Ngram Search Engine with Patterns Combining
Token, POS, Chunk and NE Information

Satoshi Sekine
Computer Science Department
New York University
sekine@cs.nyu.edu

Kapil Dalwani
Computer Science Department
Johns Hopkins University
kapildalwani@gmail.com

Abstract

We developed a search tool for ngrams extracted from a very large corpus (the current system uses the entire Wikipedia, which has
1.7 billion tokens). The tool supports queries with an arbitrary number of wildcards and/or specification by a combination of token,
POS, chunk (such as NP, VP, PP) and Named Entity (NE). It outputs the matched ngrams with their frequencies as well as all the
contexts (i.e. sentences, KWIC lists and document ID information) where the matched ngrams occur in the corpus. It takes a fraction
of a second for a search on a single CPU Linux-PC (1GB memory and 500GB disk) environment.

1. Introduction

We developed a search tool for ngrams extracted from a
very large corpus (the current system uses the entire
Wikipedia, which has 1.7 billion tokens). The tool
supports queries with an arbitrary number of wildcards
and/or specification by a combination of token, POS,
chunk (such as NP, VP, PP) and Named Entity (NE). It
outputs the matched ngrams with their frequencies as
well as all the contexts (i.e. sentences, KWIC lists and
document ID information) where the matched ngrams
occur in the corpus. It takes a fraction of a second for a
search on a single CPU Linux-PC (1GB memory and
500GB disk) environment.

This system is an extension of the previously published
ngram search engine system (Sekine 08). The previous
system can only handle tokens and unrestricted
wildcards in the query, such as “* was established in *”.
However, being able to constrain the wildcards by POS,
chunk or NE is quite useful to filter out noise. For
example, the new system can search for
“NE=COMPANY was established in POS=CD”. This
finer specification reduces the number of outputs to less
than half and avoids the ngrams which have a comma or
a common noun at the first position or location
in-formation at the last position.

The new system can output information on the
documents from which the matching ngrams are
extracted. In the current system, which uses the
Wikipedia, the document information is the title of the
Wikipedia page. For example, we can often find the
person name in the title for the matched ngram for “He
was born in *”. Also, it is useful to have a back pointer
to the entire article containing the matched ngrams to see
the wider contexts.

The structure of the index is completely changed from
the trie structure of the earlier system to an inverted
index structure combined with an additional checking
mechanism. The index size has been reduced greatly,

from 2.4TB to 500GB, with a minor sacrifice in search
speed.

2. Background

Large-scale linguistic knowledge discovery is needed to
support semantic analysis for NLP applications. This is
the so-called “knowledge bottleneck™ problem and many
researchers have tried to solve the problem using
statistical methods on a large corpus (Hearst 92) (Collins
and Singer 99) (Brin 99) (Hasegawa et al. 04). For
example, a lexico-syntactic pattern, like “NP such as NP”
can extract hyponym relationships (Hearst 92), and
contexts between two named entities can indicate a
relationship between those names (Hasegawa et al. 04).
Now, one of the major problems is the search. We need a
capability for searching for patterns in a large corpus
which is both fast and as flexible as possible. One of the
solutions is to segment the entire corpus into small
pieces and assign a CPU to each segment to search for
the pattern, and gather the results in a map/reduce
paradigm. However, this approach requires a very large
number of machines, which is not affordable for many
academic researchers.

Another solution to the problem is to use available
search programs, such as Lucene. However, we need
flexibility, for example, we need the capability to exactly
match a query ngram with wildcards, and the capability
to provide additional information, such as POS, chunk
and/or NE. We found that it is possible to modify Lucene
in order to achieve our goal, but we concluded that it was
necessary to develop our own search system in order to
allow for future extensions.

Resnik’s system (Resnik 03) has similar functionalities
to the functionalities provided in this system, but we
believe we have improved on it in terms of scalability
and speed. The demo and the project web page are no
longer available.

