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Abstract
State-of-the-art statistical approaches to the Coreference Resolution task rely on sophisticated modeling, but very few (10-20) simple
features. In this paper we propose to extend the standard feature set substantially, incorporating more linguistic knowledge. To investigate
the usability of linguistically motivated features, we evaluate our system for a variety of machine learners on the standard dataset (MUC-
7) with the traditional learning set-up (Soon et al., 2001).

1. Introduction
Robust Coreference Resolution (CR) is essential for var-
ious NLP tasks, such as Information Extraction or Ques-
tion Answering. Although there has been much attention to
the problem, state-of-the-art Coreference Resolution algo-
rithms still only have a moderate performance (around 60%
F-measure for coreference chains on the MUC-7 data).
Cristea et al. (2002) claim that the main problem, at
least for pronoun resolution, comes from complex anaphora
cases that CR systems still cannot successfully handle. We
see two possible solutions to the problem: one can either
choose a more sophisticated statistical model or give better
knowledge (more elaborated features) to the system.
Various recent studies have investigated the first possibil-
ity — extending or significantly changing CR modeling.
These include, for example, sample selection (Harabagiu
et al., 2001; Ng and Cardie, 2002a; Uryupina, 2004b),
clustering (Cardie and Wagstaff, 1999), Bell trees (Luo et
al., 2004), or sequence modeling with Conditional Random
Fields (McCallum and Wellner, 2003).
The second possibility, giving the algorithm more knowl-
edge, has not been much investigated so far — virtually all
the systems rely on very few (10-20) features. A remark-
able exception is the approach with 53 features advocated
by Ng and Cardie (2002b): the authors report improvement,
however, only with manual feature selection and after ad-
justing the modeling scheme.
Our study is motivated by the fact that modern linguis-
tic theories identify a lot of factors potentially relevant for
coreference resolution. Our goal is to encode this knowl-
edge and use it for a full-scale computational CR project.
The system has 351 nominal features (1096
boolean/continuous), representing surface, syntactic,
semantic and salience-based properties of markables
and markables’ pairs. All the values are computed fully
automatically.
Although a learning-based system could benefit from a
richer feature set, two following potential problems may
arise:

1. Robustness and noise. More sophisticated features
cannot be extracted reliably. Automatic extraction
of sophisticated features inevitably leads to a noisy
dataset.

2. Overfitting. With (much) more features we have a
higher risk that the overfitting problem occurs.

We investigate the usability of our rich feature set in empir-
ical evaluation experiments. To allow fair comparison, we
run several machine learners on a standard corpus (MUC-
7) with a traditional set-up (the setting used by Soon et al.
(2001), see Section 4.1. below).
The rest of the paper is organized as follows. First, we
briefly describe the data used. Section 3 introduces our
extended feature set. The evaluation experiments are dis-
cussed in Section 4. Section 5 summarizes the conclusions
and shows the directions for future work.

2. Data
For our experiments we use the MUC-7 corpus (Hirschman
and Chinchor, 1997): this is a standard Coreference dataset
for English, and various approaches have been evaluated on
these data. We segment each text into sentences with the
(Reynar and Ratnaparkhi, 1997) program, parse them with
the Charniak’s parser (Charniak, 2000), and, separately, ex-
tract named entities with the C&C NER module (Curran
and Clark, 2003b). The parser’s and the NE-tagger’s out-
puts are merged to create a pool of markables. We consider
the following entities (e.g., they and only they are checked
for possible coreference):

• Noun Phrases (as identified by the parser): [NP a spin-
off], [NP [PRN you]], [NP [PRN this]],. . .

• Pronouns (NP-pronouns and possessives, as identified
by the parser): [PRN you], [PRP your],. . .

• Proper Names (as identified by the NE-tagger): [NE

New York]

Note that these classes of entities overlap: for example, a
pronoun may as well be a noun phrase. Complex NPs (con-
taining an embedded non-possessive NP) are discarded.
Overall we have 5049 markables in the training sub-corpus
(30 “dry-run” documents) and 3369 markables in the test-
ing sub-corpus (20 “formal” documents).
To create training data we pair each markable (candi-
date anaphor) with some of the preceding ones (candi-
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date antecedents)1. Thus, learning instances correspond to
(anaphor, candidate antecedent) pairs. The instance is
positive if the anaphor and the candidate antecedent belong
to the same coreference chain and negative otherwise. This
procedure results in 34601 training instances (1703 posi-
tive, 32898 negative).

