-
chine learning chunkers may be symbolic (Déjean, 2000;
Johansson, 2000; Vilain and Day, 2000) or statistical (the
majority of recent systems).

3. XML Tools for NLP
Over the past few years we have developed a suite of tools
for generic XML manipulation (LT-XML, Thompson et al.,
1997) as well as NLP specific XML tools (LT-TTT, Grover
et al., 2000; LT-CHUNK, Finch and Mikheev, 1997). More
recently we have been developing significantly improved
upgrades of these tools, LT-XML2 and LT-TTT21.
The LT-XML2 distribution contains a number of very
generic XML tools which are extremely useful connect-
ing programs in pipelines of NLP-oriented processors. The
programs are written in C and are generally very fast. In
particular, they do not have the start-up costs of many
Java programs and are therefore suitable for use in NLP
pipelines that stream data through many such programs.
A common feature of the programs is the use of standard
XML technologies such as XPath. The LT-XML2 tools in-
clude lxgrep, an XML grep program;lxsort, which sorts
elements in an XML file;lxaddids, which adds XML ID
attributes to chosen elements;lxt, a fast XSLT 1.0 imple-
mentation andlxreplace, which performs small XML trans-
formations such as the replacement of an attribute name or
removal of chosen XML element tags.
The LT-TTT2 tools are a significant reimplementation of
the previous toolset, with the old core programfsgmatch
replaced by a new program,lxtransduce. As before, this

1Soon to be available under GPL fromhttp://www.ltg.
ed.ac.uk/

873

<s>
<ng>

<w p=’JJ’ >Australian</w > <w headn=’yes’ p=’NNS’ >scientists</w >
</ng >
<vg tense=’pres’ voice=’act’ asp=’perf’ modal=’no’ >

<w p=’VBP’ >have</w ><w p=’VBN’ headv=’yes’ >discovered</w >
</vg >
<w p=’WRB’ >why</w >
<ng>

<w p=’JJ’ >ancient</w > <w headn=’yes’ p=’NNS’ >plesiosaurs</w >
</ng >
<vg tense=’past’ voice=’act’ asp=’simple’ modal=’no’ >

<w p=’VBD’ headv=’yes’ >lived</w >
</vg >
<w p=’IN’ >for</w > <w p=’RB’ >so</w > <w p=’JJ’ >long</w ><w p=’.’ >.</w >

</s >

Figure 1: Example of Chunking Pipeline Output

performs rule-based transductions of XML structures us-
ing hand-written grammar rules but this implementation
is more efficient, uses XPath queries and has a gram-
mar rule syntax which is more transparent. The previous
part-of-speech (POS) tagger,ltpos, has been replaced by
a more generic mechanism to integrate off-the-shelf non-
XML POS taggers which use CoNLL column format for
training and runtime, e.g. the C&C POS tagger, (Curran and
Clark, 2003). This has the advantage of allowing the tagger
to be retrained on new data or allowing a choice of taggers.
The LT-TTT2 tools will be distributed with pipelines and
associatedlxtransducerule files for tokenisation, sentence
splitting, POS-tagging, noun and verb group chunking and
MUC-style NUMEX and TIMEX named entity recognition
(Chinchor, 1998). The release replaces the previous distri-
butions of LT-TTT, LT-CHUNK and LT-POS.

4. Rule-based Chunking
Our current chunking pipeline recognises noun groups
and verb groups, but not prepositional, adjective or other
groups. (The addition of other types of group is a planned
extension.) By default the pipeline uses our tools to per-
form tokenisation, sentence splitting and POS tagging prior
to chunking but it can also be used just for chunking if the
input has already been processed appropriately and can be
mapped to the XML input format that the chunking rules
expect. (We performed such a mapping when evaluating on
the CoNLL data, see Section 5.) The chunking rule files
are targeted at sentence elements via an XPath query and
are applied in two stages, first the verb group rules and then
the noun group rules. Figure 1 shows example output from
the chunking pipeline.
Note that in addition to noun and verb group identification,
other features have been computed, namely identification
of head nouns and verbs as well as a number of features
on verb groups to capture information about tense, aspect,
voice and modality. The addition of these features was
achieved with very little extra overhead—the rules which
identify word sequences as noun and verb groups also spec-
ify the annotations to be added to them and a linguist defin-
ing the rules can easily specify the extra features. To il-

