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Abstract
In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for
ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples,
each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a
balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition
of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus
of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.

1. Introduction
There is a substantial and growing body of research on On-
tology Learning (OL) in large part due to the importance of
ontologies in application areas such as the Semantic Web,
Agents and Knowledge Management. One of the main
challenge lies in learning ontologies from texts, because,
although there are other approaches (e.g. Sabou (2004)),
they have more much more limited application and do not
fundamentally overcome the ‘knowledge acquisition bot-
tleneck’ which has plagued AI since its inception. It is this
bottleneck which makes ontology learning a foundational
challenge.
In this paper we present a novel approach to ontology learn-
ing which depends for its success on the correct degree of
abstraction over the learning process. Our approach has
been inspired by a number of different stimuli. One has
been the Quinean view of knowledge which sees knowl-
edge as a force field in a state of dynamic tension. Quine
believed human knowledge “impinges on experience only
along the edges”. Statements in the field of knowledge
that came into conflict with experience would result in a
re-evaluation or re-adjustment of the statements or logical
laws we have constructed. He considers that no particu-
lar experience is linked to particular statements of belief
except indirectly “through considerations of equilibrium”
affecting the whole field of knowledge or science. Thus
statements can be held true “in the face of recalcitrant ex-
perience by pleading hallucination” (Quine, 1951). This
notion of equilibrium and the cumulative effect of experi-
ence, or in our case textual events, is fundamental to our
approach. Each encounter in a text, where one term is jux-
taposed with another, is to be treated as evidence for an
ontological relationship. However, it only the cumulative
accretion of sufficient evidence from sources in which the
system can have confidence which can be interpreted as on-
tological facts i.e. knowledge. Thus in this kind of ap-
proach there are no absolutes, only degrees of confidence
in the knowledge acquired so far.
Another significant impetus has been previous research
which has led to a much more subtle understanding of the
relationship between a text or collection of texts and the
knowledge that they ‘contain.’ Existing approaches to On-
tology Learning from text tend to limit the scope of their re-

search to methods by which a domain ontology can be built
from a corpus of texts. The underlying assumption in most
such approaches is that the corpus input to OL is,a priori,
both representative of the domain in question and sufficient
to build the ontology. For example, (Wu and Hsu, 2002)
writes, regarding their system: ”the main restriction [...] is
that the quality of the corpus must be very high, namely,
the sentences must be accurate and abundant enough to in-
clude most of the important relationships to be extracted”.
In our view, requiring an exhaustive manual selection of
the input texts defeats the very purpose of automating the
ontology building process. Furthermore, previous research
(Brewster et al., 2003) has shown a discrepancy between
the number of ontological concepts and the number of ex-
plicit ontological relations (relating those concepts) that can
be identified in any domain-specific corpora. This ‘knowl-
edge gap’ problem essentially occurs due to the nature of
the texts – they lack so-called ‘background knowledge’, i.e.
definitional statements which are explicit enough to allow
the automatic extraction of the relevant ontological knowl-
edge. A text is an act of knowledge maintenance not knowl-
edge creation in that its intent is based on the assumption
the reader will share a considerable amount of of ‘com-
mon knowledge’ in order to be able to process the text at
all. Thus a given text will only modify or ‘maintain’ the
knowledge assumed by that text. It is exactly the assumed
knowledge which OL wishes to capture, and thus only by
having a fuller understanding of the nature of texts that an
appropriate methodology can be constructed for finding the
knowledge available.

In the context of the Abraxas project, we have developed an
approach to OL in which three language resources, namely
ontology, corpus and lexico-syntatic patterns, are treated
equally as incomplete resources to be augmented and re-
fined by the OL process. The process consists of an inter-
play between three unsupervised classification tasks work-
ing over the resources in an iterative fashion. In this paper,
we give a general overview of the Abraxas approach and
then focus on its corpus augmentation facet, which tackles
the aforementioned knowledge gap problem. In Section 2,
we present an overview of the Abraxas approach, in Sec-
tion 3 we present the idea of a knowledge gap between the
ontology and the corpus and in Section 4, we provide an
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overview of the algorithm. A review of the relevant litera-
ture is followed by a conclusion.