2682

/ Neram search engine Internet Explorer

@@ v]EJ http://linservl.cims nyu.edu:23232/neram_wikipedia2/ ‘ pelis
e BEE BT HRECAIE® UoMD AMIH - &
w e ‘g Neram search engine (wikipedia2) ';| ﬁ - g:g v | AR - 4’21' W)L} ~ 22
o
Ngram Search Engine (wikipedia2)
‘:I'OKEN{ l* ‘ l* i\‘was |married ‘ \jrin] :(* [‘ ‘
| Pos| [Il Il Il loo] |
| Chunk | I I[Il I] 1 |
| NE:[person [[person || I Il Il Il
Number of output : [1000
Frequency threshold : |0
Qutput style : O Sentence O KWIC @& Ngram
Output type : [¥] Token [J POS [Chunk [J NE [DocID (Sent/KWIC only)
Print format: O Text ® Tahle
M
R-IfiFTEnFELE @ 2B—Ryh #1008~

Neram Search Engine (wikipedia2) result

Figure 1. Query page

Windows Internet Explorer

~ | €] http//insers bin/neram_wikips ¥ [4}[x] [Gooe |2~
TAME FEE BRY BRCAOE UMD ANTH @-
U & | @ Neram Search Eneine (wikipedia?) result \7‘ - 5 - RO - G -
3
|@TOKEN 1 John Vanbrugh |was married i 1719
|@ToKEN 1 Charles Meredith |was married i 1893
|@TOKEN 1 Peter |Tung [was married in 2005
|@TOKEN 1 Sir Heary [was married in 1962
|@TOKEN 1 Lord [Kitchener was married in 1877
|@TOKEN 1 Prince |George |was married in 1907
|@TOKEN |1 Queen Mary was married in 1554
|@TOKEN 1 De Sola [was married in 1819
|[@TOKEN 1 De Quincey |was married i 1816
@TOKEN |1 Daniel Walker |was married i 1947
|@TOKEN 1 woman [who was married i 1816
|@TOKEN 1 Francis Bacon was married i 1606
|@TOKEN 1 Frederick Henry [was married in 1625 '
|@TOKEN 1 Keith [Falkner |was married in 1930
@TOKEN |1 Ernest Sipes was married in :
|@TOKEN 1 Ruth |Gemmell |was married in
|[@TOKEN 1 Malcolm [Pasley was married i
@TOKEN |1 [Chen Xiangmei was |married |in
i Lt Pritt was married in
h Julie Legrand |was married i 2005
i Julia Compton 'was married in 1949
[Marco [Sassone fwas married iin 1972 s
InETENELE @ r—ioh 1008 -

Figure 2. Output Page (ngram)

2683

/@ Ngram Search Engine (wikipedia2) result - Windows Internet Explorer

M=

@’]v [@] httoe//linservi cims.nyu.edu:23232/cg

#UZAD @ Ngram Search Engine (wikipedia... ‘ |

w

-bin/ngram_widpedia2/vikipedic =] [62]] | 0 "

