
A Hybrid Morphology-Based POS Tagger 
 for Persian  

Mehrnoush Shamsfard1, Hakimeh Fadaee1 

 
1NLP Research Laboratory , Faculty of Electrical & Computer Engineering, 

 Shahid Beheshti University, 
Tehran, Iran 

 
E-mail: m-shams@sbu.ac.ir, Ha.Fadaee@mail.sbu.ac.ir 

 

Abstract 

 
In many applications of natural language processing (NLP) grammatically tagged corpora are needed. Thus Part of Speech (POS) 
Tagging is of high importance in the domain of NLP. Many taggers are designed with different approaches to reach high 
performance and accuracy. These taggers usually deal with inter-word relations and they make use of lexicons. 
In this paper we present a new tagging algorithm with a hybrid approach. This algorithm combines the features of probabilistic 
and rule-based taggers to tag Persian unknown words. In contrast with many other tagging algorithms this algorithm deals with 
the internal structure of the words and it does not need any built in knowledge. The introduced tagging algorithm is domain 
independent because it uses morphological rules. In this algorithm POS tags are assigned to unknown word with a probability 
which shows the accuracy of the assigned POS tag. Although this tagger is proposed for Persian, it can be adapted to other 
languages by applying their morphological rules. 
 

1. Introduction 
Part of speech tagging is one of the principal issues in 
natural language processing. Tagged corpora play an 
important role, in many NLP systems, to simplify the 
more sophisticated applications. Different approaches 
are followed to achieve a tagger with higher accuracy 
and performance. Although the general approach of 
each tagger could be used in many languages, but 
there are some specifications in any language that 
should be considered in designing a tagger. This 
paper describes the design and implementation of a 
word learning system which extracts the new words 
from an input corpus, selects the most probable POS 
tag for them and adds them to a lexicon.  
The tagging algorithm used in this system is base on 
morphological rules of Persian language and in 
contrast with many other tagging systems, this system 
makes no use of any built in knowledge. The 
introduced algorithm is a combination of statistical 
and rule-based algorithms. The paper is organized as 
follows: in second section the general approaches in 
POS tagging are introduced. Third section describes 
the pre-processing phase of our tagger. The tagging 
algorithm and the process of calculating the 
probabilities are explained in section 4 and finally in 
section 5, some examples of the functionality of the 
tagger are presented. 

2. Related Works 
There exist different tagging algorithms each of 
which tries to remove the defects of its previous 
algorithms. Taggers are categorized in some groups 
with regard to their tagging algorithm. 
In this section we note two categorizations proposed 
by Jurafsky and Megerdoomian. As you can see the 
general concepts of these two categorizations are the 
same and even they have categories with the same 
names. 
Jurafsky (Jurafsky & Martin, 2000) divides taggers 
into 3 categories.  
• Rule-based taggers: In these taggers the 
tagging process has two phases. In first phase words 
are looked up in a dictionary and the found tag or 
tags are assigned to them. In second phase tagger 
tries to disambiguate the words with more than one 
tags. To do so, tagger makes use of some limiting 
rules which concern syntax. 
• Stochastic taggers: These taggers use 
probabilistic methods. They try to assign a tag to the 
word, which has the most probability by considering 
the sequence of words it is in. 
• Transformation based taggers: These 
taggers have also two phases. In the first, tagger 
assigns the most probable tag to the word. In second 