lustrate, Figure 2 shows the rule,simplepastpass, which is
responsible for recognising past tense passive verb groups
such as “was sent”. Thewrap attribute on a rule is an
instruction for the results of the match to be wrapped in
a new XML element, in this casevg , and theattrs at-
tribute next to it determines what attributes thevg element
will have. Theseq element indicates that a sequence of
elements must be matched, each of which is described by
a reference (ref) to another rule. The required parts of
the sequence are a past tense form of the verb “be” and
a passive participle. Optional parts are achieved through
a Kleene star mechanism (mult=’*’) on the call to a
rule for adverbials between the auxiliary and the partici-
ple (“was probably sent”) and a similar call to a rule for
adverbs or particles after the participle (“was sent away”).
The passive participle is marked as the head of the verb
group by means of theattrs attribute on the call to the
headverb-passrule, which is also shown in Figure 2. This
rule contains a disjunction (first) of match queries de-

<rule name="simplepastpass" wrap="vg"
attrs="tense=’past’ voice=’pass’
asp=’simple’ modal=’no’" >

<seq >
<ref name="be-past"/ >
<ref name="adv" mult="*"/ >
<ref name="headverb-pass"

attrs="headv=’yes’"/ >
<ref name="advorpart" mult="*"/ >

</seq >
</rule >

<rule name="headverb-pass" >
<first >
<query match="w[@p=’VBN’]"/ >
<query match="w[@p=’VBD’]"/ >

</first >
</rule >

Figure 2: ExamplelxtransduceRules

874

scribing word elements (w) and their POS tag attributes (p).
The POS tag must beVBNor VBD(passive participle or past
participle—both must be considered because POS taggers
do not reliably make the distinction).

5. Evaluation
To evaluate our chunker’s performance we have been work-
ing with the data provided for the CoNLL 2000 shared task
(Tjong Kim Sang and Buchholz, 2000). This data was auto-
matically derived from the Penn Treebank II corpus (Mar-
cus et al., 1993) by flattening the syntactic trees into a se-
quence of chunks interspersed with non-chunk words. Here
we disregard mark-up for chunks other than noun and verb
groups. Our chunking rules were developed to reproduce
the behaviour of our earlier system, LT-CHUNK, and there
are differences in style between this and the CoNLL data.
The two that have the biggest impact on evaluation are:

• Control verb groups and their complements are one
group in the CoNLL data but separate groups for
LT-CHUNK, e.g. CoNLL:<vg>want to go</vg >
vs. LT-CHUNK: <vg>want</vg > <vg>to
go</vg >;

• Possessive noun groups are treated differently, e.g.
CoNLL: <ng>Tom</ng ><ng>’s book</ng >
vs. LT-CHUNK: <ng>Tom’s book</ng >.

5.1. Initial System

In order to achieve a realistic score against the test data,
we made minor modifications to the chunker to produce
CoNLL-style mark-up for the two cases above. Evaluation
on the noun and verb groups yields the results shown in Ta-
ble 1. Our overall F-score of 89.18% compares favourably
with some of the systems which took part in the CoNLL
2000 shared task (Vilain and Day (2000): 85.76%, Jo-
hansson (2000): 87.23%) but falls short of the best score
achieved (Kudoh and Matsumoto (2000): 93.48%).

Precision Recall F-score

Noun Group 89.21% 88.57% 88.89%
Verb Group 88.10% 91.86% 89.94%
Total 88.89% 89.47% 89.18%

Table 1: Evaluation of initial chunker tested on CoNLL
2000 test set.

Error analysis on the training data has revealed a number
of classes of mismatch between our output and the gold
standard. These are cases where there are errors either in
the CoNLL data or in our output, as well as cases of genuine
disagreement. Below we give illustrative examples falling
into three groups.
The first group of mismatches can be attributed to errors
and inconsistencies in the CoNLL data:

1(a) Errors arising from POS mis-tagging: e.g. “sound”
mistagged as a noun in “any further drop in the gov-
ernment’s popularity could swiftly make this promise
sound hollow”.

1(b) Inconsistency in the CoNLL markup of adverbs: ad-
verbs are normally only included in verb groups if
they occur between two verbs in the group, however
verb group-initial adverbs are included consistently af-
ter conjunctions and inconsistently elsewhere.

1(c) Occasional violations of the CoNLL possessive style
described above where the possessive marker
is included with the ‘possessor’ noun group
rather than the ‘possessed’: e.g.<ng>next year
’s</ng ><ng>first half</ng >.