2. The Abraxas Approach
The Abraxas approach is founded on viewing ontology
learning as a process involving three resources: the corpus
of texts, the set of learning patterns, and the ontology (con-
ceived as a set of triples). Each may be seen in an abstract
sense as a set of entities with specific structural relations.
The corpus is composed of texts which may (or may not)
have a structure or set of characteristics reflecting the re-
lationship between them e.g. they may all come from one
organisation, or one subject domain. The learning patterns
are conceived as a set of lexico-syntactic patterns or more
abstractly as a set of functions between certain textual phe-
nomena and an ontological relationship of greater or lesser
specificity. The ontology is also a set of knowledge triples
(term - relation - term, or rather domain - predicate - range)
whose structure may grow more and more complex as more
items of knowledge are collected.
The goal in Abraxas is to create or extend existing lan-
guage resources in terms of one another, with optional and
minimal supervision by the user. The methodology allows,
for instance, creating an ontology given an input corpus,
extending a corpus given an input ontology or deriving a
set of lexico-syntatic patterns given an input ontology and
an input corpus. The initial input to the process, whether
ontology, corpus, patterns or combinations thereof, serves
both as a specification of the domain of interest and as seed
data for a bootstrapping cycle where, at each iteration, a
decision is made on which new candidate concept, relation,
pattern or document to add to the domain. Such a decision
is modelled via three unsupervised classification tasks that
capture the interdependence between the resources: one
classifies the suitability of a pattern to extract ontological
concepts and relations in the documents; another classi-
fies the suitability of ontological concepts and relations to
generate patterns from the documents; and another classi-
fies the suitability of a document to give support to pat-
terns and ontological concepts. The notion of “suitability”
is formalised within a probabilistic framework, in which
the relationship of any resource to the domain is assigned a
confidence level. Thus, ontology, corpus and patterns grow
from the maximum probability core (the initial input) to the
lower probability fringes as the process iterates. Initially
newly added elements have an initial low probability but as
the data they provide is further confirmed this confidence in
them increases (or decreases accordingly).
Stopping criteria are established by setting a threshold on
the lowest acceptable probability for each resource type, or
by setting a threshold on the maximum number of iterations
without any new candidate resources for each resource type
being obtained. The premise of Abraxas, that input re-
sources are intrinsically incomplete, has had a defining im-
pact on the overall methodology. Firstly, since the spec-
ification of the domain of interest is given by seed ontol-
ogy, corpus and patterns, it follows that it is not possible
to completely specify the taska priori. In fact, given an
incomplete domain specification, most OL approaches ei-
ther favour correctness of the acquired knowledge to the

detriment of coverage of the domain or completeness of
coverage to the detriment of correctness. In Abraxas, the
OL process is viewed as an incremental rather than a one-
off process. The ontology engineer is able to (but not re-
quired to) intervene by pointing out correct/incorrect or rel-
evant/irrelevant ontological concepts, documents and so on,
as the process runs, effectively delimiting the domain in-
crementally through examples. Secondly, incompleteness
of the corpus is tackled by iterative augmentation using the
web as a corpus. Corpus augmentation in Abraxas con-
sists of a set of methods that aim to incrementally add new
documents to the corpus, such that documents with higher
relevance to the domain are added first.

