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Abstract

Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in automati-
cally obtained wide-coverage grammars from treebanks for natural language processing. In particular, recent years have seen the growth
in interest in automatically obtained deep resources that can represent information absent from simple CFG-type structured treebanks
and which are considered to produce more language-neutral linguistic representations, such as dependency syntactic trees. As is of-
ten the case in early pioneering work on natural language processing, English has provided the focus of first efforts towards acquiring
deep-grammar resources, followed by successful treatments of, for example, German, Japanese, Chinese and Spanish. However, no
comparable large-scale automatically acquired deep-grammar resources have been obtained for French to date. The goal of this paper
is to present the application of treebank-based language acquisition to the case of French. We show that with modest changes to the
established parsing architectures, encouraging results can be obtained for French, with a best dependency structure f-score of 86.73%.

1. Introduction

Large-scale hand-crafted grammars are notoriously expen-
sive to produce and maintain. As a result, there has been
increased interest in automatically obtained wide-coverage
grammars from treebanks for natural language processing.
In particular, recent years have seen the growth in interest
in automatically obtained deep resources that can represent
information absent from simple CFG-type structured tree-
banks and which are considered to produce more language-
neutral linguistic representations, such as dependency syn-
tactic trees. As is often the case in early pioneering work
on natural language processing, English has provided the
focus of first efforts towards acquiring deep-grammar pars-
ing resources (see for example, (Cahill et al., 2002; Cahill
et al.,, 2004; Hockenmaier and Steedman, 2002; Miyao
and Tsujii, 2002), followed by the successful treatments of,
for example, German (Cahill, 2004; Hockenmaier, 2006),
Japanese (Yoshida, 2005), Chinese (Guo et al., 2007) and
Spanish (Chrupata and van Genabith, 2006a). However,
no comparable large-scale automatically acquired deep-
grammar resources have been obtained for French to date.
The goal of this paper is to present the application of
treebank-based language acquisition to the case of French.
We show that with modest changes to the established pars-
ing architectures, encouraging results can be obtained for
French, with an overall best dependency structure f-score
of 86.73%.

We begin by presenting the linguistic framework within
which we are conducting our research, Lexical Functional
Grammar (Section 2.). We then give an overview of the
adopted approach (Section 3.) and introduce the treebank
resource, the Modified French Treebank (Section 4.). Fol-
lowing this, we discuss the adaption of the established ac-
quisition method to French and present and discuss results
obtained through the adapted method.

2. Lexical Functional Grammar

Lexical-Functional Grammar is a constraint based theory
of language, whose basic syntactic architecture distiguishes

two levels of representation : c-structure (constituent struc-
ture) and f-structure (functional structure) —c-structures
correspond to traditional constituent tree representations,
and f-structures to traditional dependency representations
encoded in the form of an attribute value matrix.!
Consider, for example, the following sentence.

D John helped Mary

Sentence (1) would have the c-structure shown to the left in
Figure 1, which corresponds to the f-structure shown to the
middle in the same figure.

F-structures are minimal solutions to sets of functional
equations such as (f a) = v, where f is an f-structure,
a is an attribute, and v is the value taken by that attribute,
possibly another f-structure.

These two levels of representation (f-structure and c-
structure), for a given phrase, are explicitly related by a
structural mapping, called the f-description, often denoted
by ¢, which maps c-structure nodes to f-structure nodes.
In the LFG framework, this mapping is given by functional
annotations inserted into the c-structure tree, as in Figure 1
on the right.

The metavariables T and | refer to the f-structure of the
mother node and that of the node itself, respectively. So that
if node n is annotated T=|, then n’s f-structure is mapped
to the same f-structure as n’s mother’s f-structure. Also,
if n has the annotation TOBJ=|, this means that the f-
structure associated with n is mapped to the value of the
mother’s f-structure OBJ attribute. LFG also has equations
for members of sets, such as | €T ADIJ, which states that the
node’s f-structure is mapped to an element of the mother’s
ADJ attribute.

An example of an annotated rule that is used in the deriva-
tion of the annotated tree in Figure 1 is the following.

