
Computational Linguistics for Mere Mortals
Powerful but Easy-to-use Linguistic Processing for Scientists in the Humanities

Rüdiger Gleim, Alexander Mehler

Department for Computing in the Humanities, Goethe University, Georg-Voigt Straße 4, Frankfurt, Germany
Texttechnology/Applied Computer Science, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany

gleim@em.uni-frankfurt.de, mehler@em.uni-frankfurt.de

Abstract
Delivering linguistic resources and easy-to-use methods to a broad public in the humanities is a challenging task. On the one hand users
rightly demand easy to use interfaces but on the other hand want to have access to the full flexibility and power of the functions being
offered. Even though a growing number of excellent systems exist which offer convenient means to use linguistic resources and methods,
they usually focus on a specific domain, as for example corpus exploration or text categorization. Architectures which address a broad
scope of applications are still rare. This article introduces the eHumanities Desktop, an online system for corpus management, processing
and analysis which aims at bridging the gap between powerful command line tools and intuitive user interfaces.

1. Introduction

With the availability of tools, resources and standards for
annotating and processing data in the humanities, we are in
need of frameworks that integrate information objects and
corresponding operations for handling these objects. More-
over, systems are needed with interfaces that provide a low
barrier to their use. The reason is that humanists look at
these systems not as experts in computational linguistics or
machine learning, but as non-experts, that is, as users not as
researchers. Thus, versatility of easy-to-use methods in the
humanities is a major criterion beyond expressiveness of
the underlying data model and the efficiency of algorithms
that operate on this data.

Humanists have an integrated view on text-technology and
related disciplines as they want to use resources (e.g., text,
image or video corpora as well as lexica and ontologies)
together with machine learning facilities in such a way that
they can abstract from the underlying data formats and any
restrictions of their transformation and further processing.
This makes the development of text-technological frame-
works for eHumanities a challenging task as one needs both
high-level processing routines for handling linguistic and,
more generally, semiotic data as well as information sys-
tems that encapsulate these routines by versatile interfaces.
Moreover, these systems should be open in the sense of not
only being completely web-based (such that any installa-
tion effort can be disregarded). Rather, they should allow
for linking system-internal data with the web and its nu-
merous knowledge resources (as part, for example, of the
Wikimedia foundation).

In this paper, we describe the eHumanities Desktop as such
a system for corpus management, processing and analysis
which aims at bridging the gap between powerful command
line tools and intuitive user interfaces. More specifically,
in Section (1.1.) we discuss related work in this field of
research. In Section (2.) we describe the Architecture of
the eHumanities Desktop while in Section (3.) we describe
several (linguistic) applications that can be used with this
desktop. Finally, we conclude and give a prospect on future
work in Section (4.).

1.1. Related Work
In the past there has been much effort to develop environ-
ments and frameworks for managing corpora and machine
learning facilities in computational linguistics and related
disciplines. Amongst others, this relates to the GATE sys-
tem, the WEKA framework and the TextGrid environment.

• GATE (Cunningham et al., 2002) has been devel-
oped as a framework for deploying and developing
programs in language engineering (LE) including,
amongst others, tokenizers, sentence splitters, taggers,
named entity recognizers and many related modules.
That is, as a development environment, GATE does not
only provide facilities in text technology, but also ad-
dresses the development of systems for solving tasks
in LE such as, information extraction or text summa-
rization. GATE includes modules for representing,
editing and using ontologies (Bontcheva et al., 2004)
as well as for processing of multimedia data (Dowman
et al., 2005). Moreover, GATE integrates machine
learning modules as based, for example, on Support
Vector Machines (SVM) (Li et al., 2009). From the
point of view of a humanist, GATE offers an over-
whelming range of tools and development facilities
that actually demand an expertise in computational
linguistics and machine learning. This may discour-
age humanists to adapt GATE to their research needs
whenever they look for easy-to-use tools that address
some task in eHumanities. Therefore, a framework
is needed which basically encapsulates the underlying
text-technology and machine learning while providing
tools on a level of understanding that is accessible to
humanists. The eHumanities Desktop approaches this
goal.