3453



phase, which is the correction phase, tagger tries to 
change the wrong tags by following some rules. 
These rules concern the words adjacent to the 
considered word. 
Megerdoomian (Megerdoomian, 2004, a) categorize 
tagging algorithms into two groups. 
• Statistical taggers: These tagging 
algorithms apply probabilistic methods. They are 
usually trained by using a tagged corpus. They learn 
the POS tags of the words and their probabilities 
from the corpus and also they learn the distributional 
probability of the word. When these taggers 
encounter an unknown word they use distributional 
information of the word to suggest a tag for it. 
Statistical taggers are of high accuracy but their 
performance is difficult to improve. Also they need a 
tagged training corpus which would be unavailable in 
some languages. 
• Rule-based taggers: These taggers select 
the proper tag by using the grammatical and 
morphological rules. These rules are defined for the 
tagger and there in no need for tagger to learn them. 
AS these taggers use the rules defined for them, they 
are incapable of tagging unknown structures but for 
the known structures hey usually work accurately.  
We follow Megerdoomian's categorization 
(Megerdoomian, 2004, a). To take the advantages of 
these two algorithms hybrid taggers are suggested. 
They combine these two methods to reach higher 
performance and accuracy. Usually at first rule-base 
taggers are used to tag the considered corpus, and 
then statistical taggers are employed to disambiguate 
the words with more than one tag or unknown words. 
The algorithms described above need tagged corpora 
or a large lexicon. When these taggers encounter an 
unknown word which is not in the lexicon or the 
tagged corpora they are incapable of tagging. These 
algorithms usually concern the interword relations 
and they have nothing to do with internal word 
structure. 
In many languages like Persian tagged corpora or 
large lexicons may be unavailable, especially for 
specific domains, so the algorithms mentioned above 
may have some shortages. Also Persian is a 
productive language and it's powerful in word 
generating especially in new domains. So it's 
necessary to have an algorithm which has less 
dependency to tagged corpora or lexicons.  
In this paper we present an algorithm which tags the 
words regarding their internal structure. This 
algorithm doesn't need a tagged corpus in the process 
of tagging. In the suggested system a tagged corpus is 
needed for calculating the probabilities of 
morphological rules which are used in the process of 

tagging. After learning these probabilities, the tagger 
would be capable of tagging unknown words and as 
the morphological rules are the same in all domains, 
this tagger is not domain dependant. In the following 
sections the structure of the proposed word learning 
system is described. 

3. Pre-processing 
The first step in forming the lexicon is to extract the 
words from the corpus. To perform this task, it is 
necessary to detect the boundaries of words. The 
word boundaries in Persian are not clear because 
there exist many words that have more than one parts 
and in which the parts are separated by white spaces. 
So some ambiguities arise in detecting the tokens in 
Persian.  
To simplify the process of tokenizing we have 
considered the white spaces and the punctuation 
marks as separators. By this assumption, in pre-
processing phase, our system extracts the tokens from 
the corpus and refers them to tagging module for 
further processes.  
There are some rules, concerning writing, that force 
us to write some parts of the words 
separately(Megerdoomian, 2004, b). To extract the 
words correctly from the corpora we should consider 
these rules. Bellow we mention some of these rules 
that are applied in our system. 
 which appears in the beginning of the (mi) "می" •

verbs and is the sign of present continuous verbs 
should be written separately: like "می" (mi) in 
" خوانم می " (mi-xän-am) (I'm reading). In some 
texts this rule is not followed and these verbs 
are written in a single string. 

 which is one of the plural signs in (hä) "ھا" •
Persian is sometimes written separately: like 
" in (hä) "ھا" ھا درخت " (deraxt-hä) (The trees). 

 which is a prefix in Persian and makes (bi) "بی" •
the words semantically negative is usually 
written separately: like " صدا بی " (bi-sedä) 
(voiceless). 

4. Tagging 
As it was mentioned in section 2 there are different 
principal algorithms for tagging unknown words.  
The algorithm suggested in this section is a 
combination of rule-based and statistical algorithms. 
There are 4 steps in tagging an unknown word. 
 
1. Detecting the probable affixes in the word 
2. Constructing word's parse tree 
3. Pruning the parse tree 
4. Calculating the truth probability of the remaining 

derivations 

3454



5. Assigning the most probable tag to the word and 
adding it to the lexicon 
 

In the following subsections each step will be 
described. 