NP VP
TSUBI=| 1=|

S —

'A detailed introduction to LFG may be found in, for example,
(Dalrymple, 2001).
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S pred ‘help’
subj [pred ‘John’}

NP VP
| — obj [pred ‘Ma.ry’}
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Figure 1: C-structure (left) and F-structure (middle) and Annotated C-structure for John helped Mary

3. Grammar Acquisition Methodology
3.1. [Initial Stages

The technology for treebank-based acquisition of multilin-
gual LFG probabilistic parsing resources is based on the
English model (Cahill et al., 2004) and adapted to the lan-
guage in question. There are six major stages in initiating
this process, the basic input for which is a CFG-type tree-
bank. These stages are as follows. (The adaption of these
stages for French is the subject of this paper and will be
discussed in the remainder.)

1. Annotation Algorithm Application. The treebank is
automatically augmented with f-structure equations by
means of an f-structure annotation algorithm.

2. Satisfiability Verification. These f-structure equa-
tions are extracted and sent to a constraint solver to
be verified for consistency.

3. Subcategorisation Frame Extraction. A lexicon
with subcategorisation frames are extracted from f-
structures and these subcategorisation frames are as-
sociated with relative frequences conditioned on lem-
mata.

4. Long-Distance Dependency Extraction. If the tree-
bank contained empty nodes and co-indexation to rep-
resent long-distance dependencies at the c-structure,
the f-structure annotation algorithm would annotate
these, and they would appear as long-distance depen-
dencies at the f-structure level also. All long-distance
dependencies are extracted from f-structures and as-
sociated with relative frequencies conditioned on the
local (communicative) function (eg. topic, focus) of
the reentrant f-structure in question.

3.2. Parsing Architectures

Given the resources produced in Section 3.1., there are two
probabilistic parsing architectures, called the pipeline and
the integrated architectures, as shown in Figure 3.2.

In the pipeline architecture, a probabilistic parser is trained
on the treebank in its non-f-structure augmented format.
The annotation algorithm then traverses parser output trees.
The equations from these are extracted and sent to the con-
straint solver to verify satisfiability.

On the other hand, in the integrated architecture, the prob-
abilistic parser is trained on the f-structure equation aug-
mented treebank, and the f-structure equations from the
output of this parser are sent to the constraint solver.
(Chrupata and van Genabith, 2006b) introduce a machine
learning component into the pipeline architecture for those
annotation algorithms that are based on treebank trees that
incorporate some basic function labeling for, for example,
subject, object, and so forth, the best out of the tested al-
gorithm implementations being the support vector machine
implementation of (Chang and Lin, 2001). This corre-
sponds to an approximation of the basic Pipeline architec-
ture.

In this paper, we introduce the analogue of this machine
learning component for f-structure equations, which corre-
sponds to an approximation of the basic Integrated archi-
tecture.

Probabilistic parser output trees do not contain empty
nodes indicating long-distance dependencies. Therefore,
under both architectures, long-distance dependencies are
resolved, using the extracted subcategorisation and long-
distance dependency information, at the f-structure level of
representation.

4. The Modified French Treebank

As explained in Section 3., the approach for treebank-
based acquisition of LFG parsing resources takes as input
a treebank. For French, the treebank adopted is the Mod-
ified French Treebank (MFT) (Schluter and van Genabith,
2007).

The MFT is a cleaner and more consistent resource derived
from restructured and modified trees of the Paris 7 Tree-
bank (P7T) (Abeillé et al., 2004), consisting of Le Monde
newspaper excerpts and annotated for CFG-type phrase
structure. The MFT comprises the first half of the function-
ally annotated version of the P7T, for a total of 4739 sen-
tences. The structures of the MFT differ to those of the P7T
in several important aspects including the introduction of
linguistic analyses for untreated phenomena in P7T guide-
lines, the completion of function tagging and the introduc-
tion of path function tags, and so forth, for which examples
may be found in (Schluter and van Genabith, 2007). Also,
it’s construction has lead to improved statistical parsing of
French for statistical parsers trained on MFT data, support-
ing the notion that the good quality of comparatively few
training instances far outweighs the gains of five times the
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Figure 2: Overview of treebank-based LFG parsing architectures.

training data of relatively poor quality training instances
from the P7T (Schluter and van Genabith, 2007).