ol

Abdul Aziz al-Hakim

George Borowski

assassinated in August 2003 in Najaf .
#BOS# Background #BOS#

who may have been a reference to
Borowski . #BOS#

He was born in 1950

He was born in 1950

. the son of Grand Ayatollah Muhsin
Al - Hakim

. in Wrexham in North Wales to
Russian and Polish

Dinu Patriciu

Lou Jiwei

Andrew Ridgway

Steve Houben

Oleg Betin

member of the National Liberal Party of .
Romania . #n0ss He was bom in 1950

Biography #BOS# Lou is a native of
Beijing . #BOSH

14 June 2006 after a long military :;E;sré [eawassamin 1050

Houben is a Belgian jazz saxophonist and
flutist . #BOS#

He was born in 1950

He was born in 1950

. #BOS# He is a member of NDR . #£BOS# He was born in 1950

. is married and has two daughters :
a an

. joined the Communist Party of

China in 1973,

. educated at Hele 's School ,

Exeter ,

- #BOS# In the mid 1970s , he

attended the

. #BOS# In 1995 he became

governor . ¥BOS¥ He

the soundtracks of the Lupin III anime

. #BOS# He also contributed his

ChalisRuses series . #BOS# 1 s PO I 1950 (g o e English
David Kruz| °F several books regag:iz;% \L;;: ‘_A:igg;: IHe was born in 1950 :::ir l:vvas raised in Little Falls , New
Frank McDonald Environment Editor ::‘g g;# l.]r_xisfg I}‘;m(:; He was born in 1950 g::; ::luf:étzsr :l Kelly ' s Private
Patric Laurence Dickinson * Fucmond Herald of Ams in Ordinary |11, o oy iy 1950 |0 educated at Marling Scbool in

elected to 13th Lok Sabha from Andaman

in 24 Parganas in West Bengal .

Bidhuy Pada Ray and Nicobar Islands ¢ ¥2 P8 1950 4p064 piernal links
| Eagby #BOSH David Eggby is a British ” n London . #BOSH He received the
David Eggby cinematographer . #BOs# (e Wasbomin 1950 oo o erapher of the
David Unger| * fmovs Guatemaen” American s e was bomin 1950 1,02 S #BOSF In -

Figure 3. Output Page (KWIC with Doc ID)

Search Inverted index

request

for n-gram data

Suffix array
for text
N-gram data

Wikipedia text

POS, chunk, NE
for
N-gram data
Wikipedia
POS, chunk, NE

Figure 3. Data and Algorithm Overview

3. Snapshot

The Figures 1, 2 and 3 show a snapshot of the system.
Figure 1 is the query page. Figure 2 is the output page of
ngram output and Figure 3 is the output page of KWIC
output with document ID (i.e. Wikipedia entry title).

In the query page (Figure 1), the user types the query
ngram with tokens, POS’s, chunk or NE information up
to 7gram. The user can also specify the number of
outputs, the frequency threshold (the minimum
frequency to be displayed), the output style (sentence,
KWIC or ngram), the output type (token, POS, chunk,
NE and/or document information in case of sentence or
KWIC output) and the print format (in text or table). The
output will be displayed according to the specifications.

4. Data and Search Algorithm
4.1 Data

We used Wikipedia as the target corpus in the current
system. Google Ngram can also be used, but because it
doesn’t contain the original sentences, we chose
Wikipedia and create ngram data out of it by ourselves in
order to show the original data from where the ngrams
are extracted. It is static html documents of Wikipedia as
of 18:12, June 8, 2008 version, provided at the following
URL http://static.wikipedia.org/downloads/2008-06/en/.
It has 1.7 billion tokens, 200 million sentences and 2.4
million articles. The sentences were tagged by the
Stanford POS tagger and NE tagger (Stanford tagger),
and assigned chunks by the OAK system (OAK system).
The same data (actually, the current data available at the
site has more annotations than the data explained here)

is available at the following URL:
http://nlp.cs.nyu.edu/wikipedia-data.

The numbers of distinct ngrams are shown in Table 1.
The numbers are comparable to the Google ngram data,
as we have no frequency threshold. We made up to
7grams instead of Sgrams in Google ngram. We did not
collapse the digits unlike Google Ngram data.

Table 1. Number of distinct ngrams

N Wikipedia Google
ngrams ngram

1 8M 13M

2 93M 315M

3 377TM 977TM

4 733M 1,314M

5 1,006M 1.176M

6 1,173M -

7 1,266M -

0 30

#: frequency threshold

4.2 Algorithm Overview

Figure 3 shows the overview of the steps in the ngram
search engine and the data. Basically, there are three
steps in the search, 1) searching candidates, where the
system search candidate ngrams which matches to the
query using tokens, 2) filtering, where the candidate
ngrams are filtered using the constraint of additional
information (POS, chunk and NE), and 3) displaying the
results to the user. In the following subsections, we will
describe each step and data in detail.

