
Indexing Methods for Faster and More Effective Person Name Search

Mark Arehart

The MITRE Corporation
7515 Colshire Dr., MS H305

McLean, VA 22102
marehart@mitre.org

Abstract
This paper compares several indexing methods for person names extracted from text, developed for an information retrieval system with
requirements for fast approximate matching of noisy and multicultural Romanized names. Such matching algorithms are computationally
expensive and unacceptably slow when used without an indexing or blocking step. The goal is to create a small candidate pool containing
all the true matches that can be exhaustively searched by a more effective but slower name comparison method. In addition to dramatically
faster search, some of the methods evaluated here led to modest gains in effectiveness by eliminating false positives. Four indexing
techniques using either phonetic keys or substrings of name segments, with and without name segment stopword lists, were combined
with three name matching algorithms. On a test set of 700 queries run against 70K noisy and multicultural names, the best-performing
technique took just 2.1% as long as a naı̈ve exhaustive search and increased F1 by 3 points, showing that an appropriate indexing
technique can increase both speed and effectiveness.

1. Introduction
1.1. Matching Proper Names in Text
The search algorithm described here was developed for
the Defense Advanced Research Projects Agency1 Tactical
Ground Reporting (TIGR) System, a “multimedia geospa-
tial information management system”2. The goal was to
supplement a generic text search capability with intelligent
fuzzy matching of Romanized names. Because the reports
contained in the system are unstructured, names must first
be extracted from the text and indexed, a process described
by (Miller et al., 2010).
The names extracted from TIGR reports have multiple lin-
guistic and cultural origins and are commonly entered by
users lacking linguistic expertise. Although various stan-
dards exist for the representation of Romanized names, it is
not practical to expect that such standards can be enforced
among a large nonspecialized user community. The name
comparison function must therefore account for substantial
spelling variations due not only to the data entry errors ex-
pected to be found in any reporting system, but also due
to inconsistent transliteration and representation of foreign
names. Another potential source of error is the name ex-
traction process, which could introduce incomplete names
or non-name tokens to the name index, but accounting for
such errors through adjustments to the name matching al-
gorithm is beyond the scope of this research.
The additional search effectiveness could not come at the
cost of prohibitive response times for users querying the
system. It was therefore necessary to balance accuracy
with the additional computational cost of the fuzzy match-
ing algorithm and to identify techniques for mitigating that

1This research was funded by DARPA contract no. W15P7T-
10-C-F600. The views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and should
not be interpreted as representing the official views or policies,
either expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense. Approved for
Public Release, Distribution Unlimited.

2See http://www.darpa.mil/ipto/programs/assist/assist tigr.asp

cost. This paper is therefore a component-level evaluation
of both the speed and effectiveness of the name search al-
gorithm.

1.2. Blocking and Indexing

The field of record linkage (also sometimes known as
database deduplication or entity resolution) has long recog-
nized that it is impractical when resolving a large data set
or merging multiple ones to compare every record to every
other record. Comparison operations are expensive, often
involving approximate matching techniques or the combi-
nation of evidence from muliple fields (in the case of struc-
tured recrods). The most serious problem, however, is that
the number of candidate record pairs grows quadratically
with the size of the dataset or sets.

The number of pairs that must be compared by an expen-
sive function can be reduced through blocking, which refers
to dividing the records into groups (blocks) based on one
more more shared attribute values, such as postal code or
surname (Newcombe, 1988; Winkler, 1999; Winkler et al.,
2006; Baxter et al., 2003; Christen, 2007; de Vries et al.,
2009). In applications that match strings rather than struc-
tured records, the blocks can be based on substrings or
phonetic keys, e.g. (Zobel and Dart, 1995; Cohen et al.,
2003a), which is the approach taken here. An expensive but
finer-grained comparison method is applied only to records
within a block. Closely related are statistical techniques for
clustering records, which can be based on fast but approxi-
mate distance measures (Mccallum et al., 2000).

Research in information retrieval has addressed the re-
lated problem of performing approximate matching of short
query strings against large texts or vocabularies, using in-
dexes constructed from substrings (Pfeifer et al., 1995;
Navarro et al., 2001). The problem addressed in this pa-
per is that of matching a query string against a list of names
extracted from text, though it is applicable to matching a
query name against a name field in a structured record.

