
A case study on interoperability for language resources and applications

Marta Villegas, Núria Bel, Santiago Bel, Víctor Rodríguez
Universitat Pompeu Fabra

IULA, Roc Boronat 138, 08018 Barcelona, Spain

E-mail: marta.villegas@upf.edu, nuria.bel@upf.edu, santiago.bel@upf.edu, victor.rodriguezferrera@upf.edu

Abstract

This paper reports our experience when integrating differ resources and services into a grid environment. The use case we address
implies the deployment of several NLP applications as web services. The ultimate objective of this task was to create a scenario where
researchers have access to a variety of services they can operate. These services should be easy to invoke and able to interoperate
between one another. We essentially describe the interoperability problems we faced, which involve metadata interoperability, data
interoperability and service interoperability. We devote special attention to service interoperability and explore the possibility to define
common interfaces and semantic description of services. While the web services paradigm suits the integration of different services very
well, this requires mutual understanding and the accommodation to common interfaces that not only provide technical solution but also
ease the user‟s work. Defining common interfaces benefits interoperability but requires the agreement about operations and the set of
inputs/outputs. Semantic annotation allows defining some sort of taxonomy that organizes and collects the set of admissible operations
and types input/output parameters.

1. Introduction

The research reported in this paper is part of the activities
carried out within the CLARIN (Common Language
Resources and Technology Infrastructure) project.
CLARIN is a large-scale European project to create,
coordinate and make language resources and technology
available and readily useable by the European
Humanities and Social Sciences (HSS) research
community. HSS researchers will be able to efficiently
access distributed resources and apply analysis and
exploitation tools relevant for their research questions.

The CLARIN infrastructure strongly relies on the SOA
(Service Oriented Architecture) approach to bring
together the range of resources and tools available in the
research community and make them accessible to others.
All these resources constitute a distributed computing
network or Grid.

In a Grid environment, researchers have access to Web
Services which enable them to execute services on a
remote system. Such architecture poses important
challenges that need to be addressed: interoperability and
integration between different tools and resources.

This paper reports our experience when integrating
different resources and services into a grid environment.

From now on, this paper is organised as follows: Section

2 describes the use case we implemented. In Section 3,

we describe the interoperability problems encountered

especially focusing on the service interoperability

problems. Section 4 is devoted to semantic annotations

of services as a way of easing service interoperability.

We first review some of the proposals from other

e-science projects and, afterwords, we describe and

exemplify our approach. Finally, in Section 5 we list our

conclusions and lessons learnt.

2. Use case

The use case we describe here originates from a real case
in our institution, where a researcher in historical
linguistics is doing research on the evolution of the
present perfect in different romance languages. She is
performing a diachronic study and therefore she needs
samples of these verbal constructions from different
periods of time. Currently, the task of getting these
primary data is not easy. Finding potential data providers
is a very time consuming task as (at least for old Catalan
and Spanish corpora) sources are rather small and
scattered and, besides, they have little visibility.

Usually, corpus providers offer their data as web
applications. Although, in essence, most corpus
applications provide the same kind of service, the fact is
that each application is different. Our researcher,
therefore, needs to fill in different web forms following
different instructions in order to get the desired data.
Moreover, the data she gets comes in different formats
and annotations which implies further efforts in data
harmonisation tasks.

To ease the situation described above, we decided to
build a data aggregator service that enables content
search (and analysis) of scattered annotated corpora. At
the moment, the aggregator accesses three Catalan
annotated corpora

1
, but we see it as an open application

where potential providers can be eventually plugged-in.
In this context, interoperability between scattered and
heterogeneous data and services is crucial.

The corpus aggregator needs to address the following
aspects:

Data collection: We need to supply a unique access
interface to scattered data in order to reduce the efforts
currently devoted to data collection tasks. It is important
to notice here that, although from the user perspective the

1

 These are: the Corpus textual informatitzat de la llengua catalana (CTILC at

http://ctilc.iec.cat/), the Corpus Informatitzat del Català Antics (CICA at

http://webs2002.uab.es/sfi/cica/) and the El Diccionari del Català Antic (DCA at

http://www.ub.edu/diccionari-dtca/).

3512

mailto:santiago.bel@upf.edu
http://ctilc.iec.cat/
http://webs2002.uab.es/sfi/cica/

complexity of the whole system may be hidden, the
system can not obviate this complexity and needs to
guarantee certain aspects. Thus, even though the user
may think that (s)he interacts with a unique repository
(thus being unaware of the fact that behind the prototype
there are different applications), the system needs to
guarantee that all collected data are correctly described.
This is especially important for journaling and tracking
tasks, to make future replications possible and to
guarantee correct citations.