4.1. Detecting Probable Affixes 
Persian includes a set of affixes which are used in the 
structure of the words. Every affix has its own role in 
the word. These affixes are separated into two 
categories: Inflectional and derivational affixes. 
Inflectional affixes have syntactic roles; they can be 
usually used with all of the words in a certain 
syntactic category. 
Derivational affixes are used to form new words like 
 "انه" and (painful) (dard-näk) "دردناک" in (näk) "ناک"
(äne) in "آگاھانه" (ägahaäne) (consciously). 
Derivational affixes usually appear before inflectional 
ones in word structure. 
Affixes can help us to find the syntactic category of 
the words. So in first step we determine which of 
these affixes are used in the structure of our word. 
For example in the word "کارمندھايش" (kärmand-hä-
yash) (his employees), 3 suffixes are used: "ش" (sh), 
 It is probable that some or .(mand) "مند" and (hä) "ھا"
all of the affixes found in the word do not have an 
affix role but are simply a substring of the stem e.g. 
the word "آبان" (äban) has "ان" (än) as a substring 
which is a known affix in Persian, but it is obvious 
that it doesn't have affix role here. 
In this step system detects all the affixes appeared in 
the considered word and uses them to parse the word 
and finds its proper tag. In our system a set of 60 
Inflectional and derivational affixes are used. 

4.2. Forming Parse tree 
There exist two types of morphological rules: 
derivational and inflectional rules. Derivational rules 
describe the structure of the words. These rules 
consist of 3 parts: prefix, stem and suffix and their 
form is as follows: P1 + R1 + S1  POS Tag1 in 
which one of P1 or S1 is usually empty string. It 
means that if prefix p1 and suffix S2 are adjoined to a 
stem with POS of R1 the result would be a word of 
POS Tag1. It should be mentioned that in our system 
there is no difference between these two types of 
rules and system uses these rules without knowing 
their real category. 
In our system about 140 morphological rules are 
defined and used. A number of these derivational and 
inflectional rules are presented in Table 1 and Table 2 
(Kalbasi, 2001; Anvari & Ahmadi givi, 1997; 
Mogharabi, 1994). 
 
 

Prefix Stem Suffix Tag Example 

- Noun   .Adj مند
مندقدرت

(ghodratmand) 
(powerful) 

 Noun (nä) نا - Adj.   (näomid) نااميد
(hopeless) 

 Verb (bar)بر - Verb 
برانگيخت

(barangikht) 
(provoked) 

 
Table 1. Derivational rules in Persian  

 
 

Prefix Stem Suffix Tag Example 

- Noun   Noun (hä) ھا
کتابھا

(ketäbhä) 
(books) 

Presen (b) ب
t stem 

Imperativ (id) يد
e verb 

يدبرو
(beravid) 

(go) 

- Past 
stem 

 (m) م
Past 
Simple 
Verb 

 (raftam) رفتم
(I went) 

 
Table 2. Inflectional rules in Persian 

 
To help the foreigners not familiar with Persian we 
add similar tables for English derivational and 
inflectional morphology rules (Table 3 and 4) too. 
 

Prefix Stem Suffix Tag Example 

- Noun  al  Adj.  hopeless 

un Adj.  - Adj.  uncomfortable 
 

Table 3. Derivational rules in English  
 

 
Prefix Stem Suffix Tag Example 

- Noun  s 
Plural 
Noun 

cats 

‐ verb  ing 
Present 
participle 

working 

  
Table 4. Inflectional rules in English  

 
To form parse tree we start our work with outer 
affixes. For each <prefix, suffix> pair for which, 
there exists a rule in system, we add a derivation to 
the parse tree. When related prefix and suffix are 
separated from the word the remaining part is called 
"stem". We continue parsing by considering the stem 
as our new word. The process finishes when no more 
derivation is possible. When the parse tree is 
generated, each path from its stem to any leaf shows 

3455



a derivation for the considered word. The parse tree 
generated for the word "انسانيت" (ensäniat)(humanity) 
is shown in Fig.1. 
 

 
 

Fig.1. The parse tree of the word "انسانيت" (ensäniat) 
(humanity) 

 
 Pruning 
By following the process proposed for generating 
parse tree in section 3.4, we add a number of 
incorrect derivations to tree. We try to eliminate 
incorrect derivations by following these steps. 
• Removing useless derivations: In each node of 

the parse tree there are some derivations for the 
stem of the node. We call a derivation "useless" if 
the tag it suggests is not equal to the tag of its 
parent's stem. We remove all the nodes caused by 
useless derivations from the parse tree. It should 
be mentioned that when a node is removed from 
the tree all his children will be removed too.  