3601



1.3. Comparison Algorithms
Given a set of match candidates, there are numerous com-
parison algorithms for names, including phonetic keys,
n-gram matching, edit-based measures (with fixed, vari-
able, or learned edit costs), and frequency-based mea-
sures (Winkler, 1990; Zobel and Dart, 1995; Ristad and
Yianilos, 1998; Bilenko and Mooney, 2003; Cohen et al.,
2003a; Cohen et al., 2003b; Christen, 2006). The algo-
rithms evaluated in the research community are typically
derived from generic string-matching techniques. Com-
mercial products employ proprietary algorithms that may
be highly knowledge intensive, for example by incorporat-
ing hand-compiled dictionaries of nicknames and spelling
variants. Various U.S. government agencies have devel-
oped their own in-house algorithms as well, such as the
U.S. National Security Agency’s Aladdin Name Matcher3.
A comprehensive survey is beyond the scope of this paper.

1.4. Test Sets
Many previous evaluations of name matching algorithms
have been based on data sets that are not appropriate for
our use case. These sets are too small, include only sur-
names, contain too few sources of variation, or include
strings other than person names. Some examples are 14K
surnames (Pfeifer et al., 1995), 32K surnames with primar-
ily typographical errors (Zobel and Dart, 1995), 13K strings
including names of restaurants, businesses, and birds (Co-
hen et al., 2003a; Cohen et al., 2003b), and fewer than
4K restaurant and citation records (Bilenko and Mooney,
2003). Data sets used in record linkage research, while
larger, usually contain multiple fields such as name, ad-
dress, and SSN (Winkler et al., 2006) and are not directly
applicable here.

2. Methods
2.1. Search Algorithm
The search algorithm issues a name query against a collec-
tion of name records, which represent preprocessed (nor-
malized for case and whitespace) and tokenized (on white-
space) full name strings. Indexing consists of generating
keys for the name segments (for those segments that are
not in a stopword list) and populating a mapping from the
key strings to sets of name records. During index lookup,
database records are retrieved using the keys generated
from the query record. The number of key matches is stored
for each index record, to be used as an additional filter
during the matching step. If the query and index record
both have three or more name segments, there must be at
least two matching keys. For instance, John Alan Smith
and Sarah Amy Smith, which match only the final segment,
would not be compared. However, John Smith and Sarah
Smith would be compared, because only one key match is
required in this case.
Initial experiments showed that this filter was needed to
prevent the selection of large numbers of spurious candi-
dates when dealing particularly with Arabic names, which
often contain three or more segments. In order that this

3See http://www.nsa.gov/research/tech transfer/fact sheets/
aladdin name matcher.shtml

// Indexing
for all name records n do

for all name segments s in n do
if s /∈ stopword list then

for all key strings k in keyFunc(s) do
if k /∈ index then
index[k]← ∅

add n to index[k]
// Lookup
for all name segments s in query rec do

if s /∈ stopword list then
for all key strings k in keyFunc(s) do

for all index records r in index[k] do
if r /∈ lookup then
lookup[r]← 0

increment lookup[r]
// Matching
q ← numNameParts(query rec)
for all index records r in lookup do

if q < 3 or numNameParts(r) < 3 or
lookup[r] > 1 then
score← nameSimilarity(query rec, r)
if score ≥ threshold then

result[r]← score

Figure 1: Name indexing, lookup, and matching.

Method Description
None No indexing
Exact Name segment without modification
Prefix First 4 characters of segment
Metaphone Metaphone key of segment
Custom A custom phonetic key

Table 1: Indexing methods.

heuristic not be too strict, initials are not counted as name
segments. Thus the name John A Smith would only require
one key match against another three-part name in order to
be added to the candidate pool. The procedure is shown in
the pseudocode in Figure 1. The parts that were varied in
the experiments include the stopword list (whether one was
used or not), the key function, and the comparison function.

2.2. Indexing

Table 1 lists the key functions used for indexing. Meta-
phone is a phonetic key described in (Philips, 1990)4. Base-
line runs without any indexing were also performed. The
custom key, developed for this project primarily to target
observed variations in the transliteration of Arabic names,
performs the following letter replacements: DZ to J, ZH to
CH, Z to S, G to K, Q to K, C to K, and V to F. It also
reduces double consonants, normalizes vowels to a single
symbol, and removes initial and final vowels.