3. Features
Coreference is a complex phenomenon and therefore many
factors can potentially be relevant for the resolution. We
have roughly divided them into the following four groups:
lexicographic, syntactic, semantic, and discourse/salience-
related properties. Overall we have 351 feature2, all of them
are computed automatically using the parser’s and the NE-
tagger’s output and the WordNet ontology (Miller, 1990).

3.1. Lexicographic Similarity

An anaphor and its antecedent often have similar, though
not the same surface form: for example (“the new com-
pany”, “company”) or (“CHINA’s Foreign Trade Minister
Wu Yi”, “Ms. Wu”). Various studies suggest different im-
provements to vanilla name-matching, for example, strip-
ping off the determiners (Soon et al., 2001) or using ap-
proximate matching (Strube et al., 2002). For our system,
we have carried out a systematic investigation of possible
extensions to the naive name-matching algorithm.
We decompose our problem into three major sub-tasks:

• normalization: low casing, no punctuation, and
no determiner;

• substrings selection: last noun, last word, first word,
and rarest word;

• matching: exact match, approximate match (Mini-
mum Edit Distance), matched part (overlap), abbre-
viation;

One can, for example, compute minimum edit distance
(matching) between the down-cased (normalization) last
nouns (substring) of an anaphor and an antecedent. The
resulting value can be used as a surface similarity measure
between the two.
By combining solutions to these subproblems and discard-
ing the trivial ones, we have come up with 122 name-
matching features. A detailed description can be found in
Uryupina (2004a).

3.2. Syntactic Knowledge

Earlier papers on Coreference Resolution, in particular, on
pronominal anaphor, have exploited various syntactic prop-
erties of markables and their contexts. Based on very
simple syntactic information, the algorithms proposed by
Hobbs (1978) and Lapin and Leass (1994) achieve very

1The choice of candidate antecedents follows the sampling
strategy proposed by Soon et al. (2001) and is described in section
4.1. below.

2The SVMlight and Maxent programs do not support nominal
values, so, for the corresponding experiments we have converted
all the nominal features into binary ones, which resulted in 1096
features.

good performance even compared to modern approaches.
Recent advances in the parsing technology (for example,
(Charniak, 2000)) make syntactic information more and
more valuable for any kind of natural language processing:
with the performance level of around 90%, state-of-the-art
parsers and taggers provide reliable and robust knowledge.
Syntactic information can be viewed as explicit indicators
for (appositions, copulas) or against (constraints on parse
tree structure) coreference. In our system we use the fol-
lowing syntactic information:

• Internal structure of a markables is encoded in a
set of features. We distinguish between definite NPs;
NPs with determiners “this”, “that”, and “these”; pro-
nouns (subdivided into personal, possessive, and re-
flexive classes); named entities; and other markables.
Following Vieira and Poesio (2000), we account for
pre- and post-modification (restrictive or not).

• Tree-based constraints are relevant for intrasenten-
tial coreference. Following traditional research on co-
indexing (Barker and Pullum, 1990), we have imple-
mented s- and c-commands. We also check for simpler
properties of parse trees: whether the anaphor and the
antecedent are sister nodes, or are a subject and an ob-
ject of the same verb, or violate span conditions.

• We have developed elaborated high-precision heuris-
tics for identifying appositions and copulas. For
example, for appositions, we check if a candidate
apposition-looking construction is not a part of coor-
dination (“NP, NP, .. , CONJ NP”), age description
(“PERSON, NUMBER”), or address (“LOCATION,
LOCATION”).

• We also have features to encode number and per-
son agreement. The latter can be relaxed if one of
the markables is a part of a quoted string (“[I]ante’m
killing two birds with one stone,” said the [34-year-old
construction-equipment salesman]ana).