1(d) Mistakes in attachment of prenominal adjective
phrases. There are also several instances, such as the
following, where the error is compounded by forcing
a violation of the CoNLL possessive style:
<ng>The merged agency ’s</ng > admittedly am-
bitious<ng>goal</ng >.

1(e) Inconsistent treatment of coordination: e.g. “Singa-
pore, Sydney, Taipei, Wellington, Hong Kong and
Manila” is marked up as six individual noun groups
whereas “Frankfurt, Zurich, Paris and Amsterdam” is
treated as one noun group.

The second group of mismatches are the result of errors or
omissions in our chunker’s rules, or of wrong resolution of
ambiguity:

2(a) Our rules do not cover lone possessive markers and
fail to recognise them as part of the preceding noun
group in the way the CoNLL data does:
<ng>an agent of Mr. Jackson ’s</ng >
<ng>Moody ’s</ng > said ...”

2(b) Certain verbs or verb+preposition multi-word expres-
sions are treated as prepositions in the CoNLL data
but are recognised as verb groups in our output: e.g.
“combined with”, “given”, “including”.

2(c) Present participle verbs forms (ending “-ing”) are
highly ambiguous between verb, adjective and noun
analyses and our output contains some misanalyses.
For example we wrongly classify “weakening” as a
verb group in “weakening rail-traffic levels”, though
a similar analysis of “reflecting” in “reflecting higher
costs” is the correct one.

The third group of mismatches are cases where neither
analysis is ‘wrong’ but where we prefer a different mark-
up to that found in the CoNLL data.

3(a) The word “not” is not included in single word verb
groups in the CoNLL data but is included in our output
(“is not”).

3(b) Auxiliaries and modals preceding the subject in in-
verted structures are not marked as verb groups in the
CoNLL data but are marked in our output: e.g. “could”
in “How could I be so stupid?”.

In response to the error analysis, there are a number of
steps which could be taken to improve our score against

875

• ... in <ng><TIMEX type=’date’ >February 1974</TIMEX ></ng >, it was priced at
<ng><NUMEX type=’money’ >$10<NUMEX></ng > a share ...

• <ng>an<TIMEX type=’date’ >Oct. 19</TIMEX > letter</ng >

• <ng>a further<NUMEX type=’percent’ >25%</NUMEX></ng >

• <ng>a<NUMEX type=’money’ >$ 300 million</NUMEX> sale</ng >

• <ng>the<TIMEX type=’date’ >1987</TIMEX > market crash</ng >

Figure 3: Noun Groups Containing NUMEX and TIMEX Entities

the CoNLL data. For the examples in (3), we could aban-
don our analysis in favour of the CoNLL style of mark-
up. We have decided against doing this just to improve
our score since we prefer the more linguistically motivated
mark-up encoded in our rules. (We would of course be
able to make appropriate changes if it became clear that the
CoNLL mark-up was preferable.) For our errors in (2) we
can and will continue to revise our rules and hope gradually
to improve our performance. The ideal solution to the er-
rors in the CoNLL data in (1) would be a manual correction
of the data but resources for this are not available and there
is little we can do except note that it is frustrating to have
correct analyses scored as incorrect because of errors in the
gold standard.

5.2. POS Tag Errors

Manual correction of the errors in the CoNLL data is not
an option but we can address the issue of POS tag errors
as in (1a) in an automatic way. The CoNLL data does not
contain the original POS tags from the Penn Treebank. In-
stead the organisers decided to retag it with the Brill tagger
(Brill, 1994) “in order to make sure that the performance
rates obtained for this data are realistic estimates for data
for which no treebank POS tags are available” (Tjong Kim
Sang and Buchholz, 2000). Machine learning systems have
an advantage over rule-based ones in that they can overrule
a POS tagging decision wherever other features strongly
suggest that they should. By contrast, rule-based systems
are reliant on good POS tagging and will perform poorly on
badly tagged data. (Similarly, a machine learning chunker
trained on perfectly tagged data might also perform poorly
on a badly tagged test set.) To address the problem of tag-
ging errors, we retagged the CoNLL data using the C&C
POS tagger (Curran and Clark, 2003), using a model trained
on the Penn Treebank. The results of testing our chunker on
the retagged data are shown in Table 2 and they show nearly
a 1% increase in performance. Investing effort into improv-
ing POS tagger performance therefore seems likely to yield
further benefits.