• WEKA (Hall et al., 2009) is a widespread workbench
of tools in the area of machine learning that integrates
tools for preprocessing, selecting, exploring, evaluat-
ing and visualizing data as input or output of machine
learning. WEKA focuses on data mining. In contrast
to this, the eHumanities Desktop includes systems for
the management, annotation and (pre-)preprocessing

204



of information objects in the humanities – including
texts and images (Gleim et al., 2010). This also means
that while preprocessing in WEKA relates to convert-
ing data as input to machine learning, in the eHumani-
ties it means, for example, tagging and lemmatization
linguistic data for further processing by manual an-
notation or machine learning. However, the WEKA
workbench provides excellent facilities so that inte-
grating the Desktop with this workbench will be a task
in the near future.

• With the rise of SVMs in machine learning, special-
ized libraries for computing SVMs in the area of text
mining became more and more prominent in com-
putational linguistics (Joachims, 2002). Currently,
SVMlight (Joachims, 2002) and LIBSVM (Chang and
Lin, 2001) are two such libraries that are heavily used
in text categorization. Consequently, the eHumanities
Desktop integrates a so called ClassifierBuilder that
integrates SVMlight on the input and output level.

• TextGrid (Kerzel et al., 2009) has been developed as
a web-based research environment to support informa-
tion processing in the humanities. It allows for the col-
laborative generation, processing annotation, manage-
ment and search of textual data by integrating lexica
and dictionaries as basic linguistic resources. TextGrid
mainly focuses on textual resources. In contrast to
this, the eHumanities Desktop handles both symbolic
(e.g. texts) and iconographic data (e.g. images) (Gleim
et al., 2010). Further, other than TextGrid – but in the
line of GATE (see above) – the eHumanities Desktop
additionally integrates machine learning facilities. In
this way, the Desktop is in support of managing, an-
notating and exploring semiotic data by humanists.

GATE, WEKA and TextGrid are excellent examples of pro-
cessing frameworks that are specialized according to their
focus on program development (GATE), machine learning
(WEKA) or the handling of textual data (TextGrid). In
order to integrate the eHumanities Desktop into this text-
technological landscape, it will be further developed such
that it provides corresponding input-output interfaces for
these systems. In this way, the Desktop may find users
not only in the area of humanities but also in the area of
language engineering, computational linguistics and text-
technology.

2. Architecture
The primary development objective was to build a platform
which offers elaborate means to let users and groups or-
ganize resources and enable affiliated research projects to
develop applications to process and analyze their linguistic
data. So the system is sort of divided into two parts: The
foundation is a core system which offers functionalities for
resource, user and right management. On this basis a col-
lection of APIs allow for modular development of tools and
applications to work on the managed data.
Users can login to the eHumanities Desktop and work on
their resources online using a common web browser. The

look & feel is designed to imitate a typical desktop environ-
ment including document handling and using applications.
This section is to give a brief overview of the architecture
behind this graphical front end. Figure 1 depicts the layer
structure of the components which constitute the system
architecture. The client is implemented primarily in Java
Script and communicates with a Java Servlet which handles
requests to algorithms and resources. The servlet relies on
a relational database to manage the master data, incorpo-
rates a set of different storage back ends to store resources
according to their format and calls external applications for
computation of results as necessary. In the following the
central components are explained in more detail.

Command Processors

Storage Backends

Command Dispatcher

Master Data

Core API Annotation API Storage API

File System BDB XML Relational DB

Categorizer Preprocessor Lexical Chainer Image DB […]

External Apps

Annotation

Process Manager

Matlab

[…]

HTTP

Client
Java ScriptJava Applet Flash

Figure 1: Diagram depicting the layer structure of the
server architecture.

2.1. Client
Regarding the architecture of client/server systems the user
interface may appear to be a minor matter. But the demands
made on the client from both the users as well as the devel-
opers perspective are complex. As user one is interested in
getting started without bothering too much with installation
efforts and learning all the details of a new application en-
vironment. This means that not only interaction with the
various application modules should follow established con-
ventions but also the general workflow including the orga-
nization of the functions and resources. The latter aspect
is especially important for the system being presented be-
cause it offers a variety of functions from different areas.
Finally using a certain application should be made simple
and straight-forward- but without oversimplification of pa-
rameters and functionality. From the developers perspec-
tive on the other hand easy maintenance and extensibility
of the client are important.
The eHumanities Desktop attempts to meet these require-
ments by offering a desktop environment in a web browser
which imitates the look and feel of modern operating sys-
tems. Figure 2 shows a typical working scenario. Applica-
tions can be accessed via a start menu or shortcut icons on
the virtual desktop. Multiple applications are displayed in
separate windows which can be maximized or minimized
to a task bar at the bottom. Complex operations such as
computing support vector machine models which can take
minutes or hours are executed as processes on the server.
The user can check the progress of such operations in a
graphical process manager (see upper right corner in figure
2) and cancel them if necessary. It is not required to stay on-
line for the time of such computations- users can login later