• Finally, we identify grammatical roles of the mark-
ables. This information cannot be directly obtained
from the output of a shallow parser, so, we have devel-
oped a simple model, conditioning grammatical roles
on the parent tag in the parse tree. In addition, we have
more elaborated heuristics for the subject role.

Our system has 64 syntactic features.

3.3. Semantic Compatibility

Soon et al. (2001) have pointed out that 63.3% of the re-
call errors made by their system were due to “inadequacy
of current surface features”. Ng and Cardie (2002b) re-
port that their algorithm has only moderate performance on
common nouns.
This leads us to the conclusion that if we want to resolve
difficult anaphors, we have to incorporate semantic knowl-
edge into our algorithm.

• In our system we account for gender and seman-
tic class of the markables. We combine different
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knowledge sources to compute the gender values: for
common nouns, we climb up the WordNet ontology,
whereas for proper names we search for a gender de-
scriptor (“Mr”, “Miss”,. . . ) and, if the search fails,
consults our lists of female and male first names,
downloaded from the U.S. Census website. For the
present experiments, we use the same set of semantic
classes as (Soon et al., 2001). They are obtained from
the WordNet trees.

Having computed the gender and semantic class val-
ues for individual markables, we can also obtain
agreement values.

• Following Harabagiu et al. (2001), we compute and
encode the WordNet path from the anaphor to the
antecedent.

• The semantic agreement values are only very rough
estimators of semantic compatibility. The WordNet
path parameters, on the contrary, are too fine-grained
and lead to very sparse data. To have more realis-
tic measures, we also use four WordNet similarity
measures described in (Budanitsky and Hirst, 2001):
the ones proposed by Jiang and Conrath, Leacock and
Chodorow, Lin, and Resnik.

Our system has 29 semantic features.

3.4. Discourse and Salience

Modern pronoun resolution algorithms, for example, var-
ious instantiations of the Centering theory (Grosz et al.,
1995), rely on the salience properties of discourse entities.
Below we describe the discourse and salience-related fea-
tures used by our system:

• First, we split the document into “text blocks” (for ex-
ample, PREAMBLE, or BODY) and then further into
paragraphs. We measure the distance between the
anaphor and the antecedent in various ways: in mark-
ables, sentences, or paragraphs — the most recent en-
tities are also the most salient.

• We identify salient markables according to various
criteria proposed in the literature: linear order, hier-
archy of grammatical roles, and centering parameters.
We have developed a family of boolean features sig-
naling, for example, that “ante is a CB of some sen-
tence” or “ante is a first NP in some paragraph” .

• We combine the above-mentioned two types of
features with syntactic constraints to create a
set of boolean features suggesting different
salient antecedents for a given anaphor, for ex-
ample, “ante is the CB<salience−CB> of the
previous<distance> sentence” or “ante is the
closest<distance> subject<salience−hierarchy>

with compatible agreement<syntactic constraints>

features”.

• Yang et al. (2004) propose to use the coreference in-
formation of the candidate antecedent: when we are
processing an anaphor, the entities to the left are al-
ready resolved, so, we can, for example, compute the

antecedent (ante ante) proposed by our system for the
candidate antecedent. Following Yang et al. (2004),
we encode the salience properties of the ante ante. In
addition to the features proposed there, we also use
the size of the antecedent’s chain (the part of the chain
from the beginning of the document to the anaphor)
The biggest chains correspond to the main topics of
the document, therefore, entities from these chains are
more likely to be antecedents.

Our system has 136 discourse and salience-based features.

4. Evaluation
We evaluate our system on a standard dataset — the MUC-
7 corpus (Hirschman and Chinchor, 1997). We train sev-
eral classifiers with different machine learning algorithms
to compare their performance on the traditional (Soon et
al., 2001) and extended (our system) feature sets.
As a naive baseline, we take the “one chain” classification:
all the markables in a document are merged to form a single
coreference chain.
As a more intelligent baseline, we use a reimplemented ver-
sion of the system proposed by Soon et al. (2001). It is a
well-established algorithm, often cited as a reference point.
Below we briefly describe the algorithm of Soon et al.
(2001), introduce the machine learners we use, and discuss
the evaluation results.