Precision Recall F-score

Noun Group 90.04% 89.18% 89.61%
Verb Group 90.16% 92.42% 91.28%
Total 90.07% 90.06% 90.07%

Table 2: Evaluation of initial chunker tested onretagged
CoNLL 2000 test set.

At this point it is worth noting that although our rules
are dependent on accurate POS tagging they have been
designed to address certain systematic tagging errors that
all POS taggers are prone to. For example, when verbal
forms occur as adjectives or nouns they are sometimes still
tagged as verbs (e.g. “hearing” in “a congressional hear-
ing”; “marked” in “a very marked improvement”). Con-
versely, “-ing” forms are sometimes incorrectly tagged as
nouns when they are actually verbs (“bickering” in “It’s
time to stop bickering”; “unwinding” in “traders who were
unwinding positions”). Our rules attempt to rectify these
kinds of mistakes wherever the context makes it clear that
they are errors, though there are some cases where the con-
text is insufficient. In predicative contexts the difference
between adjective and verb is not always clearcut and either
analysis would be acceptable, e.g. “divided” in “delegates
were evenly divided” which is tagged as a verb and treated
as part of an adjective group in the CoNLL data but which
we mark up as part of a verb group.

5.3. Extended System

Error analysis on the training set revealed a class of errors
which we have not discussed up until this point, namely, er-
rors in noun groups relating to dates and numerical expres-
sions. Since the CoNLL data is typical newspaper text, it
contains large numbers of dates, times, percentages, sums
of money etc. These expressions are typically treated as
named entities, for example in MUC (Chinchor, 1998) they
are treated as NUMEX and TIMEX entities. Many NU-
MEX and TIMEX entities are complete noun groups (as in
the first example in Figure 3), however in many cases they
are sub-parts of noun groups (e.g. the remainder of the ex-
amples in Figure 3).
While the existing noun group rules deal successfully with
the majority of these cases, there are instances where the
rules are insufficient. It would be possible to alter and
extend the existing rules to deal with these cases but this
would be a duplication of effort because we have already
developed grammars for numbers and the MUC NUMEX
and TIMEX entities (rule files that were part of LT-TTT
ported to the new formalism of LT-TTT2). So instead we
chose to add initial steps to our chunking pipeline to per-
form NUMEX and TIMEX named entity recognition be-
fore applying the verb and noun group rules. We then made
small adjustments to the noun group rules so that they could
match previously identified NUMEX and TIMEX entities,
either on their own or as part of a larger sequence. The eval-

876

uation results for the extended system are shown in Table 3.
Table 4 shows results for the combination of the extended
system with retagging to address POS tag errors.

Precision Recall F-score

Noun Group 89.51% 88.90% 89.20%
Verb Group 88.14% 91.93% 90.00%
Total 89.12% 89.72% 89.42%

Table 3: Evaluation of extended chunker tested on CoNLL
2000 test set.

Precision Recall F-score

Noun Group 90.39% 89.55% 89.97%
Verb Group 90.18% 92.49% 91.32%
Total 90.34% 90.35% 90.34%

Table 4: Evaluation of extended chunker tested onretagged
CoNLL 2000 test set.

As the tables show, the raw results seem to indicate that
there is not a great deal of difference between the initial
and the extended systems. Despite this apparent lack of
progress, we prefer the output of the extended system for
two reasons. First, although we discarded the NUMEX
and TIMEX mark-up in order to evaluate against the test
set, the XML output of our pipeline contains this mark-
up nested inside the noun group mark-up and our extended
system output is therefore more informative than it was be-
fore. A second reason to prefer the extended system is that
there is more of an improvement in accuracy than the raw
scores suggest: the addition of NUMEX and TIMEX leads
to a further divergence in chunking style between our out-
put and the CoNLL data, which is penalised in the scor-
ing mechanism. To illustrate, the MUC TIMEX rules treat
date-of-date sequences as one TIMEX while the CoNLL
chunk data treats these as two noun groups, Furthermore,
the CoNLL data does not include words such as “ago” and
“earlier” at the end of date noun groups while in MUC they
are part of the TIMEX:

MUC:
<TIMEX type=’date’> the second quarter of
1988</TIMEX>
<TIMEX type=’date’> four years ago</TIMEX>

CoNLL:
<ng> the second quarter</ng> of <ng>1988</ng>
<ng> four years</ng> ago

In both these cases we are happy to treat the TIMEX entities
as noun groups and do not wish to adjust our rules to the
CoNLL style simply to make a gain in our score.