205



Figure 2: Screenshot of a typical working scenario.

to check upon the processes and review the results once
they are ready. In order to minimize system requirements
the eHumanities Desktop can be accessed platform inde-
pendently via common web browsers. There is no need for
installation whatsoever. The client is implemented in Java
Script and relies on the ExtJS1 Framework to offer the desk-
top look and feel. Some applications need a Flash or Java
Plugin to be installed to allow for more complex operations
such as interactive graph visualization. All computations
are performed on the server, that is the client is purely used
for user interaction. The processing of user requests is dis-
cussed in the next section.

2.2. Server
The server architecture is hierarchically structured into lay-
ers which build upon another as illustrated in figure 1. Its
primary task is to receive requests from the clients and per-
form computations on resources or the master data accord-
ingly. Request handling and execution to start with is based
on an adaption of the command pattern (Freeman et al.,
2004): The client sends a command and its parameters to
the server and waits for it to respond with the results or
feedback on an operation being done. Commands are rep-
resented as JSON2 objects and exchanged with the server
via HTTP requests.
Incoming commands, such as to fetch the annotation of a
document are handled by the Command Dispatcher which
checks well formedness and user authentication. The exe-
cution of the command constitutes a new process which is
registered in the Process Manager so that the user can mon-
itor and abort it if necessary. The set of commands which
are understood by the system are grouped according to their
function and managed in a registry. This registry is used
by the dispatcher to decide which Command Processor has
to be called in order to execute the command. The Com-
mand Processor performs the actual computation according
to the specific command which usually incorporates at least
one of the following components: (i) The Master Database
which represents users, resources and their interrelations;
(ii) the Storage API which manages access to the underly-
ing Storage Back ends; or (iii) an external application such

1http://extjs.com
2http://www.json.org

as MATLAB. After having completed the computation con-
trol is handed back to the dispatcher which returns the re-
sults to the client.
The servlet provides several APIs which abstract from tech-
nical details of the underlying layers. That way developers
of new functions (i.e. Command Processors) can concen-
trate on the specific task rather than to reinvent the wheel
over and over again by coding user management, storage
handling and so on. Because of the modular approach the
system is easily extensible as new demands for features
arise.

2.3. Storage Back Ends
A foundation of the eHumanities Desktop is to offer means
to upload documents, organize them in repositories and
share those resources with other users. On this basis ap-
plication modules can then operate to perform analysis on
the data. Therefore it is important to offer efficient means
to access and process such documents. When a document is
newly inserted into the system a file format (or mime type)
detection is performed in order to determine which stor-
age back end should be used. Currently three back ends
are supported: XML documents are stored using Oracle
BerkeleyDB XML3, a native XML database management
system (DBMS). This allows for performing XQuery state-
ments over stored documents and entire collections. Also
transactional updates of existing documents are supported.
Relational databases can be managed as documents as well:
They can either be newly created by uploading an appropri-
ate SQL script or by specifying authentication information
to include an existing database. Relational databases are for
example used to efficiently represent and query lexicons.
Binary data and any other file formats which do not fit in
the former categories are stored as files. The Storage API
helps abstracting from the details of how contents of a spe-
cific document are stored. From the users perspective the
distinction between the storage back ends is transparent.