4.1. Intelligent baseline: Reimplementation of (Soon
et al., 2001)

Soon et al. (2001) have presented the first full-scale
learning-based CR system, achieving a performance level
comparable to the best (knowledge-based) systems in the
MUC-7 competition. It relies on just 12 very simple sur-
face features, shown in Table 1.
The algorithm works as follows. First it pairs each anaphor
in the training corpus with its closest antecedent to create
a positive instance and with all the markables in between
to create negative instances. The feature vectors for these
instances are given to the C5.0 decision tree learner. The
C5.0 internal parameters (pruning level and the minimum
number of instances per leaf node) are optimized with 10-
fold cross-validation.
The learner outputs a classifier that is applied to the test
corpus. For each candidate anaphor in the test corpus, test
instances are constructed by pairing this anaphor with the
preceding markables (starting with the closest one and pro-
ceeding backward). These test instances are submitted to
the classifier. Once an instance is classified as positive, it
is annotated as the antecedent for the anaphor in question,
and the algorithm goes on to the next candidate anaphor.
Ng and Cardie (2002b) propose using not the closest posi-
tive antecedent, but the one with the highest confidence. As
we want to stay as close as possible to the original (Soon et
al., 2001) system, we do not follow this suggestion.
In our reimplementation, we use the same feature set and
the same setting. However, we train not only a decision
tree-based classifier, but also several others. As our main
goal is to compare two feature sets and not to achieve the
best performance level, we do not optimize learning param-
eters.
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Feature Values Description
DIST continuous distance in sentences between ana and ante

I PRONOUN 0,1 ante is a pronoun
J PRONOUN 0,1 ana is a pronoun
STR MATCH 0,1 ana and ante match after stripping off the determiners

DEF NP 0,1 ana’s determiner is “the”
DEM NP 0,1 ana’s determiner is “this,” “that,” “these,” or “those”

NUMBER 0,1 ana and ante agree in number
SEMCLASS 0,1,? ana and ante have compatible semantic classes

GENDER 0,1,? ana and ante agree in gender
PROPER NAME 0,1 ana and ante are both proper names

ALIAS 0,1 ana is an alias of ante or vice versa
APPOSITIVE 0,1 ana is in apposition to ante

Table 1: Features used by Soon et al. (2001)

Learner (Soon et al., 2001) Features Our features Error (F)
Recall Precision F-score Recall Precision F-score reduction

Ripper 44.6 74.8†† 55.9 65.8†† 51.1 57.5 3.8
Slipper 84.7 33.8 48.4 85.8 33.9 48.6 -0.0
C4.5 53.5 72.8†† 61.7 65.1†† 64.1 64.6 8.2
SVMlight 50.9 68.8 58.5 63.9†† 67.0 65.4 19.9
Maxent 49.2 64.1 55.7 50.5 72.2†† 59.4 9.1

Baseline 85.8 33.9 48.6 85.8 33.9 48.6 N/A
(Soon et al., 2001) system 56.1 65.5 60.4 N/A N/A N/A N/A

Table 2: Performance on the test data (MUC-7) for different feature sets, training on all the training instances. Significantly
better recall and precision figures are marked by †† (χ2-test, p < 0.01) for each machine learner correspondingly.

4.2. Machine Learners

We use five publicly available machine learners in our ex-
periments to be sure that the effect is not accidental. Each
learner has advantages and disadvantages for our task.
RIPPER (Cohen, 1995) is an information gain-based deci-
sion rule induction system. The main advantage of Ripper
for CR is that its rules can be composed of only very few
features. It allows RIPPER to capture coreference links sig-
naled by a single feature (for example, two parts of the cop-
ula construction are coreferent, even if they seem to have
incompatible properties) The main disadvantage of Ripper
is that it is very unstable: even a minor change in the fea-
ture set can potentially result in a major rearrangement of
the learned classifier, and, thus, affect the system’s perfor-
mance in a rather unpredictable way.
SLIPPER is a newer, improved algorithm based on RIP-
PER and confidence-rate boosting.
C4.5 (Quinlan, 1993) is a decision tree learner. For our
task it has essentially the same advantages and disadvan-
tages as RIPPER. As an additional drawback, C4.5 is not
very effective when some features (for example, gram-
matic roles) have a lot of not equally important nominal
values. Most state-of-the-art Coreference Resolution algo-
rithms (McCarthy and Lehnert, 1995; Vieira, 1999; Soon et
al., 2001) rely on decision trees.
SVMlight (Joachims, 1999) is an implementation of Sup-
port Vector Machines (Vapnik, 1995), that are known for
their good performance, especially for NLP tasks. In par-
ticular, SVMs have a built-in capacity control to deal with