Data integration: We need to guarantee interoperability
of data coming from different sources.

Data analysis: We need to easy the integration of
different NLP tools so that collected data can be analysed
as a unique occasional corpus. The NLP tools we
integrated include some basic statistical tools and a
concordancer. In addition, a PoS tagger was also needed
as some of the data were not annotated.

The overall architecture of the system includes three
main modules: (i) the Data Collection Module, which is
responsible for finding and getting the data the user
needs and constitutes the first step in the sub-corpus
building process, (ii) the Corpus Indexing Module,
which receives collected data and indexes them into a
unified temporal corpus and (iii) the Corpus Querying
Module, which enables querying and analysing the
corpus.

As we will see in much more detail in the next section,
the problems we faced derive from metadata
interoperability, data interoperability and services
interoperability.

3. Interoperability

In this section, we first describe the metadata and data
interoperability problems we have faced and, finally, we
focus on the service interoperability problems.

3.1 Metadata and Data interoperability

Dealing with metadata coming from different sources is
often difficult. In our case, for example, the three Catalan
corpora include some „date‟ metadata for document
description, but neither the label nor the used values are
common. In these cases, the use of standards is obviously
a must. As far as metadata are concerned, we assume that
the use of standards is the natural way to overcome
heterogeneity and we suggest for wrappers that mediate
between standards and „in-house‟ metadata.

Unfortunately, semantic typing is not always enough.
For example: the three corpora classify documents in
terms of „genre‟. In this case, we not only lack an agreed
genre classification tag set (or semantic typing) but also
an agreed classification framework. Thus, whereas in the
CICA corpus genre is encoded by means of a closed list
of admissible values, in the case of the IEC corpus, genre
is hierarchically organised.
Data interoperability is also complex as each corpus has
a different annotation format. This is not an exceptional
situation but rather a common one.

A survey we carried out on a set of 281 written corpora
taken from ELRA database and CLARIN registry
showed that only 30% of them reported some
information about the used standard.

Despite the figures show that the use of annotation
standards is far from being generalised, our approach
adheres to the principle: “use standards whenever
possible”. Thus we require that collected data are
annotated using MAF (Morpho-syntactic Annotation
Framework) and we developed wrappers that served to
accommodate provider‟s idiosyncrasies to the
aggregator.

As far as interoperability of (meta)data is concerned, the
corpus aggregator strictly adheres to standards. For those
cases where the usage of a given standard is far from
being a common practice, the standard is used as a sort of
pivot language.

3.2 Service interoperability

The use case described in 2 implies the integration of
different services into a large process or workflow.
Broadly speaking, the overall system includes: (1)
distributed metadata search, (2) corpus indexing process
and (3) corpus querying and analysis process.

For the distributed metadata search, we benefit from the
existence of the SRU

2
 protocol developed by the Library

of Congress. In 3.2.1 we briefly describe the protocol
and the way we integrate it into the overall system.

For the rest of the services to be integrated in the use case,
the situation is different as they are not web services
ready to be plugged in. In this case, some of the services
are well known applications such as the CWB (the IMS
Open Corpus Workbench

3
), FreeLing

4
, Apertium

5
 or

Weka
6
. Others are „in-house‟ tools developed in perl or

other script languages. In any case, they are all command
line tools that generally need to be locally installed and
executed. Prior to anything else, we had to deploy these
NLP tools as web services.

In 3.2.2 we introduce some of the decisions taken when
deploying these command line tools as web services. In
section 4 we give a much more detailed description.

3.2.1 Distributed metadata content search
SRU (Search/retrieve via URL) is a search and retrieval
protocol developed by the Library of Congress that uses
the Internet to carry the messages between user and
target. SRU enables searching remote systems having
different specific query syntax, database designs and
indexing conventions. The user‟s query is turned into a
standard format. Remote servers receive that standard
search message and translate it into the syntax that their
databases understand.

2 http://www.loc.gov/standards/sru/

3 http://cwb.sourceforge.net/

4 http://www.lsi.upc.edu/~nlp/freeling/

5 http://www.apertium.org/

6 http://www.cs.waikato.ac.nz/ml/weka/

3513

Essentially, the SRU request parameters include the
recordSchema and the query. The recordSchema
specifies the schema in which the records must be
returned. The query parameter contains a query
expressed in CQL (Contextual Query Language) which
is a formal language for representing queries to
information retrieval systems. CQL uses Context Sets in
order to ensure interoperability. Context sets enable CQL
users to create their own indexes, relations, relation
modifiers and boolean modifiers. Each context set has a
unique identifier. Registered context sets include Dublin
Core (DC) and MARC, among others.