4Metaphone implementation from Apache Commons Codec:
http://commons.apache.org/codec/.

3602



2.3. Stopwords
Some name segments function as syntactic elements rather
than personal identifiers. An example is the Arabic par-
ticle bin, which means “son of”. The name Ahmed Bin
Mohammed consists of three segments but only two name
parts: Ahmed and Bin Mohammed. Indexing the segment
bin might result in spurious candidates. Arabic names con-
tain several such high frequency particles, so the indexing
methods were tried with and without the following stop-
word list: Bin, Ben, Ibn, El, Al, Abd, Abu, Abdul, Abdel,
and Abdal.

2.4. Name Comparison Functions
Three comparison functions were tested. JaroWinkler
(Jaro, 1989; Winkler, 1990) and Level 2 JaroWin-
kler (Monge and Elkan, 1996) represent generic string-
matching baselines5. JaroWinkler compares two names
as single strings, whereas Level 2 JaroWinkler tokenizes
them, using the JaroWinkler metric to compare token pairs.
For the Level 2 metric, each query token is compared to all
the index tokens, and for each query token the maximum
pairwise score is saved. The overall similarity score is the
average pairwise score. This algorithm has peculiar proper-
ties in the context of matching names. For example, a sin-
gle token in the index name may be matched to more than
one token in the query name. Also, because the names are
treated as bags of tokens, there is no penalty for reordering
of name segments.
In addition to these generic routines, a previously devel-
oped custom name-matching algorithm was tested. The
custom algorithm, Romarabic (Freeman et al., 2006), is
specialized for Romanized Arabic names, which are heav-
ily represented in the test set and important to the end users
of the information retrieval system. It identifies multi-
segment name parts like Bin Mohammed, as discussed in
the previous section, and matches them as units. It also em-
ploys a dictionary of similarity values for common translit-
eration variants. The algorithm backs off to Levenshtein
edit distance for unrecognized name segments. After com-
puting the similarity values among all the name parts in two
names, it finds the optimal alignment (the most computa-
tionally intensive part of the algorithm). The alignment de-
pends both on the pairwise similarity scores and the amount
of reordering. The details of the algorithm and its imple-
mentation are beyond the scope of this paper. For present
purposes, it can be viewed as a black box that offers higher
effectiveness at the cost of slower performance, which must
be ameliorated by one of the blocking techniques evaluated
here.

3. Results
3.1. Test Corpus
The test set contains approximately 70,000 culturally di-
verse Romanized names matched against a subset of 700.
The largest groups of names are Arabic, Anglo, and His-
panic, followed by Chinese, Korean, Russian, and South-
west Asian (including Farsi, Afghani, and Pakistani). The

5JaroWinkler implementations from SecondString:
http://secondstring.sourceforge.net/.

Indexing SW ms P R F
None n/a 326 0.82 0.26 0.39
Exact no 10 0.84 0.25 0.39
Exact yes 9 0.84 0.25 0.39
Prefix no 11 0.83 0.25 0.39
Prefix yes 10 0.83 0.25 0.39
Metaphone no 17 0.83 0.25 0.39
Metaphone yes 14 0.83 0.25 0.39
Custom no 26 0.83 0.25 0.39
Custom yes 21 0.83 0.25 0.39

Table 2: JaroWinkler results (SW = stopwords).

name list, drawn from publicly available sources, was man-
ually seeded with over 1500 name variants. These variants
include transliteration variation, database fielding errors,
segmentation differences, incomplete names, titles, initials,
abbreviations, nicknames, typos, OCR errors, and truncated
data. These diverse types of matches, along with the coinci-
dental name similarities already in the list, provide a variety
of match types and make the evaluation data appropriate for
the present use case of matching noisy multicultural names.
It was designed to test the limits of existing name match-
ers and to reveal differences between generic string match-
ing algorithms and techniques designed specifically for per-
son names. The construction of the corpus, which utilized
TREC-style pooling and adjudication methods, has been
described in previous work (Arehart and Miller, 2008).