3. The Knowledge Gap and Corpus
Management

The standard approach to ontology learning views it essen-
tially as a pipeline with a set of domain specific texts as
input and a set of ontological triple as output. This may be
augmented by accessing further resources such as WordNet
or Google frequency counts (Cimiano et al., 2005). How-
ever, this remains an essentially linear process and as such
conceives of knowledge in a monolithic manner (Brewster
and O’Hara, 2006). In Abraxas, we view the knowledge
acquisition process i.e. OL as iterative and cyclical.
We define initially a core corpus which may be either a
given set of domain texts or a set of texts retrieved using
a seed ontology to provide the query terms. Whether re-
trieved from the Web or from a specific text collection is
immaterial. At an abstract level this core corpus contains
a certain amount of knowledge, or more accurately, in the
light of Brewster et al. (2003), assume background knowl-
edge which is the relevant ontology we wish to build. The
knowledge gap(KG) is the difference between an existing
ontology and a given corpus of texts1. The knowledge gap
is measured by identifying the key terms in the corpus and
comparing these with the concept labels or terms in the on-
tology. Thus ifOT is the set of terms in the ontology and
CT is the set of terms in the corpus, then KG is define in
Eq. 1.

KG = 1− OT

CT
(1)

Clearly at the beginning of the ontology learning process,
KG will initially be either 1 (maximal) or very close to 1,
indicating a large ‘gap’ between the knowledge present in
the ontology and that which needs to be represent which
is latent in the corpus. As the ontology learning process
progresses, the objective is to minimiseKG as much as
possible while realising that for reasons of Zipfs’ law this
is an asymptote.
There are a wide variety of methods for identifying the
salient or key terms in a corpus of texts (e.g. Maynard and
Ananiadou (2000) or Ahmad (1995)) but the real challenge
is to automatically learn the ontological relationship be-
tween terms (Brewster and Wilks, 2004). It also relatively
un-contentious to use distributional methods to identify that

1This is closely related to the notion of ‘fit’ we have proposed
elsewhere (Brewster et al., 2004)
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Core Corpus

Figure 1: Iterative Expansion of the Core Corpus

thereexistsan ontological relationship between two terms.
In Brewster et al. (2003), we definedexplicit knowledgeas
textual environments where ontological knowledge is ex-
pressed in a lexico-syntactic pattern of the type identified
by Hearst (1992). In such a case, the ontological rela-
tionship (domain - predicate - range) is automatically ex-
tractable. However, for any given corpus, a minority of the
terms will occur as explicit knowledge and thus can be au-
tomatically added to the set of ontological knowledge. The
difference between the set of terms whose ontological rela-
tionships are known and those which need to be added to
the ontology (because they are key terms in the corpus) and
whose ontological relationship is unknown, we will term
the Explicit Knowledge Gap(EKG). The absence of ex-
plicit knowledge may be between two unaccounted terms
or between an unaccounted term and a term already as-
signed to the ontology set. ThusRT ⊂ CT is the set of
pairs of terms in the corpus which are known to have some
kind of ontological relationship on distributional grounds,
andET ⊂ OT is the set of pairs of terms whose ontolog-
ical relationship is explicit.ET is a subset of the set of
terms in the set of ontological knowledge because if the re-
lationship is explicit then this knowledge can be added to
the ontology. Thus EKG is defined analogously to Eq. 1 as
follows:

EKG = 1− ET

RT
(2)

While EKG will never be 0, in a similar manner to KG one
objective of the Abraxas system is to minimise this Explicit
Knowledge Gap. The seed or core corpus will inevitably
have relatively high KG and EKG measures. The expansion
of the corpus occurs in order to reduce the two respective
knowledge gaps and consequently learn the ontology. As
this is an iterative process we can conceive of the expanding
corpus like ripples in a pool i.e. a set of concentric circles
cf. Figure 1.

4. Description of the Overall Algorithm
In this section we describe the algorithm used in Abraxas, at
a level of abstraction adequate to understand the mechanics
of the ontology learning process. We start by introducing
the main data structures used by the algorithm:

Corpus and Document - A Corpus is a collection of Doc-
ument objects. Each Document object holds a graph

representation of the linguistic features of the docu-
ment text as well as the likelihood of the document
belonging to the domain.