2.4. Master Data Model
The master data model basically serves the representation
of users, resources and their access permissions. The de-
mands on this data model need to meet the requirements
of typical research project settings: Some resources should
only be accessible by certain users. Some users should
be able to edit documents, while others should not. Users
should be organizable into groups etc.
The basic idea behind the data model used in the eHu-
manities Desktop (see figure 3) is a mixture of concepts
from unix operating systems and relational database sys-
tems. The model basically distinguishes between Authori-
ties which have a certain degree (read, write, delete, grant)
of Access Permission on Resources. An authority is either
a User or a Group. A user can be member of an arbitrary
number of groups and thus inherits their respective privi-
leges. A group has a designated owner (for example the
head of a research project) who can add or remove users
from the group. Resources on the other hand are primar-
ily distinguished into Documents, Repositories and Fea-

3http://www.oracle.com/database/berkeley-db/xml/
index.html

206



DBObject

Authority

Resource

Group

User

Repository

Feature

Document

AnnotationDocument

AnnotationSchema

FileDocument

XMLDocument

HyGraphDBDocument

RelationalDBDocument

Access
Permission

Owner Member

Member

Derivation

Annotation

Definition

Owner

Figure 3: Master Data Model of the eHumanities Desktop.

tures. In contrast to common file systems, documents are
not tightly linked to a specific directory. They can rather
be member of an arbitrary number of repositories. Repos-
itories can be member of other repositories as well. That
way it is possible to freely structure the same set of docu-
ments in different manners which is very useful when com-
piling linguistic corpora for example. Since the eHumani-
ties Desktop allows for online conversion and processing of
documents which lead to derived documents, such relations
are also stored in the database to track back their origin.
Features, that is application modules of the system are also
considered to be resources. This allows for a fine grained
control not only over which user can access a specific re-
source but also which functions he is allowed to use. In
terms of object oriented programming documents are fur-
ther distinguished to allow for methods which are specific
for the storage back end being used. However this distinc-
tion is not relevant to the user.

2.5. Annotation Subsystem
The eHumanities Desktop puts emphasis on extensible re-
source annotation to reflect the dynamics of how resources
are annotated in practice. Figure 4 depicts the core classes
of the annotation subsystem. Resources can be annotated
with Annotation Documents. The structure of the anno-
tation documents is defined by Annotation Schemas. A
schema basically defines the hierarchy of attributes which
can be used for annotation. An Attribute is defined among
others by its name, data type, value domain and default
value. Furthermore it can be defined how many times an
attribute may be set within an annotation. This is for exam-
ple necessary to allow an attribute which should represent
keywords for an annotated book to be set multiple times,
whereas the title of a book should be set exactly once. The
value types supported include boolean and numeric values,
dates, URLs, strings and references to other resources in the
system. Attributes can be organized into an ordered tree
hierarchy. Since both annotation documents and schemas
are derivations of resources, they can be subject of anno-
tation themselves. This also means that they fall under the
right management of the system. This enables annotators
of resources to exactly define who can read or write their
annotations.
The system does not restrict users to a fixed set of annota-

AnnotationDocument

AnnotationSchema

Attribute
• name
• type
• order
• minOccurs
• maxOccurs
• domain
• strictDomain
• defaultValue

Float

Date/Time

Object

String

Integer

Resource

Value
• order

annotation

definition

parent

parent

0,1

1..*

0,1
1..*

1 *

1 *

1

1

0,1

*

*

1

Boolean

URL

Figure 4: UML class diagram of the annotation subsystem.

tion schemas but offers a graphical interface to define cus-
tom ones. Figure 5 shows a screenshot of editing a sam-
ple schema which could be used for annotating scientific
articles: On top level the attribute hierarchy offers fields
to annotate the title, the author and references to other arti-
cles. The author attribute exemplifies the use of the attribute
hierarchy: An author consists of two sub attributes which
represent the name and affiliation. The reference attribute
allows to refer to other articles in the system and thus help
building a network of annotated documents. This example
is rather simple. However it can be extended and edited
even if the schema is already being used. Existing annota-
tions are automatically adjusted as changes are made.

Figure 5: Example of editing an Annotation Schema.

3. Applications
The eHumanities Desktop highly benefits from affiliated re-
search projects and cooperations (see acknowledgements)
which give input in terms of new requirements as well as
new application modules. This section presents some of
the major linguistic applications. In order to give an im-
pression of a typical workflow we assume an exemplary
research project as guideline where a corpus of newspaper
articles shall be constructed.