4.1. Path Function Labels of the MFT

One important change carried out to the annotation scheme
of the P7T by (Schluter and van Genabith, 2007) is the ex-
tension of the function tag set to include function path tags.
Consider the sentence in Example (2), taken directly from
the MFT, whose tree structure is given in Figure 3.

2) C’est[...] FTURSS [..] qui se trouve prise
Itis [...] the USSR [...] who herself finds taken
‘It is the USSR that finds itself trapped’?

SENT
-
VN-SUJ NP-ATS Srel-SUL.MOD

— — —_—
CL Vfinite D N qui se

I I I I

trouve prise

c’ est r URSS

Figure 3: MFT representation of example (2).

In this example, the Srel constituent takes the functional
path tag SUJ.MOD, representing the fact that Srel has the
function MOD and is dependent on the constituent whose
function is SUJ. Also, (Schluter and van Genabith, 2007)
carry out the completion of the functional annotation of
their derived subset of P7T sentences. The MFT now con-
tains 30,399 functional tags, whereas the P7T only con-
tained 23,772 (in the relevant subset). The completion and
extension of the function tag annotation for the MFT was
a crucial prerequisite of the f-structure annotation algo-
rithm’s LFG Conversion Module module (see Section 5.2.).

4.2. Data Partition

For this research, the MFT sentences were randomly dis-
tributed among the training set (3800 sentences), test set
(430 sentences), and development set (509 sentences).

2Sentence 8151, file fimf3_08000_08499ep.xd.cat.xml.

4.3. Parsing Results

The parsers employed in this research are a simple PCFG,
BitPar (Schmid, 2004), and a lexicalised probabilistic
parser—Bikel’s implementation of Collins’ parser (Bikel,
2002). Perfect POS tag mode parsing results (for parsing
without MFT function labels), given in Table 1 show that
Bikel’s implementation of Collins’ parser performs better
(with a labelled f-score improvement of +6.82%) than Bit-
Par for our small training set—a difference that is statisti-
cally significant with respect to precision and recall.?

| parser [ precision [ recall [ f-score ‘

BitPar 77.67 78.4 78.03
Bikel 83.73 86.0 84.85

Table 1: Perfect POS tag mode basic CFG parsing results.

4.4. Clitic Constituents and MFT Function Labels

The adaption of the original approach to treebank-based
LFG grammar acquisition to other languages is based on
both linguistic and data-specific considerations. In terms of
data-specific considerations, several important differences
between MFT data structures and Penn-II data structures
(on which the original technology is based) require special
attention. This concerns the lack of empty nodes and coin-
dexation in the MFT, as well as the lexicalised treatment of
some personal pronouns (clitic pronouns).

MFT-norm and MFT-fct. The MFT inherited a rela-
tively flat annotation from the P7T, including a lexicalised
treatment for clitic pronouns. As such, clitic pronouns are
not the head of any constituent, but are enclosed in the
verb kernel (VN) with the verb lemma to which they are
attached. Also, the function label for clitics is on the VN in
which they are enclosed. F-structure equations may not be
labelled in this manner in LFG; the predicate node cannot

3Cf. (Schluter and van Genabith, 2007). Note that in this pa-
per, all parsing results are obtained with parsers in perfect POS
tag mode. Also, all CFG parsing will be evaluated using the PAR-
SEVAL metric.
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also be the value of the subject. In our parsing experiments
for both the pipeline and integrated architectures, we have
enclosed clitics in their own constituents and propagated
the function labels down to this level. Figure 4 provides the
transformed main VN constituent for the MFT tree appear-
ing in Figure 3. The CLP transformed version of the MFT
without function labels will be denoted by MFT-norm, and
with function labels, by MFT-fct.

VN
/\

CLP-SUJ Vfinite
I I

CL est
I

o

Figure 4: Clitic transformation for example (2).

MFT-comm. Unlike the Penn-II treebank, the MFT does
not have any communicative function annotation such as
topic or focus. Rather, whenever local c-structural con-
stituents are not locally dependent on the constituent head,
there is a function path indicating where this dependency
is resolved (Section 4.1.). Therefore, we have had to de-
rive a complementary treebank to implement the already
adopted architectures of other languages—this version of the
treebank has no function paths, and introduces the commu-
nicative function tags. This is carried out automatically, us-
ing the (f-structure) automatically annotated version of the
treebank. We also carry out experiments using the original
data set labels. The MFT-fct with communicative function
annotation will be denoted by MFT-comm.