overfitting. This is especially important for our extended
feature set.
Maxent (Le, 2004) is an implementation of GIS Maximum
Entropy modeling (Curran and Clark, 2003a). As SVMs,
ME-based classifiers, being the most non-committal mod-
els, are less prone to overfitting.

4.3. Performance and Learning Curves
Table 2 shows the system’s performance for our two differ-
ent feature sets: the one proposed in (Soon et al., 2001) and
the one described in Section 3. above.
The SLIPPER learner could not resolve the problem: for
both features sets, the SLIPPER classifier merges virtually
all the markables into one chain, and, thus, performs at the
baseline level.
All the other learners show better performance when a
richer feature set is used. The most substantial improve-
ment is achieved by SVM.3 For all the learners, the Re-
call goes up reflecting the system’s ability to resolve more
difficult anaphors (significant for Ripper, C4.5, and SVM).
The Precision, however, goes down indicating that this can
be done only with substantial noise (significant for Ripper,
C4.5).
A remarkable exception is the Maximum Entropy classifier:
both its Recall and Precision go up when we add linguisti-
cally motivated features. However, the Recall goes up only

3To our knowledge, the system’s performance with the ex-
tended feature set and the SVM classifier (F-score of 65.4%) is
the best up-to-date result on the MUC-7 data.
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Figure 1: Learning curves (F-score) for different machine learning algorithms on the MUC-7 data: (a) C4.5, (b) Maxent,
(c) Ripper, (d) SVMlight.

slightly, indicating that the system has not acquired new
cases of anaphora, but, instead, has learned a more accurate
classification for the old ones.

To investigate, why our extended feature set leads only to
a moderate improvement, we have conducted second series
of experiments. Our hypothesis is that the training corpus
is too small to learn more sophisticated classifiers and the
feature set extension leads to the overfitting problem that
hinders the performance.

To see, how the system’s performance depends on the
amount of training data, we have learned classifiers from
the first 10, 15, 20, 25, or all 30 “dryrun” documents. The
resulting learning curves (F-score) are shown on Figure 1.

The curves clearly suggest that even very few documents
are sufficient to learn a reliable classifier with the (Soon et
al., 2001) features. However, when we increase the amount
of training data, the performance remains on essentially the
same level or sometimes even goes down (MaxEnt).

For the extended feature set, on the contrary, the perfor-
mance is very low when only 10 training documents are
available. With more training material available, the ex-
tended feature set leads to better and better classifiers,
showing no sign of convergence. This suggests that one can
get a much better Coreference Resolution algorithm using
our linguistically motivated feature set by annotating more
documents.

5. Conclusion
In this paper we have investigated the usability of
linguistically-motivated features for statistical Coreference
Resolution. We have encoded various relevant linguistic
factors in 351 features and evaluated our system on a tra-
ditional dataset, comparing it to the knowledge-poor algo-
rithm proposed in (Soon et al., 2001).
Our experiments show that the proposed extension of the
feature set results in a moderate, though consistent, im-
provement in the system’s performance. However, as the
learning curves show no signs of convergence, we be-
lieve that more substantial improvement can be achieved
by adding more training material.
This suggests the first direction of our future work: we plan
to train our system on a bigger corpus, for example, on the
ACE data.
We also plan to investigate more closely the impact of dif-
ferent feature groups on the overall performance, in partic-
ular, various possibilities for feature selection and for en-
semble learning with different feature splits.
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