Note that SRU protocol is a way to carry messages
between user and provider. What is crucial here is that
messages can be understood by both agents. Providers
need to translate the search message into something that
their databases can manage. In our case, providers prefer
to export their data as XML files and reload them in
Zebra

7
. Zebra is a digital library system which includes

interfaces for SRW/U and CQL.

The kind of metadata we use in our corpora aggregator is
rather simple and the DC context set is enough for our
purposes. Obviously, CLARIN will need more
sophisticated metadata descriptions but at the time we
worked with our prototype these were not fully
developed yet. We assume that further context sets will
be defined in order to include CLARIN metadata
descriptions

3.2.2 Web Services paradigm (common interfaces)
The ultimate objective when deploying NLP applications
as Web services was to create a scenario where our user
has access to a variety of services she can operate at her
will. In addition, such services should be easy to invoke
and be able to interoperate between one another if
necessary. These requirements led us to carefully
examine the approach to be followed and explore the
possibility to define common interfaces.

In computer science, interoperability is achieved by
separating interfaces from implementations.

SOAP web services are described using the W3C
recommendation WSDL (Web Services Description
Language). WSDL distinguishes between messages and
ports: messages are abstract and describe the syntax and
semantics of the service whereas, ports are concrete and
give the address where services are invoked. A WSDL
file can only include the abstract interface part, without
giving details about the concrete implementation part.

Having a standard (SOAP) interface means having an
agreed set of operations and their corresponding inputs
and outputs. This is the situation we find in industrial
business services: there is one common interface and
different implementations.

From the WS perspective three aspects are crucial when
dealing with common interfaces: (i) Equivalence of
functionality categorisations between WS, necessary to
ease searching of services and their interoperability. (ii)

7 http://www.indexdata.com/zebra

Compatibility of elements in I/O messages. (iii)
Compatibility of schema structures in message elements.

Interoperability and (re)usability require that we define
WS interfaces in a modular fashion separating between:

a) Type definition via XML Schemas (enabling type
sharing and reusing)
b) Message definitions
c) Binding (enabling multiple service bindings to the
same message)

WSDL not only enables modular publishing of services
but also adding semantics to the descriptions. A common
approach to web service discovery is the semantic
annotation of services usually based on some sort of
ontology. These annotations are then used for semantics
based search and discovery. In Section 4 we briefly
describe some of the approaches to semantic annotation
of web services in e-science.

4. Semantic annotation of services

4.1 Brief overview

There are different approaches to semantic annotation of
services (OWL-S

8
, SAWSDL

9
, WSMO

10
). They all

agree on using some sort of semantic model that is used
to annotate their services descriptions. These annotations
are eventually used for classifying, discovering,
matching, composing and invoking Web services.

OWL-S is an ontology meant to describe the properties
and capabilities of Web services. OWL-S covers
everything from service description to service grounding.
OWL-S relates ontological concepts to real
implementations.

WSMO also suggests an ontology based framework for
service description. The ontology provides the
terminology used by other elements of the framework. In
WSMO, every resource description is based on
ontologies and every data element interchanged is an
instance of the ontology. Additionally, WSMO includes a
description language WSML and an execution
environment WSMX. The WSML conceptual syntax is
used to model Ontologies, Web Services, Goals and
Mediators which are the main components of the
framework. WSMX is a software framework for runtime
binding of service requesters and service providers.
WSMX reads service requester‟s goal to discover
matching services and make the service invocation.
Optionally, WSMX provides data mediation for
interoperability purposes.

SAWSDL is a W3C standard for semantic annotation of
WSDL. SAWSDL provides standard means to relate
WSDL documents to semantic descriptions. SAWSDL
does not specify a particular semantic framework; rather
it defines a small set of extension attributes used to refer

8 OWL-S, Semantic Markup for Web Services.

http://www.w3.org/Submission/OWL-S/.

9 Semantic Annotations for WSDL and XML Schema. http://www.w3.org/TR/sawsdl/.

10 Web Service Modelling Ontology. http://www.wsmo.org/

3514

to constructs. These constructs may belong to any
external semantic framework.