Parsing results for the MFT-norm, the MFT-fct, and the
MFT-comm, are reported in Table 2. We notice in partic-
ular that Bikel’s parser outperforms BitPar on all treebank
versions. However, the quality of these parsed structures
will be put into question in the light of the results on the
derived f-structures in Section 6.

l treebank version [ parser [ precision [ recall [ f-score ‘

MFT-norm BitPar 77.6 7825 | 77.92
Bikel 84.21 86.41 85.31

MFT-fct BitPar 68.84 69.96 | 69.39
Bikel 74.40 7045 | 72.37

MFT-comm BitPar 69.33 70.41 69.87
Bikel 70.49 74.54 | 72.46

Table 2: Parsing results for three derived MFT versions.

S. An F-structure Annotation Algorithm for
French

The goal of the f-structure annotation algorithm is to tra-
verse the trees of the MFT, augmenting its nodes with LFG
dependency annotations as in Figure 1, in order to derive
the dependency representation given by the attribute value
matrix in the middle of the same figure. The modules of
the f-structure annotation algorithm developed for the MFT

differ somewhat from those adopted for other languages.
Figure 5 shows the structure of the annotation algorithm
designed for French and the MFT.

| LFe . Right-Left Catch-all and
i| Conversion Context Clean
| \ Annotation uP
Head-Finding : |
N N H F-structure
Principles [ R .
P Equation Extraction

Verb
Combinatorics Coordination

Distribution

Core modules

Post-processing

Figure 5: Modules of the F-structure Annotation Algorithm
and Post-Annotation Algorithm Processing for French.

Because of the richness in morphological information in-
herited from the P7T as well as the extension and comple-
tion of the function tag annotation, our f-structure anno-
tation algorithm relies less on equation decision heuristics
than on simple translation of information already present in
MEFT trees; this is reflected in the elaboration of the lexi-
cal macros (Section 5.1.) and the LFG Conversion Module
(Section 5.2.). In addition, to reflect the current linguis-
tic analyses of verbs adopted in LFG, we provide a mon-
oclausal treatment of compound verbs, resulting in the in-
troduction of a Verb Combinatorics Module (Section 5.3.).
Also, similarly to previous versions of annotation algo-
rithms, our f-structure annotation algorithm employs left-
right context principles (Section 5.4.) and a simple catch-all
and clean-up module (Section 5.5.).

For a given tree, the annotation algorithm iterates over the
list of n non-terminal nodes, 7', which are in some order
that maintains the dominance relation (root node down-
wards). For each non-terminal node 7'(i),1 < i < n,
T(i)’s daughters are annotated as follows. If T'(7) is a verb
phrase, send 7'(¢) to the Verb Combinatorics Module. Oth-
erwise, if T'(¢)’s head is a verb phrase, send T'(i) to the
LFG Conversion Module. Otherwise, send 7'(4) to the Left-
Right Context Annotation Module. For the annotation of
any leaf node, directly use the lexical macros. Once the list
of nodes has been exhausted, it is sent to the Catch-all and
Clean-up Module.

Following the application of the annotation algorithm, the
functional equations are extracted from the trees, and sent
to post-processing for distribution over coordination (Sec-
tion 5.6.).

We will denote the f-structure annotated versions of the
MFT-fct and MFT-comm by A-MFT-fct and A-MFT-
comm, respectively.

5.1. Lexical Macros

The automatic f-structure annotation of terminal nodes of
trees builds on the rich morphological and lemma informa-
tion of the MFT, which is directly inherited from the P7T,
from which it is derived. Morphological encodings are di-
rectly translated into lexical features, and lemma informa-
tion provides predicate values during f-structure annotation.
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5.2. LFG Conversion Module

MFT functional tags in are directly translated into LFG
function equations with respect to the constituent under
consideration. Table 3 gives a selection of simplified func-
tion macros adopted for the f-structure annotation algo-
rithm. We note, in particular, the translation of the function
path tags (such as SUI.MOD), which permit the creation
of complete LDD-resolved f-structures, rather than only
proto-f-structures, unlike annotation algorithms designed
for the other languages.