3.1. Corpus Manager
The Corpus Manager is so to speak the heart of the sys-
tem. It offers means to upload, organize, query and down-

207



load resources as well as sharing them with other users and
groups. The graphical user interface (see figure 6) offers
a look and feel similar to the Windows Explorer. A tree
on the left side of the window shows the hierarchy of the
repositories visible to the user. The center part of the win-
dow shows the documents of the currently selected repos-
itory. The list of documents can be filtered and sorted in
many ways to help users quickly find the resources they are
looking for. Besides the basic fields like size, mime type,
date of creation and alike which are available for all docu-
ments it is also possible to add fields to the view which stem
from annotations of the respective documents. If for exam-
ple documents were annotated based on a schema which
provides an attribute for category information, this could
be displayed seamlessly in the Corpus Manager. A virtual
repository called All Documents gives access to all docu-
ments the user has access to. The documents and reposito-
ries can quickly be re-structured using common drag&drop
or cut&paste operations. Finally the corpus manager of-
fers means to annotate resources according to previously
defined annotation schemata.
A researcher who wishes to construct a newspaper corpus
would start here by creating an initial structure of reposi-
tories, for example as shown in figure 6. In this example
there are some PDF documents which have to be uploaded
from the local computer and some HTML documents which
shall directly be taken from the web. The former can be up-
loaded using the Upload Manager which provides means to
uploads single files or an entire directory into a designated
repository. The latter can be accomplished by an URL up-
load assistant which based on a given URL downloads a
resource from the web and inserts it as new document into
a selected repository. The advantage for the user here is
that the download is being done by the server and does not
affect the users bandwidth.
The eHumanities Desktop offers a conversion matrix which
allows users to convert uploaded documents online into
other formats, for example from PDF to plain text.

Figure 6: Screenshot showing the Corpus Manager.

3.2. Preprocessor
A common task in NLP is the preprocessing of input
texts. The Preprocessor module enables users to prepro-
cess their uploaded documents. Besides language detec-
tion, sentence boundary detection, tokenization, lemmati-
zation, stemming and name entity recognition, the prepro-
cessing system includes a trigram HMM-Tagger (Mehler

et al., 2008). The currently released implementation sup-
ports English, German and Latin texts. The tagging mod-
ule was trained and evaluated based on the German Ne-
gra Corpus (Uszkoreit et al., 2006) (F-score of .975), the
Tübinger Spoken Language Corpus (0.982) and the En-
glish Penn Treebank (Marcus et al., 1994) (0.956). The lan-
guage identification component was successfully evaluated
against samples from Wikipedia articles, proving that only
a small amount of input data is needed (F-score of 0.956
for 50 characters and 0.97 for 100 characters). The output
of the preprocessor can be displayed directly in the browser
or saved as a new TEI P5 (Burnard, 2007) document in the
Oracle BDB XML database.
The preprocessor supports ad hoc preprocessing of texts
which have been inserted via cut & paste into a form as well
as batch processing of documents which have already been
uploaded into the system. To follow the exemplary research
project the user would now select all collected documents
and let them be transformed into TEI P5 XML documents.
Since the preprocessor attempts to automatically convert in-
put documents as required, usually no explicit conversion
from PDF, HTML and so on is necessary.

3.3. Annotation
The TEI P5 documents which have been created in the pre-
ceding step are the artifacts on which all subsequent stud-
ies are based. Now the annotation subsystem can be used
to annotate these documents to help improve later analysis.
The researcher uses the Annotation Schema Editor to de-
fine a schema to be used for annotating newspaper articles.
Based on this schema the articles can now be annotated as
shown in figure 7.

Figure 7: Screenshot showing the annotation of a newspa-
per article.

3.4. HSCM
Now that the texts have been uploaded into the system,
properly preprocessed and annotated, an interface is needed
to browse and search the documents. If queries for quota-
tions of single tokens or phrases are needed, the Historic
Semantics Corpus Management (HSCM) is a good place
to start with. The HSCM (Jussen et al., 2007) aims at a
text-technological representation and quantitative analysis

208



of chronologically layered corpora. A prominent instance
is the Patrologia Latina4 which has been tagged and con-
verted into the TEI P5 format. The system has been in-
tegrated into the eHumanities Desktop and extended to be
usable with arbitrary corpora. Using the HSCM enables
users to search for texts which contain a certain phrase, for
example economic crisis. Subsequently all sentences con-
taining this phrase with a selected number of neighbors can
be listed. Figure 8 shows a screenshot of the HSCM with
quotes of the phrase “Helmut Schmidt” in a German news-
paper. The corpus on which the query was based contained
87761 articles which have been searched to identify 165
quotes.