Semantic descriptions of services need to be linked to the
corresponding syntactic descriptions (the WSDL file).
This linking is commonly known as grounding and can
be performed in different ways: either the grounding is
performed in the semantic model or in the syntactic one.
OWL-S and WSMO describe grounding at the semantic
layer but also allow expressing grounding at the syntactic
layer by using the SAWSDL capability to extend WSDL.
In OWL-S and WSMO, therefore, grounding is specified
with links from the semantic descriptions and
additionally allow semantic annotations in WSDL

Within the Bioinformatics field, we find more
lightweight approaches. The MyGrid semantic model
(Wolstencroft et al., 2007) distinguishes between Grid
Service Ontology and Grid Domain Ontology which acts
as controlled vocabulary for the model. Contrary to
OWL-S and WSMO approaches, in the MyGrid Service
Ontology invocation details are not included. Semantic
services descriptions are encoded in XML documents
conforming to the data model. This approach avoids
much of the complexity of OWL-S based descriptions.

In the MyGrid Service Ontology, operations play a
crucial role. Operations are essentially described in terms
of the task they perform, the method and resource they
use and the inpus/outpus involved. Both, inputs and
outputs are instances of the Parameter type. Parameters
distinguish „real‟ parameters from configuration
parameters and essentially can be defined in terms of
their semantic type (which describes the domain specific
data type) and the format (which describes the
representation of the data).

Semantic descriptions of services are published in the
registry. The Feta engine imports these descriptions
together with the RDF version of the Domain Ontology
and allows querying the system (Lord, et al, 2005).

Another example is that of Soaplab (Senger, et al 2003).
Soaplab is a Web Services software framework used also
in bioinformatics. Soaplab services are command line
applications, wrapped as SOAP services, and served
from a Soaplab server. All Soaplab services have the
same generic set of SOAP operations as they all share a
standardized interface. This is somehow an extreme
example where all the services have the same WSDL
interface. A Soaplab service is invoked from a Soaplab
client, the Soaplab server calls the corresponding
command line application.

Quite different is the approach followed by MOBY-S
(REF) services. In MOBY, every Web Service passes
messages validated against a global type system that uses
an ontology-based messaging standard. MOBY-S
defines all valid data types in an ontology. This
simplifies the problem of interoperability by limiting the
possible range of admissible interfaces.
Another proposal comes from the Open Geospatial
Consortium, Inc. (OGC). The OGC is an international
organization that is involved in the development of
standards for geospatial and location based services.

OGC works to create open and extensible interface and
encoding standards for geographic information systems.
The OGC Web Services Common Specification defines
the aspects that are, or should be, common to interface
Implementations. Essentially, these aspects have to do
with the parameters and data structures used in operation
requests and responses.

The OGC also defines a Geography Markup Language
(GML) which describes an encoding specification for
geodata in XML that enables the storage, transport,
processing, and transformation of geographic
information.

Currently, there are a good number of interoperable tools
for geodata access and related geoprocessing services,
thanks to the fact that software vendors implement their
products in compliance with open geospatial web service
interface and data encoding specifications.

Within the NLP domain we can also find interesting
proposals. The NICT Language Grid Project

11
 aims at

building a multi-language service base, or Language
Grid. They started to wrap various language resources
existing on the Internet (machine translation engines,
dictionaries, etc.) and enable Web services. To support
these Web services, the Language Grid project defined a
NICT service interface and a series of wrapping libraries
for the purpose of developing Web services using the
Java language.

These wrappers make language resources accessible
through Web services, and adjust input and output of
language resources to defined input/output using the
NICT Language Service Interface.

Wrappers are deployed on the language grid service node,
and accept requests from the grid core node. Results are
returned to the core node, formatting the necessary data
in the NICT Language Service Interface output format.

Currently, there are about 70 language resources
published in the Language Grid. All these resources
adhere to some of the available interfaces for machine
translator, parallel text, morphological analyzer,
bilingual dictionaries and adjacency pair services.

Language Grid advocates for a shared language service
ontology that covers all possible elements in the domain
(Hasashi, et al, 2007). This ontology includes three
sub-ontologies for data resources, processing resources
and abstract linguistic objects such as linguistic
expressions and linguistic meaning.

Hasashi et al (2008) further explore this ontology and
provide detailed descriptions for linguistic annotations
and lexicons.

Klein and Potter (2004) also explore the development of
an ontology for NLP services and suggest for an OWL-S
description.

Unfortunately, none of the above proposals provide a

11 http://langrid.nict.go.jp/en/index.html

3515

detailed ontology for NLP services.

4.2 Proposal

Our proposal necessarily deals with WSDL schema
typing and semantic annotation of services. We regard
schema typing as a first step towards interoperability and
eventual semantic annotation.