Wrapper and Pattern - A Wrapper is a collection of learn-
ing patterns or Pattern objects i.e. lexico-syntactic pat-
terns. Each Pattern object holds a graph walk over the
graph representation of the document and likelihood
of the pattern belonging to the domain.

Ontology and Triple - An Ontology is a collection of
Triple objects. Each Triple object holds the domain,
predicate and range of the relation (to use RDFS ter-
minology) and the likelihood of the triple belonging to
the subject domain.

All three resources types - Document, Pattern and Triple -
have an associated probabilistic value which measures the
likelihood of the resource belonging to the domain. Values
of 1 and 0 are typically employed to provide the system
with examples or counter-examples for learning, respec-
tively. A value of 0,5 is to be interpreted as “nothing can be
said about this resource”. During the learning process, the
system constantly updates these likelihood values.
Additionally, the algorithm makes use of the following aux-
iliary data structures:

Information Focus - a collection of settings that define the
way Abraxas uses the web as a corpus.

User Profile - a collection of settings that define the
amount and focus of intervention of the user in the
ontology learning process.

Abraxas, by default, uses the web as a corpus. The notion of
‘information focus’ guides the gathering of new documents
from the web in order to augment the original core or seed
corpus2 (if given at all). Information focus may be seen as
a view over the three resources which determines exactly
what information should be used to generate search engine
queries to the underlying search engine. For instance, the
information focus may specify that only triples with con-
fidence above a certain threshold should be used in query
generation.
The following user profiles are presently defined: ‘fully au-
tomated’, ‘IE expert’, ‘knowledge engineer’, ‘corpus lin-
guist’ and ‘fully manual’. The ‘fully automated’ setting
requires no user input, apart from pointing to a script that
bootstraps the system by specifying one or more of seed
triples/patterns/documents. The ‘IE expert’, ‘knowledge
engineer’ and ‘corpus linguist’ settings require user inter-
vention to confirm a proposed value of the likelihood of a
pattern, triple or document, respectively. Finally, the ‘fully
manual’ setting requires the user to decide about the likeli-
hood of all resources.
The algorithm starts by initializing the above data struc-
tures - the profile is set to ‘fully automated’ by default and
corpus, ontology and wrapper start empty. Abraxas is im-
plemented as an event-driven system. The system starts

2A core corpus, in our terminology, is a given set of documents
of significant size, while a seed corpus merely acts as guide to the
domain. There is no principled difference.
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in a state of equilibrium. When ‘disturbed’ by some new
event such as adding a new document to the corpus or a
new triple to the ontology, it triggers a new learning cycle
where it will try and return to a new state of equilibrium,
filling in the knowledge gap between corpus and ontology
using existing patterns and/or inducing new ones. Events
are triggered by external actions specified by the user ei-
ther in batch mode or interactively at any time, or by inter-
nal scheduling of new actions by the learning process. A
scheduler decides on the best action to take whenever the
system has not reached a state of equilibrium and there is
no input of an external action. This is dependent largely on
the current state of the KG and EKG measures, which are
continuously updated following each relevant action. Sim-
ple versions of the scheduler work according to the cho-
sen user profile - for instance, in the ‘IE expert’ setting,
the scheduler will give priority to adding new patterns into
the system before starting to add new ontology triples or
documents. In the future, we will look at implementing a
scheduler that examines how the overall likelihood of the
data changes with performing a given action, and chooses
the best action accordingly. In the following, we describe
the actions triggered by each possible event.

Adding a document to the corpus. This triggers ex-
tracting some features from the document, such as part-of-
speech tags, orthography, gazetteer and named entity tags.
The features are represented in a graphical model of the
document. The likelihood value of the newly added doc-
ument is either specified or calculated with respect to the
existing resources. Depending on the profile chosen, the
user may be requested to confirm such a value. An action
is internally scheduled to update the wrapper (induce new
patterns) given the now augmented corpus.