Figure 8: Screenshot of the HSCM showing quotes of the
phrase “Helmut Schmidt” in a German newspaper.

3.5. XML Query Interface
The browsing and querying functions which the HSCM of-
fers are quietly transformed into XQuery statements which
are executed on the XML document collections. Since the
HSCM can only offer a set of queries which are commonly
used there may be the need to ask more specific questions
which are not covered per default. In such cases it is possi-
ble to enter and execute XQueries directly via the Desktops
XML Query Interface. Since XQueries can be very expen-
sive in terms of computation time this feature is currently
restricted to single documents.

3.6. Categorizer
The eHumanities Desktop offers an approach for automatic
text categorization based on a set of predefined classifiers.
The current release of the eHumanities Desktop supports
Dewey-Decimal Classification (DDC) classifiers (Mehler
and Waltinger, 2009) for English and German as well as
a classifier based on the German newspaper Süddeutsche
Zeitung (Waltinger et al., 2009) using support vector ma-
chines (Joachims, 2002). However these classifiers are
not implemented statically but defined using a light-weight
XML based Classifier Definition Language. Such a defi-
nition defines which algorithm to use, its parameters and
which additional files are needed (e.g. model files in the
case of SVMs). In order to use the categorizer a user selects
the classifier to be applied and specifies either an input doc-
ument or plain text via cut&paste. The result is presented

4http://pld.chadwyck.co.uk/

in a list of category labels which is ordered according to
the respective relevance. Figure 9 shows the categorization
result of a newspaper articles based on the English DDC.
In the line of the newspaper research projects a user can ap-
ply the categorizer to perform an automatic categorization
of articles. It is also possible to let the categorizer annotate
the processed documents based on the annotation system of
the eHumanities Desktop.

Figure 9: Screenshot showing the categorization of a news-
paper articles based of the DDC.

3.7. Lexical Chainer
As a further linguistic application module a lexical chainer
(Waltinger et al., 2008; Teich and Fankhauser, 2004) has
been included in the online desktop environment. That is,
semantically related tokens of a given text are tracked and
connected by means of a lexical reference system. The sys-
tem currently uses two different terminological ontologies
– WordNet (Fellbaum, 1998) and GermaNet (Kunze and
Lemnitzer, 2002) – as chaining resources which have been
mapped onto the database format. The list of resources for
chaining can easily be extended. The lexical chainer can
generate HTML output which offers intuitive means to ex-
amine the results.

3.8. Lexicon Browser
Section 2.3. pointed out the importance of applying storage
mechanisms which best fit the usage scenario of a given re-
source. On the other hand the resource management should
abstract from the details so that the user can manage all doc-
uments equally irrespective of their internal representation.
An example of this approach is the representation of lex-
ica within the eHumanities Desktop. Internally the system
manages lexicons as relational databases which provide ef-
ficient means for random access as well as complex queries.

209



Lexicon documents can be organized in the corpus manager
and shared with other users. But in order to browse and
query lexica the eHumanities Desktop offers a decicated
module: The Lexicon Browser enables users to query lex-
cial resources and apply various filters which include sup-
port for wildcards, part of speech and numerical constraints
like frequency, inverse document frequency (based on on a
specified reference corpus) and alike. The measures which
are based on a reference corpus are not fixed but can be
computed online by selecting a lexicon and a collection of
TEI P5 documents which serve as reference.

4. Conclusion
We presented the eHumanities Desktop, an online system
for resource management, processing and analysis in the
humanities. The architecture puts emphasis on an easy us-
ability of linguistic resources and methods. However it is
not restricted to linguistics- there are other applications as
for example the ImageDB which have not been presented
here. The Desktop is in ongoing development and feedback
is always welcome. Currently emphasis is put on enabling
users to build custom classifiers to help them automatically
annotate their resources as well as improving management
of lexical resources. Researchers interested in testing the
system are welcome to contact5 us in order to get an ac-
count.

5. Acknowledgements
Support of the German Federal Ministry of Education
(BMBF) through the research project Linguistic Networks
at Bielefeld University is gratefully acknowledged.