4.2.1 Schema typing
Following other approaches we assume that messages
are modelled according to some XML schema. Note,
however, we do not force all objects moving around to
adhere to some global type system as, unfortunately, we
still lack an agreed type system. In addition, we assume
that in some cases data type elements are not necessarily
in XML format. Even though XML is widely used as
data modelling and most annotation formats are
expressed in XML, the fact is that we cannot ignore that
a good number of NLP applications and tools consume
and/or deliver data that are not XML data.

In order to have an idea of the kind of input elements we
have in the NLP domain we have carried out a survey of
the tools we deployed as web services in our institution.
Broadly speaking we can classify these services into four
groups: (a) annotation services, (b) concordancers (c)
statistical services and (d) collocation services.

Annotation services are those that add some sort of
annotation to an input text. Typically, these include
tokenizers, PoS taggers. Among the services we
explored, these are the ones that most likely consume
and deliver XML data type objects.

Concordancers allow extracting sample contexts using
(complex) content query. In this case we have enabled
the CWB as web service. Statistical services perform
some basic calculations about word distribution and
provide some relevant lexicometric measures. Finally,
our collocation services deploy the well known Ted
Pedersen‟s Ngram Statistics Package

12
.

Note that in these cases, services do not produce XML
data type objects. Following Lord et al (2005), we think
that service providers may be reluctant to spend time and
resources describing inputs and outputs conforming to
some global data model. A global model that, in many
cases, does not exist.

Bearing all this in mind, our assumptions can be
summarized as follows:
1) In the best case, types assigned to input / output

elements come from a common type system defined
in the data model. These types may simply describe
the existence of a particular data type or can further
describe the internal structure of the data type. (pos
annotated corpus using CWB input format vs. pos
annotated corpus using MAF format).

2) In the worst case, types are local and remain
„underspecified‟ as far as their content structure is
concerned.

12Ngram Statistics Package http://sourceforge.net/projects/ngram/.

Allowing local and underspecified types contradicts the
principle of interoperability but it is a pragmatic
approach that

- Avoids being too restrictive. We understand that

only when there is a large enough critical mass of
services and users the network effect will naturally
bring about the use of standards and common
practices.

- Reflects current practices in the NLP domain and
allows the natural creation of communities of
interest.

- Even in the case of „local‟ types, message typing
allows sharing and reusability and benefits from
XML machinery.

4.2.2 Semantic annotation:
Despite the nice efforts briefly reported and the ongoing
work done in CLARIN, the fact is that we lack a general
semantic description for NLP services.

In addition, services can be deployed for many different
purposes, and not all necessarily foreseen by their initial
developers. This means that often the initial
classification does not foresee other perspectives. This is
particularly relevant in the case of the CLARIN project
since the potential user community is very large and
heterogeneous.

Bearing these things in mind our position is based on the
following premises:
1) We are far from suggesting any modelling for NLP

services. We simply explore some possibilities that
pave the way towards a service modelling and
assume that different models can co-exist

2) In any case, at this early stage, the model is only
meant to identify and (hopefully) describe the
operations and objects that move around in an NLP
service environment. In other words, the model does
not pretend to model the domain of NLP but, rather,
the services.

3) As far as operations are concerned, we assume that
these can be mapped against some taxonomy (See
below.)

4) Regarding the I/O, we need to distinguish between
the objects moving around (that is, basic concepts in
the NLP domain) from the formats these objects
may have.

5) We strongly believe that different semantic models
can co-exist.

We have seen that some sort of semantic grounding at the
level of messages can be performed by making sensitive
use of type declarations in WSDL (remember that WSDL
allow type declarations and type import). For the
operations, however, we cannot use this procedure. So
we need additional means to enable the annotation of
operations. As we saw in 4.1, one possibility is to use the
annotation operation machinery of SAWSDL and place
the grounding in the WSDL file. Another possibility is to
assume that our services have a semantic description
besides the syntactic one (ie the WSDL file) and place
the grounding there. Note that this option means that we
have (i) a syntactic description of web services (a WSDL
file possibly enriched with typing), (ii) a semantic model

3516

that describes the kinds of operations and elements in the
domain and (iii) a semantic description of services.

In our case, given the complexity of frameworks like
OWL-S and WSMO, we will explore an approach
similar to that of MyGrid.

Somehow MyGrid approach can be regarded as a faceted
classification. We find a similar proposal in Dale et al
(2006). They suggest a two-pronged approach to
classification of services which includes a taxonomic
classification and a faceted classification. The taxonomic
classification places a given service in the taxonomy.
The faceted classification characterises the service in
terms of a set of attributes. The interesting aspect is that
the system accepts having multiple taxonomies and that
the possible values for each of the facets classification
schema may derive from a taxonomy appropriate to that
facet.