Adding a pattern to the wrapper. This triggers repre-
senting the pattern as a graph walk over the graph represen-
tation of the documents. A graph walk is a set of opera-
tions over a set of initial input nodes in a graph, yielding a
set of output nodes. Based on the canonical edge traversal
operation, operations include node set union and intersec-
tion, node substitution and (sub)walk repetition3. The like-
lihood value of the newly added pattern is either specified
or calculated with respect to the existing resources, and de-
pending on the profile chosen, the user may be requested to
confirm such a value. An action is internally scheduled to
update the ontology (place triples into ontology) given the
now augmented wrapper.

Adding a triple to the ontology. This triggers the inser-
tion of the triple in the ontology. This results in the ontol-
ogy structure being re-arranged so that it remains valid, e.g.
a concept cannot be both sibling and child of another. The
likelihood value of the newly added triple is either specified
or calculated with respect to the existing resources, and de-
pending on the profile chosen, the user may be requested
to confirm such a value. An action is internally scheduled
to update the corpus (add a new document from the web)
given the now augmented ontology and in light of the cur-
rent state of the KG/EKG measures.

3For more details on the graph representation of documents
and graph walks, cf. http://wit.shef.ac.uk/runestone

Adding new corpus/wrapper/merging ontology. These
simply trigger multiple add document/pattern/triple events.

Updating the wrapper. Patterns are induced using an al-
gorithm based on (Ciravegna, 2001), adapted to work over
the graph representation of the documents. The pattern in-
duction algorithm starts by spotting all co-occurences of
the subject-object pairs found in the triples in the ontol-
ogy. Each co-occurence instantiates an initial graph walk,
which is generalized by dropping edge traversals from the
walk and introducing null-cost traversals for skips, allow-
ing for, e.g., skipping adjectives. Candidate new patterns
are ranked and only the topmost pattern is selected for aug-
menting the wrapper. An internal action is scheduled to
update the likelihood of all resources.

Updating the ontology Acquiring new ontology triples is
done through application of the wrapper to the corpus. This
step also requires employing syntactic and semantic simi-
larity measures to cluster the subject/objects of the triples
occurring in the documents. Candidate new triples are
ranked and only the topmost triple is selected to be merged
into the ontology. An internal action is scheduled to update
the likelihood of all resources.

Updating the corpus. Adding new documents to the cor-
pus is done by simply requesting the top ranked document
from a candidate document queue gathered by an indepen-
dent web harvester process. The web harvester works as
follows. The candidate documents in the queue, limited
to a user-defined size, are ranked according to their likeli-
hood of belonging to the domain (which is calculated the
same way as for documents in the corpus). The process
is one of ever-refining the quality of the queue by looping
over each candidate document from the web, calculating its
likelihood and deciding whether to keep it or discarding it.
Whenever the ontology changes, the likelihood of the docu-
ments in the queue is re-calculated and the generated search
engine queries potentially change as well. Query gener-
ation is achieved by instantiating highly likely patterns in
the wrapper with highly likely ontology triples. Presently
we use Google API to perform the search.

Updating the likelihood. The likelihood of one resource
type is derived from the likelihood of a set of resources of
the other two types. For instance, the likelihood of an in-
dividual pattern is a function of the likelihood of the triples
that pattern is able to spot in the corpus, and of likelihood
of the documents where it spots those triples. The likeli-
hood formula for patterns was designed with the following
properties in mind. Firstly, to combine into one single for-
mula the effect of both triples and documents; secondly,
patterns that cover more triples/documents should be as-
signed higher likelihood; finally, patterns that cover highly
likely triples/documents should be assigned a higher likeli-
hood.
Let O be the set of co-occurrences of subject/object pair
of triples to in documentsdo. Let Op be the set of co-
occurences restricted to those co-occurrences matched by
the patternp in question.