3.2. Timing and Accuracy
Timing runs were performed on a system with a 2.4GHz In-
tel processor. As all of the indexing and comparison func-
tions were implemented in Java, profiling was performed by
recording the output of Java’s System.currentTimeMillis()
function before and after each run, including the startup
time of indexing the name list. Precision and recall are
calculated on a microaveraged basis by aggregating results
across the batch of queries, rather than by averaging preci-
sion and recall for each query. Precision and recall values
are reported for the threshold that yielded the highest F1
score.
Table 2 shows results for JaroWinkler. Without indexing,
queries took an average of 326 milliseconds. With index-
ing, the time was reduced to between 9 and 26 ms. The
use of indexing and choice of method, with or without stop-
words, had no appreciable impact on effectiveness. In every
case, the use of stopwords increased speed. However, the
effectiveness of JaroWinkler was not considered adequate
for the target application.
Table 3 shows results for Level 2 JaroWinkler, which was
3 to 3.5 times slower than JaroWinkler alone. Although
F1 was about the same, it offers a better balance between
precision and recall. In the case of exact indexing, the use
of stopwords led to an appreciable 5 point increase in F1,
thanks to a 24 point jump in precision presumably caused
by eliminating false positives from the candidate pools.
Nevertheless, this algorithm was also not sufficiently effec-
tive.
Results for Romarabic are shown in Table 4. The algorithm

3603



Indexing SW ms P R F
None n/a 1148 0.47 0.36 0.40
Exact no 33 0.46 0.35 0.40
Exact yes 27 0.70 0.33 0.45
Prefix no 35 0.47 0.36 0.40
Prefix yes 30 0.47 0.36 0.41
Metaphone no 53 0.47 0.36 0.40
Metaphone yes 45 0.47 0.36 0.40
Custom no 79 0.47 0.36 0.40
Custom yes 61 0.47 0.36 0.41

Table 3: Level 2 JaroWinkler results.

Indexing SW ms P R F
None n/a 13,419 0.58 0.56 0.57
Exact no 349 0.61 0.58 0.60
Exact yes 244 0.65 0.54 0.59
Prefix no 379 0.60 0.59 0.60
Prefix yes 279 0.60 0.59 0.60
Metaphone no 639 0.62 0.56 0.59
Metaphone yes 488 0.62 0.56 0.59
Custom no 985 0.61 0.56 0.59
Custom yes 667 0.62 0.56 0.59

Table 4: Romarabic results. Best run italicized.

is an order of magnitude slower than Level 2 JaroWinkler.
Among all indexing methods, the average time is 3.8% of
the time required without indexing. The use of stopwords
reduces time per query by an average of 28% compared to
the same indexing method without stopwords. The best-
performing method in terms of speed and effectiveness was
prefix-based indexing with stopwords, which scored three
F1 points higher than the exhaustive matching while taking
just 2.1% as long. This improvement in F1 is statistically
significant, with a p-value < 0.01. All of the indexed runs
had significantly higher F1 scores than the baseline run: the
metaphone and custom keys at the 0.05 significance level,
and exact and prefix keys at the 0.01 level. The differences
bewteen the indexing methods were not significant. The
significance levels were determined by using 5000 trials of
bootstrap resampling, as described in previous work (Are-
hart et al., 2008). That the simple prefix method performed
as well as the more knowledge-intensive phonetic codings
was an unexpected result.

4. Conclusion
Speed and accuracy are often discussed as a tradeoff, but
the results presented here show that simple segment-based
indexing methods, especially in conjunction with a name
segment stopword list, can dramatically speed up name
search without harming effectiveness. For Romarabic, the
most effective but slowest comparison method, indexing re-
duced query times to a level acceptable for the target in-
formation retrieval application, while modestly increasing
effectiveness by three F1 points. This research has also
stressed the need to use a large, diverse, and realistic name
corpus that is appropriate for the use case of the algorithm.

While this initial evaluation was based on a previously con-
structed corpus and an existing name comparison function,
future work will focus on customizing the algorithm for the
operational data found in the target system.

5. References
Mark D. Arehart and Keith J. Miller. 2008. A ground truth

dataset for matching culturally diverse romanized person
names. In Proceedings of the Sixth International Lan-
guage Resources and Evaluation (LREC’08).