The CLARIN metadata infrastructure is based on the
notions of elements, components and profiles. A
metadata element is an atomic part of a metadata
description and it is characterized by a name and a value
domain. A metadata component is an aggregation of
metadata elements and components aimed at describing
a specific aspect of a resource. Profiles are similar to
components except that they are used to describe all
relevant aspects of a resource or collection.

Metadata elements are expected to be standardized by
being defined in accepted registries such as ISO
TC37/SC4 and Dublin Core. Components and profiles,
however, are not standardized and users can create their
own ones.

As far as services are concerned, the Service Component
describes a service and its capabilities. The Service
component includes the technical metadata required to
support the process of profile matching (a process that
checks whether a resource can be processed by a service).
Service components essentially describe operations and
the corresponding input/output parameters. Parameters
are basically defined by means of a technical metadata
component.

According to the CLARIN preliminary works on
taxonomy, tools can be classified with respect to at least
four facets: (i) Task/Problem, (ii) Approach/Technology,
(iii) Implementation details and (iv) Format of processed
data.

These top facets are naturally mapped against the
MyGrid Service Ontology. Thus, we include in the
CLARIN Service component the task element which
serves to place the service into the taxonomy, the The
approach/technology aspect corresponds to the
operationMethod (which corresponds to the
approach/technology aspect) and the service type. The
operation component can be sketched as follows:

<xs:element name="operation">
<xs:complexType>
 <xs:sequence>
<xs:element name="Pid" …/>

<xs:element name="Name" …/>
<xs:element ref="operationTask" />
<xs:element name="operationDescription" …/>
<xs:element name="operationMethod" …/>
<xs:element name="operationApplication"…/>
<xs:element name="operationResource" …/>
<xs:element ref="input" …/>
<xs:element ref="output" …/>
 …

Figure 1: Operation component

Finally, I/O specifications are encoded in the Parameter
component defined as follows:

<xs:element name="parameter">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" …/>
 <xs:element ref="parameterType" …
 <xs:element name="URL" … />
 <xs:element name="messageName" …/>
 <xs:element name="parameterDescription" …/>
 <xs:element name="XMLSchemaURI" …/>
 <xs:element ref="formats" …/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Figure 2: Parameter component

Essentially, parameter elements bear information about
their semantic type, the schema (if any), the format and
the involved message in the WSDL file (grounding).

4.2.3 Example
We have argued that there are NLP services for which it
is reasonable to define a common interface. We can even
expect that most I/O format conflicts can be solved by
means of extensive use of standards and wrappers. We
know, however, that things are not so easy: when
thinking of a POS tagger we understand that it takes as
input a text and returns a tagged text. Most POS taggers,
however, require additional input parameters. Thus, for
instance, FreeLing has up to 26 different configuration
parameters and TreeTagger, 12.

In WSDL, operations can only have one input message
and one output message. The input message defines the
information the service receives when the operation is
invoked. When defining an interface for a service that is
already implemented, the data types of the implemented
operations need to be assembled into messages. In other
words, we must ensure that each parameter used by the
method implementing the operation is represented in the
message. The quickest solution, often, is to map all
implementation parameters into the corresponding
message parts.

This approach not only contradicts the wrapped
document style where each message has a single part but
also poses many problems to our assumption that part
messages need to be typed and to the task of suggesting
for common interfaces. Examples FreeLing and
TreeTagger show that the attempt to define a common set
of typed input parameters is not feasible when dealing

3517

with implementation parameters. Rather, we suggest an
approach where complexity derived from
„implementation idiosyncrasies‟ has no significant
consequences on interfaces. We achieve this by avoiding
the proliferation of „idiosyncratic‟ parameters in WSDL
messages.

We start defining a POStagger operation with the
corresponding input/output messages. Assuming we take
the wrapped document style, the POStaggerRequest
message has only one part. All implementation
parameters will be represented in that part by means of
the associated type POStaggerParams.
POStaggerParams type is defined as belonging to the
ParamsType. ParamsType is a complex type consisting
of two kinds of elements: the mainParams and optParams.
The mainParams refer to objects that typically move
around in NLP services either as inputs or as outputs. The
optParams refer to what we call „application parameters‟,
which are typically used as configuration parameters.
mainParameters are expected to be common enough so
as to be typed using some general type system.
optParams are optional (they are assigned some default
value) and may lack a general type.