[ MFT Functional Tag | LFG F-structure Equation |

SUT TSUBI=]
DE-OBJ TDE_OBJI=]
SUJ.MOD TETSUBJ-ADIUNCT
ATO TXCOMP=], TOBJ=]SUBJ

Table 3: MFT Function Tag Macros.

5.3. Verb Combinatorics Module

To produce f-structures similar to those produced by the
current ParGram XLE systems (Butt et. al, 1999), in our f-
structure analyses for the French annotation algorithm, we
have made the move away from the multi-clausal treatment
of compound tenses, elaborating a verb combinatorics mod-
ule for a mono-clausal analysis.

The verb combinatorics module involves the provision of
annotations for the various (finite number of) composed
tenses with and without coordinated verbal parts. The anal-
ysis may be carried out over several levels of representation,
depending on the presence of coordinated tenses. A verb in
a compound tense is said to be made up of a verb com-
plex, which may include some tensed component, an auxil-
iary (which may coincide with the tensed component), one
or more past participles, and/or an infinitive. The features
associated with a verb complex at the f-structure level of
representation are factivity, passivity, auxiliary verb, tense,
mood, (super-)perfectivity, infiniteness, and whether the
verb is a participial or not.

5.4. Left-Right Context Annotation

Following the model of the annotation algorithm for En-
glish, the annotation algorithm for French makes use of a
Left-Right Context Annotation Module which proceeds by
first determining the head of a constituent with respect to
head-finding rules provided by the authors, then by consult-
ing annotation charts developed through the the analysis of
the 85% most frequent rule types in the corpus. The charts
encode information on how to annotate CFG node types to
the left or right of the constituent head. This is combined
with the simple rule that any argument annotation may be
only be used once and therefore is given to the first com-
patible tag found. Such annotation principles support sim-
ple maintenance and development of this basic annotation
module.

5.5. Catch-all and Clean-up Module

The catch-all and clean-up module handles any special an-
notation that was not covered earlier, and repairs any over-
generalisations in annotation. For instance, the statement

type (declarative, interrogative, etc.) of the sentence is an-
notated in this module.

5.6. Coordination Distribution

Within the framework of LFG, individual conjuncts of an
instance of coordination are generated by a production rule
which places them as sisters among the right-hand side of
the rule. The left-hand side is the type of coordination in
question. Moreover, coordination at the c-structure level
is isomorphic to the corresponding representation at the f-
structure level (without considering shared dependencies
within control structures or long-distance dependencies).
In the cases of verb phrase or non-constituent coordination,
coordinates may share arguments or a predicate (including
the predicate’s lexical attributes). In such cases, the shared
predicate or arguments are distributed among the coordi-
nates at the f-structure level (Dalrymple, 2001). Distribu-
tion must be carried out for verb phrase (shared subject),
predicate, argument-cluster, gapping, and right-node rais-
ing types of coordination, and is accounted for as a post-
processing step among equations extracted from f-structure
annotated MFT trees.

We have developed simple heuristics to detect these types
of coordination and carry out the appropriate distribution
action. Discussion of these heuristics must be omitted here
due to space constraints. Such distribution is essential for
long-distance dependencies through coordinated structures,
control verb phrases with coordinated structures as verbal
arguments (Burke, 2006), as well as for the extraction of
lexical resources (O’Donovan et al., 2005). Previous ver-
sions of automatically acquired LFG parsing resources do
not carry out any distribution over conjuncts and pay the
price in performance. In Section 6., we present results on
the performance of the annotation algorithm with and with-
out this post-processing step. It turns out that distributing
over coordination leads to statistically significant improve-
ments on the performance of the annotation algorithm.

5.7. Construction of a Gold Standard

Functional equations are extracted and sent to a constraint
solver to verify consistency. For completion of the 430 sen-
tence gold standard, all consistent f-structures from the test
set were hand verified and corrected, if necessary, twice by
one of the authors. They were then compiled into depen-
dency triples following (Crouch et al., 2002).