6. Reusability
In the previous section we gave a detailed analysis of the
performance of our chunker against the CoNLL test set.
The aim of providing this amount of detail was to show
that this method of evaluation is not as straightforward or
clearcut as it may initially seem. We discussed the fact that
the CoNLL test set contains a large number of errors and

inconsistencies and that this can lead to our chunker being
penalised when it is, in fact, correct. The large number of
POS tag errors has a detrimental effect on our score, and
we addressed this in part by retagging the data with a more
accurate tagger (see Tables 2 and 4).
In general our concern is to produce a chunker which is
reusable in the sense that it should not be time-consuming
or difficult to configure it to new domains and applications.
At the same time, we need to show that our chunker’s per-
formance in terms of accuracy is competitive with other
state-of-the-art chunkers, and we have attempted to do this
by evaluating on the CoNLL 2000 test set. This has raised
issues about what it means to score a system against one
particular data set and what it tells us about the relative
virtues of one system compared to another. We have drawn
a distinction between rule-based systems, such as ours, on
the one hand, and machine learning systems on the other2.
A survey of the test results for the CoNLL 2000 compe-
tition indicates that machine learning systems can signifi-
cantly outperform our chunker. However, this is really only
true where the training material and the test material are
of exactly the same type and quality. If a machine learn-
ing system trained on the CoNLL training material was
tested on a test set with a different style of mark-up its
score would be reduced. A choice between rule-based and
machine learning systems will therefore ultimately depend
on the availability of appropriately annotated data: if there
is sufficient high-quality POS-tagged and chunk-annotated
data then it will be quicker to train a machine learning sys-
tem than to develop hand-written rules from scratch. How-
ever, the cost of preparing such ideal training data should
be factored into the equation. If only inconsistently and in-
accurately annotated data is available, a machine learning
system will learn to model the inconsistencies and inaccu-
racies and will achieve high scores on test material that has
the same properties as the training material. However the
mark-up it assigns on unseen data will only be as good as
the mark-up in its training data.
Portability and reusability are important issues which have
bearing on the question of machine learning versus rule-
based systems. It is not currently clear how much the
chunking task differs across domains: for example, will a
chunker developed for newspaper text work adequately for
biomedical text? It seems possible that the two domains do
differ at least in the distribution of subtypes of chunk. In-
formally one can observe a high degree of complex nominal
structures in biomedical text (e.g. “rotenone-blocked sub-
mitochondrial particles”) while in newspaper text one can
observe more phrases containing temporal expressions (e.g.
“this week’s trade figures”). Our treatment of the CoNLL
newspaper text includes the insertion of a layer of NUMEX
and TIMEX recognition before chunking; when moving to

2The distinction is not as clearcut as we may seem to im-
ply: many hybrid systems combine machine learning with rules
and symbolic machine learning techniques such as Brill-style
transformation-based learning produce transparent rules which
can be adjusted by hand. One of the CoNLL 2000 entrants
(Déjean, 2000) created a system for learning rules which were
then translated for parsing into our LT-TTT rule format: these too
would be editable by a human rule writer.

877

biomedical text we can probably discard this layer (and re-
duce processing costs) since it is likely to be extraneous. If
it becomes clear that a chunker developed for one domain is
performing badly on another domain then the remedy will
depend on the type of chunker: a machine learning chunker
will need costly annotated training material while a rule-
based system will need relatively minor modifications. In
a similar vein, if a particular application requires a particu-
lar style of chunking (e.g. long verb groups vs. short ones
as described above) then a machine learning system needs
to be retrained on corrected data while a rule-based system
requires a very minor alteration.
A further issue concerns embedded mark-up. Recently,
since Ramshaw and Marcus (1995), chunking has predom-
inantly been treated as a tagging problem but this does not
allow for recursive structures. In our rule-based approach
we are able to nest chunks quite straightforwardly and, in-
deed, our method of switching between chunking styles
for possessives and long verb groups involves first build-
ing a nested structure and then deleting either the inner or
outer chunk mark-up depending on the style we are produc-
ing. For example, we bracket a long verb group like this:
((may not have decided) (to leave))and for CoNLL-style
output we delete the inner mark-up while for LT-CHUNK-
style output we delete the outer. If a particular application
calls for it, we can modify our rules to produce more nested
mark-up thereby bringing our chunker closer to a partial
parser such as Abney’s CASS (Abney, 1996).
In the previous section we showed how applying NU-
MEX and TIMEX recognition before chunking is useful
for newspaper text and we gave examples that indicated
that this had resulted in a useful style of chunking for noun
groups containing dates and numerical expressions. There
is an issue about the order in which components such as
chunkers and named entity recognisers should apply. It is
generally assumed that chunking is a stage to be performed
before named entity recognition, and this may well be the
case for person, organisation and location names. How-
ever, our experience has shown the benefits of performing
at least some named entity recognition before chunking and
our use of the LT-XML2 and LT-TTT2 tools has provided
a practical means of exploring the interplay between levels
of analysis.