In our PoS tagger example, mainParams include text and
language. Both types are expected to be general and
therefore collected in the general model. Language will
obviously be declared in terms of ISOcat. Text type is a
bit more complex as here we can further specify
mimetypes, encoding formats etc. Functional parameters
are collapsed into the optParams.

The corresponding XML payload for the
POStaggerParams type goes as follows:

< POStaggerParams>
 < mainParams>

<language>some language</language>
<text>some input text to be tagged</text>

</mainParams>
<optParams>optional params</optParams>

< /POStaggerParams>

Complex type derivation (extension, restriction and
abstract types) allows further refinements of declared
inputs. Note that the POStaggerParams element above
could be further constrained as a subtype of a global
ParamsType. Whereas the ParamsType merely says it is a
collection of main and optional parameters, the
POStaggerParamsType would define the configuration
of prototypical input parameters for PoS taggers and
would determine that these include at least text and
language and, optionally, a collection of optional
parameters:

Note that our approach differs from that of Language
Grid in that the suggested interface does not imply that
we reduce complexity by „skipping‟ what we call
„application parameters‟. In our case complexity derived
from the differences in parameters is not removed from
interfaces. Although for some users it may not be
interesting to face such things, the fact is that there are
users that will not trust in services unless they can tune
the experiment and control it.

As far as the semantic description of services is
concerned, the description for our FreeLing PoS tagger
follows the Operation component schema in figure 1.
Essentially, the description assigns a task from the
taxonomy (PoStagger) and describes inputs/outputs in
terms of some semantic type from the semantic model (ie.
Language, Text and PoSAnnotatedText).

5. Conclusions

Scenarios where interoperability plays a crucial role will
lead to the extensive usage of standards. Though, the
present situation is rather disappointing, the need of
standards will be evident when interoperability becomes
a requirement. There are many examples from the
industry and e-business.

Sometimes, providers need to adjust their data so that
these are compliant with some standard. It is interesting
to note that corpus providers saw this data migration as a
positive fact despite the cost.

Though we strongly advocate for standards as a way to
overcome interoperability problems, it is necessary to
note that standards are not a panacea. We list some of the
problems we have found when working with linguistic
standards: (i) often standards are not well documented
and lack examples, demos and tools. (ii) often linguistic
standards are too „weak‟ because they try to
accommodate to „everything‟ and eventually do not serve
their purpose. Thus, for example, the fact that MAF
allows for different annotation styles poses additional
problems to the aggregator.

Some mismatches cannot be attributed to standards
failure, but simply reflect differences in methods,
approaches, theories etc… In our scenario, the way
tokenisation is addressed by the different corpus
providers poses additional problems. Again some
agreement would be of much help when integrating
heterogeneous resources.

In conclusion: we claim that standards enhance data
„compliance‟ but not data interoperability.

While the WS paradigm suits the integration of different
services very well, this requires mutual understanding
and the accommodation to common interfaces that not
only provide technical solution but also ease the user‟s
work.

SRU/CQL is a protocol for message sending that also
defines the syntax of those messages. The semantics of
the messages (expressed in Context Sets) is crucial for
mutual understanding. CQL enables different models
that not only can co-exist but also could be mapped.

Defining common interfaces benefits interoperability but
requires the agreement about operations and the set of
inputs/outputs. Semantic annotation allows defining
some sort of taxonomy that (i) organizes and collects the
set of admissible operations and (ii) types input/output
parameters. The „application driven‟ differences
observed, as far as input parameters are concerned, lead

3518

us to a pragmatic approach. Broadly speaking, functional
parameters are optional (with assigned default values)
and do not need to be typed according to some general
schema.

Our conclusions can be summarized as follows: (i) in the
best case, types assigned to input / output elements come
from a common type system defined in the data model;
(ii) these types may simply describe the existence of a
particular data type or may further describe the internal
structure of the data type; (iii) in the worst case, types are
local and remain „underspecified‟ as far as their content
is concerned.

Allowing local and underspecified types contradicts the
principle of interoperability but it is a pragmatic
approach that: (i) voids being too restrictive. We
understand that only when there is a large enough critical
mass of services and users the network effect will
naturally lead us to the use of standards and common
practices. (ii) Reflects current practices in the NLP
domain and allows the natural creation of communities
of interest.(iii) Even in the case of „local‟ types, message
typing allows sharing and reusability and benefits from
XML machinery.

As far as semantic annotation of WS is concerned, the
model we suggest is only meant to identify and
(hopefully) describe the operations and objects that
move around in a NLP service environment. The model
needs not to model the domain of NLP but, rather, the
services. We assume that operations can be mapped
against some taxonomy and that we need to distinguish
between the I/O objects moving around from the formats
these objects may have. Finally, we believe that different
semantic models can co-exist.