5.8. Evaluation

Currently the f-structure annotation algorithm associates
98.40% of the MFT’s 4739 trees with a complete and con-
nected f-structure. Also, as expected, on gold MFT trees,
the annotation algorithm scores high (> 96%), due to its ex-
tensive use of MFT macros for the direct translation of tree-
bank information into f-structure equations. Scores with
and without coordination distribution are reported in Table
4, for all f-structure features as well as for those paths that
terminate in predicates (preds-only).

We notice that there is a drop in performance when the co-
ordination distribution post-processing step is not carried
out. In particular, recall drops from more than 3.3% in both
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coord dist features precision [ recall [ f-score ‘
no all 99.10 96.48 | 97.77
preds only 98.57 96.38 | 97.46
yes all 99.42 99.8 99.61
preds only 99.49 99.77 | 99.63

Table 4: F-structure annotation algorithm performance.

preds-only and full f-structures. This is clearly a statisti-
cally significant difference in recall (p-value < 2.2E-16 for
both), and may partially explain the high score of this an-
notation algorithm with regards to previous versions.

6. Parsing Basic F-Structures

Parsing experiments, for the MFT-fct and A-MFT-fct, by
the two basic pipeline and integrated architectures were car-
ried out and extracted the f-structures evaluated. The results
are presented in Tables 5 and 6.

| coord dist [ features [ parser [ precision [ recall [ f-score ‘

no all BitPar 89.61 80.92 | 85.04
all Bikel 91.63 68.20 | 78.20

preds BitPar 78.93 7224 | 75.44

preds Bikel 82.16 61.99 | 70.66

yes all BitPar 89.25 79.39 | 84.04
all Bikel 91.27 67.82 | 77.82

preds BitPar 79.10 71.22 | 74.96

preds Bikel 82.37 61.82 | 70.63

Table 5: MFT-fct pipeline architecture dependency evalua-
tion.

coord dist | features | parser | precision [ recall [ f-score ‘
no all BitPar 89.89 64.57 | 75.15
all Bikel 89.12 47.63 | 62.08
preds BitPar 78.71 5835 | 67.02
preds Bikel 77.39 42.51 | 54.87
yes all BitPar 89.39 64.59 | 74.99
all Bikel 88.55 4721 | 61.59
preds BitPar 78.81 58.62 | 67.23
preds Bikel 77.42 4225 | 54.67

Table 6: A-MFT-fct integrated architecture dependency
evaluation.

We make three important observations from these results.
Firstly, the pipeline architecture consistently outperforms
the integrated architecture. Secondly, we notice that though
Bikel’s parser outperformed BitPar in terms of c-structure
labeled bracketing scores (Table 1), BitPar structures pre-
serve better dependency relations between lemmata: the
results show that f-structures extracted from BitPar parse
trees are generally of better quality. Finally, we observe
that coordination distribution post-processing almost never
entails a boost in scores for parser output extracted f-
structures. This is probably due to the difficulty in obtain-
ing good parsing of coordinate structures in the first place,
which may be compounded by the “explosion” of phrasal

category tag set. Indeed there are 42 different constituent
tags paired with up to 27 different function tags in MFT-fct
for the parser to recognise.

7. Using Generic Machine Learning
Techniques for Annotation

In the previous section we saw that higher PARSEVAL la-
beled bracketing scores did not necessarily correspond to
better f-structures. The question remained, however, as
to whether an explosion of the treebank phrasal category
tag set was at fault. In the pipeline architecture we must
train parsers on the regular MFT tag set with function la-
bels and in the integrated architecture, parsers are trained
on f-structure annotated MFT-norm trees.

Moreover, general results could perhaps be boosted if we
could use parse trees from MFT-norm that were found to
have an f-score of over 10% higher than the annotated tree-
bank version parse trees.

(Chrupata and van Genabith, 2006b) introduced an ap-
proach to side-stepping this tag set explosion, enlisting ma-
chine learning of function tag information of the CAST3LB
treebank. Several algorithms were tested, with support vec-
tor machines performing best. We therefore applied this
method to the French case. In addition, we considered the
application of this method to directly learning f-structure
equations from annotated MFT trees.