• Removing repeated affixes: An affix should not 
appear in a word more than once. So we remove 
the nodes containing an affix that exists in one of 
its parents. 

• Removing affix order violating derivations: To 
apply affix order rules we have divided affixes 
into 9 different categories. This categorization 
helps us to generalize the rules and simplify 
system's function.  These categories are shown in 
Table 5. 
 
  Definition Examples 

1 Possessive pronouns  ،م، ت، ش، مان، تان
 شان

2 Personal endings م، ی، د، يم، يد، ند 
3 Plural signs ان، ھا، ات، ين، ون 

4 Adj. making suffixes ،مند، ان،  انه، سير
 ناک

5 Adv. making suffixes ًانه، ا 

6 N. making suffixes  ،دان، ستان، کده، انه
 نا

7 Verbal prefixes ب، ن، می 
8 Clitic ی نکره 
9 Others  

 
Table 5. Affix categories 

 

A number of rules which concern affix order are as 
follows. 
• The affixes in the first group always appear after 

the affixes of groups 4, 5 and 6. 
• The affixes in the first group always appear after 

the affixes of the third group. 
• The affixes of the second group never appear with 

the affixes of 3, 4, 5 and 6 groups in a single word. 
• The affixes of group 8 always appear after the 

affixes of groups 3, 4, 5 and 6. 
 

4.3. Calculating Probability 
The input of probability calculating module is the 
pruned parse tree. It's obvious that at last one of the 
derivations proposed by parse tree would be 
convenient for the considered word. To find this 
derivation the system calculates the probability of 
each derivation and chooses the most probable 
derivation as result. The tag suggested by this 
derivation would be assigned to the selected word. To 
perform this task 3 new parameters are defined and 
calculated.  

PRule: In section 3.4 we talked about derivation 
rules of Persian but it should be mentioned that these 
rules are not certain. Consider the rule R1 as below: 

 

iiii tsrp →++ (1) 
 

L indicates, if a prefix Pi and a suffix Si are added 
to a word tagged as Ri, the resulted word would be 
tagged as Ti. There are some uncertainties in these 
rules, i.e. there are some words with the same 
conditions but they are not tagged as Ti. As we want 
to use derivation rules for tagging unknown words we 
should now the truth probability of these rules. This 
truth probability of rule i is shown by PRule(i).To 
calculate PRule(i) we used a statistical method. For 
each rule like Ri the process of calculating PRule(i) is 
as follows: The corpus is searched for the words with 
a prefix Pi, a suffix Si and a stem tagged as Ri. The 
number of these words is shown as ࢒ࢇ࢚࢕࢚࢔. In this set 
of ࢒ࢇ࢚࢕࢚࢔ words we count the number of words tagged 
as Ti and show it as ࢚ࢋࢍ࢘ࢇ࢚࢔. The truth probability of 
Ri is equal to: ࢚ࢋࢍ࢘ࢇ࢚࢔ ⁄࢒ࢇ࢚࢕࢚࢔ . 

In the definition of PRule(i) we considered that the 
stem of the word is tagged as Ti and we are sure about 
its tag. To find the stem's tag we look it up in the 
lexicon, but as the lexicon is empty at the beginning 
of the process, it's possible that we don't find the 
word's stem in the lexicon. Also the truth probability 
of the tag assigned to the word could be less than 1. 
What dose system do when encountering such a 

3456



word? To solve this problem we need a second 
parameter. 

PRulePS: When the stem of the word is not found in 
the lexicon the truth probability calculated for the 
rule is invalid. In this case we define another truth 
probability which does not depend on the stem of the 
word but it only concerns the prefix and the suffix of 
the word and it is shown as PRulePS(i). PRulePS(i) 
indicates the truth probability of the tag suggested by 
the rule Ri when our word has a prefix Pi and a suffix 
Si and an unknown stem. The value of PRulePS(i) is 
calculated like PRule(i) but in this case ࢒ࢇ࢚࢕࢚࢔ is the 
number of words with a prefix Pi and a suffix Si. 