6. Acknowledgements

This work, developed in the framework of the CLARIN

project, has been supported by the Spanish Ministerio de

Ciencia y Tecnología (ACI2009-0995), the Departament

d'Innovació, Universitats i Empresa of the Generalitat de

Catalunya, and the European Union (FP7-

INFRASTRUCTURES-2007-1-212230). We wish to

thank Eva Revilla for her helpful comments and support.

References

Akram, A, Meredith, D and Allan, R. (2006).Best

Practices in Web Service Style, Data Binding and

Validation for use in Data-Centric Scientific

Applications. In Proceedings of the UK e-Science All

Hands Meeting 2006

Atserias, J., B. Casas, E. Comelles, M. González, Ll.

Padró and M Padró. FreeLing 1.3: Syntactic and

semantic services in an open-source NLP library.

Proceedings of the fifth international conference on

Language Resources and Evaluation (LREC 2006),

ELRA. Genoa, Italy. May, 2006.

Bramantoro, A, Tanaka, M, Murakami, Y, Schäfer, U,

Ishida, U. (2008). A Hybrid Integrated Architecture

for Language Service Composition. In Proceedings of

the 2008 IEEE International Conference on Web

Services. (ICWS 2008 Research Track).

Dale E. Lichtblau, Andrew W. Trice, Steven P. Wartik.

(2006). Taxonomic and Faceted Classification for

Intelligent Tagging and Discovery in Net-Centric

Command and Control. In 2006 CCRTS The State of

the Art and the State of Practice.

Hayashi, Y. (2007). A linguistic service ontology for

language infrastructures. In Proceedings of the 45th

Annual Meeting of the ACL on Interactive Poster and

Demonstration Sessions

Hayashi, Y, Declerck, T, Buitelaar, P Monachini. M.

(2008). Ontologies for a Global Language

Infrastructure, In Proceedings of the 1
st
 International

Conference on Global Interoperability for language

Resources, pp.105-11.

Klein, E and Potter, S. (2004). An Ontology for NLP

Services. In Proc. of LREC 2004 Workshop on

Registry of Linguistic Data Categories.

Kopecky, J, Roman, D, Moran, M and Fensel, D. (2006).

Semantic Web Services Grounding. In Proceedings of

the Advanced Int’l Conference on

Telecommunications and Int’l Conference on Internet

and Web Applications and Services

Pantschenko,K, Noppens, O and Liebig, T (2005).

Grounding Web Services Semantically: Why and

How?. W3C Workshop on Frameworks for Semantics

in Web Services 2005.

Sakai, S et al. (2008). Language Grid Association:

Action Research on Supporting the Multicultural

Society. In Proceedings of International Conference

on Informatics Education and Research for

Knowledge-Circulating Society (ICKS-08).

Senger, M ; Rice, P and Oinn, T. (2003). Soaplab - a

unified Sesame door to analysis tools. In Proceedings,

UK e-Science, All Hands Meeting 2003, Editors -

Simon J Cox, p.509-513, ISBN - 1-904425-11-9.

Schmid, H. 1994. Probabilistic Part-of-Speech Tagging

Using Decision Trees.In Proceedings of the

International Conference on New Methods in

Language Processing (1994), pp. 44-49.

Lord, P., Alper, P, Wroe, C., and Goble, C. (2005). Feta:

A light-weight architecture for user oriented semantic

service discovery. In Proceedings of the European

Semantic Web Conference 2005, Vol. 3532. pp. 17-31.

Wilkinson MD, Gessler DD, Farmer A, Stein L: The

BioMOBY project explores open-source, simple,

extensible protocols for enabling biological database

interoperability. In Proceedings of the Virtual

Conference on Genomics and Bioinformatics 2003.

Wolstencroft K, Alper P, Hull D, Wroe C, Lord PW,

Stevens RD, Goble CA. (2007). The myGrid ontology:

bioinformatics service discovery. International

Journal of Bioinformatics Research and Applications.

Volume 3 , Issue , Pages: 303-325.

3519

http://portal.acm.org/author_page.cfm?id=81436593157&coll=GUIDE&dl=GUIDE&trk=0&CFID=82174178&CFTOKEN=60551128
http://www.citeulike.org/user/dullhunk/author/Lord:P
http://www.citeulike.org/user/dullhunk/author/Alper:P
http://www.citeulike.org/user/dullhunk/author/Wroe:C
http://www.citeulike.org/user/dullhunk/author/Goble:C