7. Acknowledgements
This work was supported in part by a Scottish Enterprise
Edinburgh-Stanford Link Grant (R37588), as part of the
EASIE project. We would like to thank Ewan Klein for
comments on the chunker output and on drafts of this paper.
This work has built on the efforts of all those involved in the
development of earlier versions of our software, LT-XML,
LT-TTT and LT-CHUNK, in particular Andrei Mikheev.

8. References
Steven Abney. 1991. Parsing by chunks. In Robert

Berwick, Steven Abney, and Carol Tenny, editors,
Principle-Based Parsing. Kluwer Academic Publishers.

Steven Abney. 1996. Partial parsing via finite-state
cascades.Journal of Natural Language Engineering,
2(4):337–344.

Eric Brill. 1994. Some advances in rule-based part-of-
speech tagging. InProceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94).

Nancy A. Chinchor. 1998.Proceedings of the Seventh
Message Understanding Conference (MUC-7). Fairfax,
Virginia.

James R. Curran and Stephen Clark. 2003. Investigat-
ing GIS and smoothing for maximum entropy taggers.
In Proceedings of the 11th Meeting of the European
Chapter of the Association for Computational Linguis-
tics (EACL-03), pages 91–98. Budapest, Hungary.

Hervé Déjean. 2000. Learning syntactic structures with
XML. In Proceedings of the Conference on Natural Lan-
guage Learning (CoNLL-2000).

Steve Finch and Andrei Mikheev. 1997. A workbench
for finding structure in texts. In Walter Daelemans and
Miles Osborne, editors,Proceedings of the Fifth Confer-
ence on Applied Natural Language Processing (ANLP-
97). Washington D.C.

Claire Grover, Colin Matheson, Andrei Mikheev, and Marc
Moens. 2000. LT TTT—a flexible tokenisation tool. In
LREC 2000—Proceedings of the 2nd International Con-
ference on Language Resources and Evaluation, pages
1147–1154.

Christer Johansson. 2000. A context sensitive maximum
likelihood approach to chunking. InProceedings of the
Conference on Natural Language Learning (CoNLL-
2000).

Taku Kudoh and Yuji Matsumoto. 2000. Use of support
vector learning for chunk identification. InProceed-
ings of the Conference on Natural Language Learning
(CoNLL-2000).

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank.Computational Linguis-
tics, 19(2).

Fiona McNeill, Harry Halpin, Ewan Klein, and Alan
Bundy. 2006. Merging stories with shallow semantics.
In Proceedings of KRAQ’06 (Knowledge and Reasoning
for Language Processing) Workshop at EACL 2006.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text
chunking using transformation-based learning. InPro-
ceedings of the Third ACL Workshop on Very Large Cor-
pora. Cambridge MA, USA.

Henry Thompson, Richard Tobin, David McKelvie, and
Chris Brew. 1997. LT XML. software API and toolkit
for XML processing. http://www.ltg.ed.ac.
uk/software/ .

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. In-
troduction to the CoNLL-2000 shared task: Chunking.
In Proceedings of the Conference on Natural Language
Learning (CoNLL-2000). Lisbon, Portugal.

Marc Vilain and David Day. 2000. Phrase parsing with
rule sequence processors: an application to the shared
CoNLL task. InProceedings of the Conference on Nat-
ural Language Learning (CoNLL-2000).

Guodong Zhou and Jian Su. 2002. Named entity recogni-
tion using an HMM-based chunk tagger. InProceedings
of ACL’02, pages 473–480.

878