Pbranch: In the parse tree each path from tree's 
stem to any of the leaves shows a derivation for the 
considered word. Do all these derivations have the 
same occurrence probability? The answer is no. 
There exist differences between these derivations and 
this difference is caused by affixes separated from the 
word in each derivation. 
In Fig.2 the parse tree of the word "می بينند" (mi-
binand) (they see) is shown. In this tree, the stem has 
3 children, but as it was told these 3 children have 
different truth probabilities i.e. <prefix, suffix> pair 
may lead us to the correct derivation but with 
different probabilities. 
 

 
 

Fig.2. The parse tree of the word " بينندمی  " 
 (mi-binand) (they see) 

 
To apply this difference in our decision making a 

third parameter is defined, Pbranch(i), which is assigned 
to each edge i of the parse tree. The value of Pbranch(i) 
depends on the prefix and the suffix of the child node 
adjacent to edge i. For an edge i in parse tree which 
leads to a node containing the word Wi  with a prefix 
Pi and a suffix Si, Pbranch(i) shows the probability of Pi 
and Si to be prefix and suffix for W. So this 
parameter is calculated for each <prefix, suffix> pair 
in Persian that can appear in a single word while one 
of the element of this pair could be an empty string. 
To calculate the value of this parameter a statistical 
method is again used. For a pair <Pi, Si> we search 
the corpus for all the words starting with Pi and 
ending with Si. The number of these words is shown 
as ࢒ࢇ࢚࢕࢚࢔. Within this set of ࢒ࢇ࢚࢕࢚࢔ words we count the 
number of words in which Pi is the prefix and Si is 

the suffix and show it as ࢚ࢋࢍ࢘ࢇ࢚࢔. Pbranch(i) for such an 
edge would be ࢚ࢋࢍ࢘ࢇ࢚࢔ ⁄࢒ࢇ࢚࢕࢚࢔ . 

By using these 3 parameters, now we can 
calculate the truth probability of the derivations in 
parse tree. We divide the nodes of parse tree into 4 
categories and present a calculating method for each 
category. 

• Word's  stem  exists  in  the  lexicon  and  the 
node is a leaf: For these nodes the stem exists 
in the dictionary. If the truth probability of the 
tag assigned to word's stem is shown as  rDicp  
then  

)()()( ipipiprob rulerDic ×=   (2) 

• Word's  stem  exists  in  the  lexicon  and  the 
node  is  an  intermediate  node:  in  Fig.3  an 
intermediate node with its 3 children is shown. 
For  this  node  )(iprob   is  equal  to  the 

maximum  of  ii pbp ×   for  all  children  and 

)()( ipip rulerDic × . 

 

prs ++

222 prs ++ 333 prs ++111 prs ++

)1(branchp
)2(branchp )3(branchp

1p 2p 3p
 

 
Fig.3. The sub tree for an intermediate node 

 

• Word's  stem  is  not  in  the  lexicon  and  the 
node  is a  leaf: For  these  rules  as  the  stem  is 
not  in  the  lexicon  and  is  unknown  for  the 
system  )()( ipiprob RulePS=  . 

• Word's  stem  is  not  in  the  lexicon  and  the 
node  is an  intermediate node: For  this kind 
of  nodes  )(iprob depends  only  on  the 
children  of  the  node  i.e.  node  )(iprob equals 

the maximum of  ii pbp ×  for all children. 

Now by following a recursive process we can find all 
the truth probabilities of all derivations in the tree. 
We start from the stem and try to calculate its truth 
probability by using the truth probabilities of its 

3457



children. We continue this recursive process until we 
reach the leaves. 

4.4. Adding the Word to Lexicon 
In the previous step we calculated the truth 
probabilities of all the derivations suggested by parse 
tree. As we mentioned before we choose the most 
probable tag for the word. Starting by stem we should 
select its most probable child and follow this process 
until we reach a leaf. The traversed path would show 
the most proper derivation. We enter the word with 
the probability proposed by this derivation into 
lexicon. If the word exists in the lexicon with same 
tag, we replace its probability with the newly 
calculated if the calculated probability is more that 
previous otherwise we keep the data in the lexicon, 
unchanged.  