6. References
K. Bontcheva, V. Tablan, D. Maynard, and H. Cunning-

ham. 2004. Evolving GATE to Meet New Challenges in
Language Engineering. Natural Language Engineering,
10(3/4):349—373.

Lou Burnard. 2007. New tricks from an old dog: An
overview of tei p5. In Lou Burnard, Milena Do-
breva, Norbert Fuhr, and Anke Lüdeling, editors, Digital
Historical Corpora- Architecture, Annotation, and Re-
trieval, number 06491 in Dagstuhl Seminar Proceedings.
Schloss Dagstuhl.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: a
library for support vector machines.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
and Valentin Tablan. 2002. GATE: an architecture for
development of robust hlt applications. In In Recent Ad-
vanced in Language Processing, pages 168–175.

M. Dowman, V. Tablan, H. Cunningham, C. Ursu, and
B. Popov. 2005. Semantically Enhanced Television
News through Web and Video Integration. In Second Eu-
ropean Semantic Web Conference (ESWC’2005).

Christiane Fellbaum, editor. 1998. WordNet: An Electronic
Lexical Database. MIT Press, Cambridge.

Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy
Sierra. 2004. Head First Design Patterns. O’ Reilly &
Associates, Inc.

5http://www.hucompute.org/hudesktop

Rüdiger Gleim, Paul Warner, and Alexander Mehler. 2010.
eHumanities Desktop — an architecture for flexible an-
notation in iconographic research. In Proceedings of the
6th International Conference on Web Information Sys-
tems and Technologies (WEBIST ’10), April 7-10, 2010,
Valencia.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. 2009.
The weka data mining software: an update. SIGKDD
Explor. Newsl., 11(1):10–18.

Thorsten Joachims. 2002. Learning to classify text using
support vector machines. Kluwer, Boston.

Bernhard Jussen, Alexander Mehler, and Alexandra Ernst.
2007. A corpus management system for historical se-
mantics. Sprache und Datenverarbeitung. International
Journal for Language Data Processing, 31(1-2):81–89.

Martina Kerzel, Jens Mittelbach, and Thorsten Vitt.
2009. Textgrid. KI – Zeitschrift Künstliche Intelligenz,
4/09:36–39.

Claudia Kunze and Lothat Lemnitzer. 2002. GermaNet
– representation, visualization, application. In Proc. of
LREC 2002, pages 1485–1491.

Y. Li, K. Bontcheva, and H. Cunningham. 2009. Adapting
SVM for data sparseness and imbalance: A case study on
information extraction. Natural Language Engineering,
15(2):241–271.

Mitchell P. Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. 1994. Building a large annotated corpus
of english: The penn treebank. Computational Linguis-
tics, 19(2):313–330.

Alexander Mehler and Ulli Waltinger. 2009. Enhancing
document modeling by means of open topic models:
Crossing the frontier of classification schemes in digi-
tal libraries by example of the DDC. Library Hi Tech,
27(4).

Alexander Mehler, Rüdiger Gleim, Alexandra Ernst, and
Ulli Waltinger. 2008. WikiDB: Building interoperable
wiki-based knowledge resources for semantic databases.
In Sprache und Datenverarbeitung. International Jour-
nal for Language Data Processing.

Elke Teich and Peter Fankhauser. 2004. WordNet for lexi-
cal cohesion analysis. In Proc. of the 2nd Global Word-
Net Conference, January 20-23, 2004, pages 326–331.

Hans Uszkoreit, Thorsten Brants, Sabine Brants,
and Christine Foeldesi. 2006. NEGRA Corpus.
http://www.coli.uni-saarland.de/projects/
sfb378/negra-corpus/.

Ulli Waltinger, Alexander Mehler, and Gerhard Heyer.
2008. Towards automatic content tagging: Enhanced
web services in digital libraries using lexical chaining.
In Proc. of WEBIST’08, Funchal, Portugal. Barcelona.

Ulli Waltinger, Alexander Mehler, and Rüdiger Gleim.
2009. Social semantics and its evaluation by means of
closed topic models: An SVM-classification approach
using semantic feature replacement by topic generaliza-
tion. In Proceedings of the GSCL-Conference, Potsdam
(DE), 2009.

210