Mark D. Arehart, Chris Wolf, and Keith J. Miller. 2008.
Adjudicator agreement and system rankings for person
name search. In Proceedings of the Sixth International
Language Resources and Evaluation (LREC’08).

Rohan Baxter, Peter Christen, and Centre For Epidemi-
ology. 2003. A comparison of fast blocking methods
for record linkage. In ACM SIGKDD’03 Workshop on
Data Cleaning, Record Linkage and Object Consolida-
tion, pages 25–27.

Mikhail Bilenko and Raymond J. Mooney. 2003. Adap-
tive duplicate detection using learnable string similarity
measures. In KDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pages 39–48, New York, NY, USA.
ACM Press.

Peter Christen. 2006. A comparison of personal name
matching: Techniques and practical issues. In Work-
shop on Mining Complex Data (MCD) at IEEE ICDM06,
Hong Kong.

Peter Christen. 2007. Towards parameter-free blocking for
scalable record linkage. Technical Report TR-CS-07-03,
Australian National University, August.

William W. Cohen, Pradeep D. Ravikumar, and Stephen E.
Fienberg. 2003a. A comparison of string distance met-
rics for name-matching tasks. In Proceedings of the
IJCAI-2003 Workshop on Information Integration on the
Web, pages 73–78.

William W. Cohen, Pradeep D. Ravikumar, and Stephen E.
Fienberg. 2003b. A comparison of string metrics for
matching names and records. In KDD Workshop on Data
Cleaning and Object Consolidation.

Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Chris-
ten. 2009. Robust record linkage blocking using suf-
fix arrays. In CIKM ’09: Proceeding of the 18th ACM
conference on Information and knowledge management,
pages 305–314, New York, NY, USA. ACM.

Andrew Freeman, Sherri Condon, and Chris Ackerman.
2006. Cross linguistic name matching in English and
Arabic: A ‘one to many mapping’ extension of the
Levenshtein edit distance algorithm. In Proceedings of
NAACL/HLT, pages 471–478, New York City.

Matthew A. Jaro. 1989. Advances in record-linkage
methodology as applied to matching the 1985 census of
Tampa, Florida. Journal of the American Statistical As-
sociation, 84(406):414–420.

Andrew Mccallum, Kamal Nigam, and Lyle H. Ungar.
2000. Efficient clustering of high-dimensional data sets
with application to reference matching. In Knowledge
Discovery and Data Mining, pages 169–178.

3604



Keith J. Miller, Sarah McLeod, Elizabeth Schroeder, Mark
Arehart, Ken Samuel, and James Finley. 2010. Improv-
ing personal name search in DARPA’s TIGR system. In
Proceedings of the Seventh International Language Re-
sources and Evaluation (LREC’08).

Alvaro E. Monge and Charles P. Elkan. 1996. The field
matching problem: Algorithms and applications. In In
Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, pages 267–270.

Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Sutinen,
and Jorma Tarhio. 2001. Indexing methods for approxi-
mate string matching. IEEE Data Engineering Bulletin,
24(4):19–27.

Howard B. Newcombe. 1988. Handbook of Record Link-
age: Methods for Health and Statistical Studies, Admin-
istration, and Business. Oxford University Press, Ox-
ford.

Ulrich Pfeifer, Thomas Poersch, and Norbert Fuhr. 1995.
Searching proper names in databases. In HIM, pages
259–275.

L. Philips. 1990. Hanging on the metaphone. Computer
Language, 7(12):39–43.

E. S. Ristad and P. N. Yianilos. 1998. Learning string-edit
distance. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 20(5):522–532.

William E. Winkler, William E Winkler, and Nov P. 2006.
Overview of record linkage and current research direc-
tions. Technical report, Bureau of the Census.

William W. Winkler. 1990. String comparator metrics and
enhanced decision rules in the Fellegi–Sunter model of
record linkage. In Proceedings of the Section on Survey
Research Methods, pages 354–359. American Statistical
Association.

William E. Winkler. 1999. The state of record linkage and
current research problems. Technical report, Statistical
Research Division, U.S. Census Bureau.

Justin Zobel and Philip W. Dart. 1995. Finding approxi-
mate matches in large lexicons. Software - Practice and
Experience, 25(3):331–345.

3605