5. Experimental Results 
In this section we try to show the abilities of system 
with some examples. To calculate the morphological 
rules' probabilities a corpus of 300,000 words was 
used. This corpus contains some parts of the articles 
of "Hamshahri" newspaper. The taggset of this 
system contains 25 tags. 
 
• Example 1 
Consider the word "بروند" (be-ravand) (SBJN-To go-
3rd pl.1) . The final generated parse tree is shown in 
Fig.4. Pbranch is indicated on any edge. The rules 
followed in each derivation and their probabilities are 
specified in Table 6. 
This tree has just one level and this fact simplifies the 
calculations. For each node, the rule probability of 
the node should be multiplied by its branch 
probability. As in is shown in the parse tree there are 
4 possible derivations for the given word. We 
calculate the probabilities of these derivations and we 
choose the most probable one as the proper derivation 
for the word. For the examples in this section we 
assume that the lexicon is empty. 

 

 
 

Fig.4. The parse tree of the word "بروند" 
 (be-ravand) (SBJN-To go-3rd pl.) 

 
 

                                                            
1 - "To go" subjunctive, 3rd person plural 

no. Morphological rule PRulePS PRule 

  د + present stem + ب  1
Subjunctive verb 65% 100% 

  ند + present stem + ب  2
Subjunctive verb 64% 100% 

3 present stem + ند  
Subjunctive verb 42% 100% 

4 present stem + د  
Subjunctive verb 57% 100% 

 
Table 6. Rules used in the parse tree of  
 (.SBJN-To go-3rd pl) (be-ravand) "بروند"

 
 
• as the stem "رو" is not in the lexicon we should 

use PRulePS so the probabilities of this derivation is 
equal to 64% ൈ 72% = 46% 

• as the stem "رون" is not in the lexicon we should 
use PRulePS so the probabilities of this derivation is 
equal to 65% ൈ 13% = 8% 

• as the stem "برون" is not in the lexicon we should 
use PRulePS so the probabilities of this derivation is 
equal to 57% ൈ 5% = 3% 

• as the stem "برو" is not in the lexicon we should 
use PRulePS so the probabilities of this derivation is 
equal to 42% ൈ 9% = 4% 

We can see that the first derivation is the most 
probable one, so we select this derivation as the 
proper one. So the word "بروند" (be-ravand) (SBJN-
To go-3rd pl.) is tagged as "Subjunctive verb-3rd 
person". 
 It should be considered that all nodes are not 
decomposable. There are some words that have 
neither of the affixes as a substring, the nodes 
containing such words are not decomposable. There 
exist some other words that have the same affixes as 
substrings but these affixes are a substring of their 
stem, so in each node there exists a probability with 
regards to which the word is indecomposable. For the 
nodes with no affix as substring this probability 
equals 1, but for the other words this probability 
equals ૚ െ ∑ ࢔ࢎࢉ࢔ࢇ࢘࢈࢖

ୀ૚࢏ ሺ࢏ሻ in which n is the number 
of children of the node. This probability should be 
considered in selecting the proper derivation. If this 
probability is greater than the target derivation's 
probability, system prefers to keep the word not 
decomposed. 
 
• Example 2 
Consider the word "کتابھايشان" (ketäb-hä-yeshän) 
(their books). The final generated parse tree is shown 
in Fig.5. 

 

3458



 
Fig.5. The finale parse tree generated for the word 

 (their books) (ketäb-hä-yeshän) (کتابھايشان)
 
As you can see the branch probabilities are written on 
the branches. In Table7 the rules used for parsing are 
indicated. 
 

no. Morphological rule PRulePS PRule 
1 Noun + شان  Noun 69% 100% 

2 Adjective + شان  
Adjective 15% 100% 

3 Noun + ان  Noun 55% 100% 

4 Present stem + ان  
Adjective 48% 72% 

5 Noun + ھا  Noun 99% 100% 
 

Table 7 :Rules used in the parse tree of (کتابھايشان) 
 (ketäb-hä-yeshän) (their books) 