As in (Chrupala and van Genabith, 2006b), we use the
(Chang and Lin, 2001) implementation of SVM; we also
use exactly the same feature information. The PARSEVAL
evaluation results for the SVM approximations of MFT-
fct (SVM-MFT-fct) and A-MFT-fct (SVM-A-MFT-fct) are
presented in Table 7.

| treebank version [ parser [ precision [ recall [ f-score ‘

SVM-MFT-fct BitPar 71.50 72.10 | 71.80
Bikel 79.00 81.08 | 80.03

SVM-A-MFT-fct | BitPar 74.55 75.17 | 74.86
Bikel 79.73 81.83 | 80.77

Table 7: PARSEVAL results for the SVM approximations.

We observe that while BitPar makes modest gains in f-score
(around +2.5%) using this method, Bikel’s parser remark-
ably gains over 5-7% in f-score. Corresponding advances
in f-structure evaluation can be observed in Tables 8 and
9 for Bikel’s parser for both parsing architectures, whereas
BitPar only makes modest gains in the approximation of the
pipeline architecture while quality decreases in the approx-
imation of the integrated architecture. Interestingly, this
suggests that BitPar is less influenced by larger constituent
tag sets than Bikel’s parser.

We also remark that the pipeline approximation outper-
forms the integrated approximation. Two possible explana-
tions for this discrepancy are immediately evident. Firstly,
the MFT-fct has manual (and therefore, probably, better
quality) function tag annotation, to be learned by the SVM
method. Moreover, there are much fewer function tags to
be learned compared to f-structure annotations (27 function
tag types as opposed to 69 f-structure annotation types),
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which makes learning f-structure equations the harder of
the two tasks.

Under this method, the SVM approximation of the pipeline
architecture, using Bikel’s parser produces the highest f-
score of 86.61% for all features and 81.35% for predicate
paths.

l coord dist [ features [ parser [ precision [ recall [ f-score ‘

no all BitPar 91.38 81.21 | 85.99
all Bikel 94.42 79.62 | 86.39

preds | BitPar 82.89 7437 | 78.41

preds Bikel 87.99 74.92 | 80.93

yes all BitPar 90.86 79.77 | 84.95
all Bikel 94.01 80.30 | 86.61

preds BitPar 83.00 73.27 | 77.84

preds Bikel 87.98 75.65 | 81.35

Table 8: SVM approximation of the pipeline architecture
performance.

l coord dist \ features | parser | precision \ recall \ f-score ‘
no all BitPar 91.97 58.59 | 71.58
all Bikel 93.26 57.61 | 71.22
preds BitPar 83.65 5432 | 65.87
preds Bikel 87.20 54.14 | 66.80
yes all BitPar 91.56 57.26 | 70.46
all Bikel 93.09 58.96 | 72.20
preds | BitPar 83.87 53.16 | 65.08
preds Bikel 87.51 5545 | 67.88

Table 9: SVM approximation of the integrated architecture
performance.

We also observe that the coordination distribution post-
processing is only beneficial to Bikel’s parser output un-
der both approximation architectures. This suggests that
Bikel’s parser is better able to recognise coordination struc-
tures than BitPar on MFT-norm trees.

8. Long Distance Dependency Resolution

There are several types of grammatical features that may
appear in f-structures. Of exceptional value are the com-
municative attributes topic, focus, and topic-rel,
which represent the communicative organisation a given
phrase. We will call those f-structures that are the val-
ues of these communicative attributes, communicative f-
structures. Long distance dependencies (LDD) in LFG
are those non-local f-structural dependencies between non-
communicative f-structures and their re-entrancies as com-
municative f-structures. Therefore, under this linguistic
framework, long-distance dependencies are resolved at the
f-structural level of representation and not in c-structures.
In standard LFG, this is carried out by means of functional
uncertainty (FU) equations.

FUs are regular expressions which denote the set of pro-
posed possible paths in an f-structure between a source
communicative f-structure and a target non-communicative
f-structure. For example, the equation T topic =T
comp*comp reflects the fact that a t opi c f-structure may

be resolved with a comp f-structure along some non-null
path of comp attributes. Among these proposed possible
paths, the only possible ones are those that maintain the
principles of completeness and coherence in LFG with re-
gards to f-structures. That is, the target’s local predicate
must subcategorise for the argument in question, and this
argument must not already be filled.