2684

4.3 Search Candidate

Searching candidates is the first step in the search. It tries
to make a list of matched ngrams using an inverted index
for the tokens given in the query. Because of this, the
query needs to have at least one token. Inverted index is
a standard technique to search items. In our case, the
inverted index is created for tokens at each position of all
length of ngrams (note that we have unigram to 7gram in
the data). The inverted index essentially contains a set of
ngramIDs that have a certain token at a certain location
of certain length of ngram. Because the number of
ngrams for each index are varid (from 55 million which
is the number of “,” at a certain position, to the number
of very infrequent (e.g. singleton) tokens, such as
“Mizuk” or “consiety”. In order to save time and disk
space, we used three types of posting list (inverted index
for tokens) implementations; bitmap, list of ngram IDs
and encoding into pointer in the case of singletons.

The bit map technique is used only those whose
frequency is more than 1% of all the ngrams. For
example, the number of distinct 7grams is 1.27 billions,
tokens whose frequencies are more than 12.7 million use
this strategy. Because of the implementation time
limitation, we did not use any compression technique.
We used 1.27 billion bits in case of 7gram, and the bit
corresponding to a certain ngramID is on (1), if the
ngram has the token at the certain position. Looking up
the information is very fast, despite the length of the
inverted index for the token.

If the frequency of the token is one (singleton), we put
the information in the area of pointer by setting up the
top bit on (Note that the maximum number of ngram,
1.27 billions can be expressed by 31 bits).

Otherwise, we use a list. Because the list can be created
in advance, we can use the static list, instead of dynamic
link list which needs more space.

When there are more than two tokens in the query, we
have to match the lists. Matching two lists of length n
and m can be implemented in min(O(n+m), O(n log(m)),
O(m log(n))). Unless n or m is very small, we need to
use the matching algorithm by looking at the list
sequentially in time O(n+m), which is not very fast even
we can sort the index in advance. In order to speed up
the index matching, we implemented “look ahead”
algorithm (Moffat and Zobel 96). Once we find a match,
we skip some of the elements in the list and jump to the
element at a certain distance. If the new element found
by jumping is still smaller than the element we are
currently looking for, we can earn the time of looking the
skipped elements. If the jumped element is bigger than
the one we are looking for, we will go back to the
original position and searching continues from the next
element. It wastes only one look up. Based on the
algorithm, it is empirically most efficient to look ahead
the square root of the index size when you advance the
pointer at the index matching.

4.4 Filtering

The second step, filtering, is needed to match the ngram
to the requested POS, chunk and/or NE information. If
we implement all those information for each ngram using
one byte each, we need 21 extra bytes in case of 7gram.
It results in 27GB. So, we encoded the information by
combining the information from the individual tokens of
each ngram. For example, for 7grams, the POS
information for the 7 tokens takes 7 bytes, if we record
the POS information for a single token in 1 byte.
However, the actual number of combinations of 7 POS’s
is not that large, because there are many ngrams that
have the same POS patterns. For example, the number of
POS pattern for 7gram is 125 million and the number of
POS patterns for 3gram is 61 thousand, which can be
encoded in less than 4 bytes, yielding a large reduction in
disk size (in total 200MB) .

We check if the candidate ngram can match the query by
finding the POS, chunk or NE information satisfy the
query, if such information is requested.

4.5 Display

The third step, display, is done once the ngrams to be
displayed are found. The use can specify the following
information in addition to the ngram query.

Number of output (default 1000)

Frequency threshold (default 3)

Output style: sentence, KWIC or Ngram

Output type: token, POS, chunk, NE, DocID
User can specify multiple types
DocID can work only for sentence and KWIC
® Print format: text, table (html-table)

Display will be done according to the choice of those
options.

The ngrams is sorted in the order of frequency in
advance so that it can easily display the ngrams in the
order of frequency. The suffix array is used to display
the sentence and KWIC list quickly. Each ngram has
information of the starting position and ending position
in the suffix array it matches, so it can find the matched
sentences very quickly. The POS, chunk and NE
information is stored in parallel to the text information so
that it can be displayed quickly when it is requested.
Document information, including the title of the
document (in our case the title of Wikipedia page) is
displayed using the offset information in the text.