 
Now we calculate the probability of each derivation, 
from left to right, by considering their category 
regarding their stem.  
• This derivation has 2 levels, We start from the 

lower one. As the stem "کتاب" (ketäb) (book) is 
not in the lexicon we should use PRulePS. So the 
probability of lower derivation is equal to 
ૢૢ%ൈ  ૢૡ% ൌ ૢૠ%. It means that with the 
probability of 97% the word "کتابھا" (ketäb-hä) 
(books) has the Noun tag. Now in the parent of 
this node the probability of the proposed 
derivation is equal to ૢૠ%ൈ  ૟ૢ% ൌ ૟ૠ%. In 
which 97% is the probability of "کتابھا" (ketäb-
hä) (books) to be tagged as Noun and 69% is the 
probability of the first rule.  Now we should 
consider the edge connecting stem whit this 
node, as the probability of this edge is 52%, the 
probability of the first derivation is equal to 
૟ૠ%ൈ  ૞૛% ൌ ૜૞%. 

• The second derivation has one level, so 
calculating the probability is like the previous 
example. We again use PRulePS and the 
probability is equal to ૚૞%ൈ  ૞૛% ൌ ૚ૡ%. 

• The probability of the third derivation is equal 
to ૞૞%ൈ  ૜૛% ൌ ૚ૡ% 

• The probability of the forth derivation is equal 
to ૝ૡ%ൈ  ૜૛% ൌ ૚૞% 

So we can see that the first derivation is the most 
probable one and is our target derivation. So we tag 
the word "کتابھايشان" (ketäb-hä-yeshän) (their books) 
as "Noun-Plural-Possessive suffix 6" which means 
that the word is a plural noun with a possessive suffix 
adjoined to it. This suffix is the 6th possessive suffix 
that is related to 3rd person plural. 
The tests conducted on the sample inputs show that in 
about 65% cases, this tagger tags the words correctly. 
The mistakes made by this tagger are usually in 
encountering the indecomposable words which have 
one or some affixes as their substring. Since at the 
beginning our lexicon is empty, tagger can't 
understand whether its proposed derivation is right or 
not. If we enter Persian stems into the lexicon tagger 
won't make these mistakes. So if this tagger works in 
combination with stochastic or rule-based taggers and 
uses their lexicons, it can solve their problems on 
unknown words and it will have much higher 
precision.  

6. Conclusion 
In this paper we have suggested a new tagging 
algorithm that uses morphological rules to tag the 
words. As it was described, this algorithm doesn't 
need any built in knowledge and can tag unknown 
words. This tagger is domain independent because 
morphological rules are the same in all the domains. 
To use morphological rules we extracted them from 
related references (Kalbasi, 2001; Anvari & Ahmadi 
givi, 1997; Mogharabi, 1994). and then we have 
calculated their probabilities by statistical methods. 
The proposed algorithm only deals with the internal 
structure of the words and we don't pay attention to 
the situation of the word among the other words in 
the same sentence. It is suggested to apply syntactic 
rules to reduce the ambiguities of this tagger.  

As it was mentioned, at the beginning of the 
tagger's process our lexicon is empty. Although this 
eliminates the bottleneck of lexicon acquisition and 
the need to a preconstructed lexicon, it makes the 
tagger's work, more difficult. If we enter some entries 
in the lexicon there would be fewer ambiguities in the 
tagging. Also this tagging algorithm is proposed to 
tag unknown words and if it is used in combination 
with the other algorithms described in section 2 the 
results would be more accurate.  
 

7. References 
Jurafsky,D, H.Martin, J. (2000). Speech and 

Language Processing. Prentice Hall, New Jersey. 
Megerdoomian,K. (2004). Developing a Persian Part 

3459



of Speech Tagger, First Workshop on Persian 
Language and Computers, Iran. 

Kalbasi,I.(2001), The derivational Structure of Word 
in Modern Persian, Institute for Humanities and 
Cultural studies, Tehran, Iran. 

Anvari, H., Ahmadi givi, H. (1997). Persian 
Grammar, 2nd ed., vol. 2, Fatemi, Tehran, Iran. 

Megerdoomian, K. (2004). Finite-State 
Morphological Analysis of Persian, Coling 2004, 
University of Geneva. August. 

Mogharabi, M. (1994). Synthesis in Persian, Tous, 
Tehran, Iran. 

 

3460