A technique for the automatic resolution of long-distance
dependencies, by detecting finite approximations of FUs,
in English was first outlined by (Cahill et al., 2004). A fi-
nite approximation of an FU is a single path, rather than a
set of possible paths. It is this technique for long-distance
dependency resolution that we test for the French case, with
slight adaptations due to the particularities of the MFT tree-
bank encoding schemes.

In Section 4.4., we observed that the MFT has function path
tags that are directly translated into f-structure equations.
Moreover, it has no communicative function tags. These are
added in the translation of MFT’s function tags. So, the f-
structures generated in the previous sections, using MFT-fct
or SVM-MFT-fct (for the pipeline architecture), or A-MFT-
fct or SVM-A-MFT-fct (for the integrated architecture), as
for the treebank version, are in fact full f-structures. No
further long distance dependency resolution is needed. The
question remained, however, as to how efficiently the func-
tion path tags or functional uncertainty approximations are
being recovered in during the parsing or prediction phase.
We can test this, by rerunning our experiments on MFT-
comm or A-MFT-comm.

The technique starts with the MFT-fct version of the MFT.
This treebank includes path function tags that are ex-
ploited for simple annotation of long-distance re-entrancies
at the f-structural level. These f-structures are complete
f-structures; moreover, they are of high quality as the f-
structure annotation algorithm performs with an f-score that
is close to perfect. Subcategorisation information and long-
distance dependency paths for each predicate are extracted
from these f-structures and stored with their associated rel-
ative frequencies from treebank f-structures.* Armed with
this information the resolution algorithm works for MFT-
comm or A-MFT-comm derived f-structures as follows.
Given an  f-structure of type GF €
{focus,topic,topic-rel}, the proposed possi-
ble paths associated with GF' are retrieved. The list of
paths is pruned with regards to the principle of coherence,
to obtain a list of possible paths for GF'. Each possible
path, p, has a relative frequency, P(p|GF). The end (or
target) of the path p is in the f-structure of the predicate [.
The principle of completeness requires that the predicate
[ subcategorise for the target of p. Therefore, the subcat-
egorisation information for [ is retrieved, each member s
associated with a relative frequency P(s|l). The path with
the highest ranking P(p|GF') x P(s|l) is the resolution of
the long-distance dependency for GF.

The results of the technique are given in Table 10. All
scores are reported with coordination distribution.

We observe that the scores for BitPar are all poorer than in

“More on the types of subcategory information that are stored
may be found in (Cahill et al., 2004).
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the approach for MFT function tag-based LDD (on MFT-fct
and A-MFT-fct). However, Bikel’s parser in the pipeline ar-
chitecture sometimes achieves slight gains from separating
the process of LDD resolution.

l treebank [ coord dist [ parser [ precision [ recall [ f-score ‘

pipeline all BitPar 90.44 77.00 | 83.18
all Bikel 91.67 66.81 | 77.29

preds BitPar 80.15 69.21 | 74.28

preds Bikel 82.46 60.71 | 69.93

integrated all BitPar 89.43 64.00 | 74.61
all Bikel 88.76 47.86 | 62.18

preds BitPar 78.72 58.15 | 66.89

preds Bikel 77.63 42.84 | 55.21

SVM all BitPar 90.33 80.82 | 85.31
pipeline all Bikel 93.62 80.78 | 86.73
preds BitPar 82.26 73.89 | 77.85

preds Bikel 87.40 75.71 | 81.13

SVM all BitPar 91.27 57.43 | 70.50
integrated all Bikel 92.37 5895 | 71.97
preds BitPar 83.31 53.10 | 64.86

preds Bikel 86.59 55.17 | 67.39

Table 10: Parsing with LDD resolution.

9. Conclusions and Future Work

In this paper, we have shown that the techniques applied
to other languages for treebank-based grammar acquisition
may successfully be adapted to the French case. We have
also acquired evidence that Bikel’s parser is more sensitive
to larger tag sets than BitPar.

An avenue for future work concerns further adaption of the
LDD resolution for French. Indeed, not all path functions
in the MFT-fct correspond to communicative local features.
The phenomenon of de-phrase extraction from NPs pro-
vides the exception. Future research on treebank-based
grammar acquisition for French should work towards an ac-
count of this phenomenon.

This research was supported by Science Foundation Ireland
GramLab grant 04/IN/1527.
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