4.6 Data Size

We use 6 kinds of data as shown in Figure 6. Inverted
index is used in the candidate search and its size is
108GB. It contains bit map index and list index. The

2685

ngram data, including the token information and the
position in the suffix array is 260GB. It is POS, chunk
and NE information for unigram to 7gram, which is used
in the filtering, is 100GB. As is explained in section 4.4,
the information is compressed. The size of suffix array
and text data is 8GB each (as each token and pointer is
encoded in 4 bytes and the total text is 1.7 billion) and
the size of POS, chunk and NE information is 2GB each
(as each information is encoded in 1 byte). The size of
other information, such as document information,
dictionary information, POS, chunk and NE label
information etc, is 40GB. So, the total data size of the
system is about 500GB. We understand the size can be
reduced easily without a big loss of the speed and
usability.

Size of data

Text

1.7 G words
200M sentences
2.4M articles

1:8M
2:93M
3: 377M
4:733M
5:1.008
6:1.17B
7:1.27B

Figure 4. Data size

5. Evaluation and Demo System

In order to evaluate the accuracy and the speed of the
system, we created 600 sample queries and test the
system. The samples are extracted from existing ngrams,
replacing zero to two tokens by wildcards, POS, chunk
or NE randomly and seeing if the original ngram is
included in the searched results. Note that it is possible
to include extra ngrams because of generalization, but it
should not be judged as error. The system runs without
any incorrect output and the average runtime for each
query was 0.34 second. The demo system is avail-able at
the following URL. We have already received requests
to index different corpora (including Open American
National Corpus).

Demo URL: http://nlp.cs.nyu.edu/nsearch.

6. Future Work

The future work includes the following:

1. Including other information
We are planning to implement a search engine using
structured data, such as dependency or parse. For

example, “tgrep” in Penn Treebank provides this
functionality, but we believe our implementation can
improve the scalability and the search speed.

2. Longer ngrams
Our current implementation can be extended to longer

ngram search, compared to the previous implementation
using trie structure. The longer queries are desirable for
semantic knowledge discovery.

3. Smaller index

We have observed that the index can be reduced without
great loss of speed. For example, the bitmap
implementation is can be compressed by a standard
compression technique, but also ngram data and other
data can be candidates of more compression.

4. Reduce the indexing requirements

The current index creation needs a machine with a large
memory. We used a machine with 96GB memory. This
is not desirable if people want to use this search engine
on many different corpora. We would like to find method
for indexing in smaller memory machine.

7. References

Michael Collins and Yoram Singer. “Unsupervised
Models for Named Entity Classification”. 1998. In
Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP-99).

Marti A. Hearst. “Automatic Acquisition of Hyponyms
from Large Text Corpora”. 1992. In Proceedings of
Conference on Computational Linguistics
(COLING-92), Nantes, France.

Takaaki Hasegawa; Satoshi Sekine; Ralph Grishman
“Discovering Relations among Named Entities from
Large Corpora”. 2004. In the proceedings of
Association of Computational Linguistics (ACL-04).
Barcelona, Spain

Alistair Moffat and Justin Zobel. “Inverted Files for Text
Search Engines”. 2006. ACM Computing Surveys,
38(2):1-56, July 2006.

Philip Resnik and Aaron Elkiss. “The Linguist's Search
Engine: Getting Started Guide”. 2003. Technical
Report:
LAMP-TR-108/CS-TR-4541/UMIACS-TR-2003-109,
University of Maryland, College Park

Satoshi Sekine. “A Linguistic Knowledge Discovery
Tool”. 2008. In Proceeding of COLINGOS.

Stanford
http://nlp.stanford.edu/software/tagger.shtml

OAK system: http://nlp.cs.nyu.edu/oak

Wikipedia tagged data:
http://nlp.cs.nyu.edu/wikipedia-data

tagger:

2686