tp =
∑
o∈O

conf(to), tr =
∑

o∈Op

conf(to) (3)
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tn =
∑
o∈O

1− conf(to), tw =
∑

o∈Op

(1− conf(to)) (4)

Similar functions can be defined fordr, dw, dp anddn.

r = tr +
(tn − tw)

((tp + tn)− (tr + tw))
+ (5)

dr +
(dn − dw)

((dp + dn)− (dr + dw))

w = tw +
(tp − tr)

((tp + tn)− (tr + tw))
+ (6)

dw +
(dp − dr)

((dp + dn)− (dr + dw))

lh(p) =
r

(r + w)
(7)

The likelihood of triples and documents is determined anal-
ogously (cf. Eq. 7). It suffices to replaceOp by Ot, the set
of co-occurrences restricted to a given triple, orOd, the the
set co-occurrences restricted to a given document, respec-
tively.
If only seed documents are given as input to the algorithm
(no seed patterns/triples), term recognition techniques are
employed in order to determine the most relevant terms and
used as seed triples. The algorithm terminates upon user
request or whenever a certain condition on the resources
is met. Presently, conditions supported are thresholds on
size of corpus, size of ontology, likelihood of corpus and
likelihood of ontology. Note that no data is ever removed
from the system from start to algorithm termination - at
most, data may be deemed irrelevant and used as a counter-
example.

5. Related Work
The literature on ontology learning is extensive. Here we
concentrate on the most important work that has influenced
our thinking. The original inspiration for using lexico-
syntactic patterns is Hearst (1992) especially as developed
by Morin (1999). A number of authors have worked on
ways to build ontologies accessing resources beyond the
original corpus. Our own work (Brewster et al., 2003)
left the range of possible sources open, while (Cimiano
et al., 2005) specifically experiment with using data from
WordNet, the Web (in general) and the counts provided by
Google. However, their approach is focused on replicating
an existing ontology and has a linear or pipeline architec-
ture. Etzioni et al. (2005) have created the KnowItAll sys-
tem which uses exclusively the Web to collect factual infor-
mation. This system is not designed to construct ontologies
but rather isolated facts, and in one version to learn class
names (Popescu et al., 2004). They use Hearst type pat-
terns to extract facts and use Pointwise Mutual Information
to assess the probability of the extracted facts being cor-
rect. The system uses pattern learning to extend the set of

predefined lexico-syntactic patterns in an iterative manner.
With pattern learning, KnowItAll becomes a bootstrapped
learning system, where rules are used to learned new seeds,
which in turn are used to learn new rules.
Yangarberet al. (Yangarber et al., 2000) originally pro-
posed the use of seed patterns to iteratively expand the set
of patterns used for information extraction. However, they
did not conceive of automatically expanding the corpus.
The Armadillo system developed at Sheffield (Ciravegna et
al., 2004) is again a system which does not learn or con-
struct ontologies but makes extensive use of multiple infor-
mation sources to build up a database of facts. Armadillo
makes extensive use of the redundancy of the Web in or-
der to build up a confidence or likelihood value in each fact
it identifies. It is designed to automatically identify poten-
tially relevant ‘oracles’ for the domain for which it has been
tailored and over time expand the set of resources it uses.

6. Conclusion
We have presented a case for a radically different approach
to the process of ontology learning in the light of both our
view on the nature of knowledge and the relationship be-
tween texts and the ontology that they provide evidence
for. We presented our approach to measuring theknowl-
edge gapbetween a given ontology and a given set of texts
and how this can be extended to the notion of an explicit
knowledge gap. Then in the context of the overall algo-
rithm which Abraxas uses we have shown how to concep-
tualise a tripartite approach to ontology learning focusing
on the set of texts, the set of learning patterns and the set of
ontological triple.
Future work will look at how to refine the measures which
evaluate the equilibrium between the difference resources,
and to develop means to evaluate the system as a whole.
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