
Djangology: A Light-weight Web-based Tool for Distributed Collaborative Text
Annotation

Emilia Apostolova, Sean Neilan, Gary An*, Noriko Tomuro, Steven Lytinen

College of Computing and Digital Media, DePaul University,Chicago, IL 60604 U.S.A.
*Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 U.S.A.

emilia.aposto@gmail.com, sean@seanneilan.com, docgca@gmail.com,
tomuro@cs.depaul.edu, lytinen@cs.depaul.edu

Abstract
Manual text annotation is a resource-consuming endeavor necessary for NLP systems when they target new tasks or domains for which
there are no existing annotated corpora. Distributing the annotation work across multiple contributors is a natural solution to reduce and
manage the effort required. Although there are a few publicly available tools which support distributed collaborative text annotation,
most of them have complex user interfaces and require a significant amount of involvement from the annotators/contributors as well
as the project developers and administrators. We present a light-weight web application for highly distributed annotation projects -
Djangology. The application takes advantage of the recent advances in web framework architecture that allow rapid development and
deployment of web applications thus minimizing development time for customization. The application’s web-based interface gives
project administrators the ability to easily upload data, define project schemas, assign annotators, monitor progress, and review inter-
annotator agreement statistics. The intuitive web-based user interface encourages annotator participation as contributors are not burdened
by tool manuals, local installation, or configuration. The system has achieved a user response rate of 70% in two annotation projects
involving more than 250 medical experts from various geographic locations.

1. Introduction
Text annotation is an inherent step in almost any Natural
Language Processing (NLP) task. Ever since the Message
Understanding Conference (MUC) was first held in 1987,
the creation of annotated corpora and evaluation metrics
has been a focus in the NLP community. Sharable com-
mon resources such as gold standards and training corpora
related to various NLP tasks have been actively created for
over 20 years. The ISO/TC 37/SC4 Language Resources
Management sub-committee 1 of the International Organi-
zation for Standardization (ISO) is actively developing an-
notation standards (Ide and Romary, 2004). Even though
the need for annotation standards has been recognized, his-
torically annotated corpora and NLP frameworks employ
ad-hoc annotation schemas. As a result, the task of the NLP
developer/researcher inevitably involves ad-hoc translation
from one annotation coding scheme to another.
The repository of existing publicly available annotated cor-
pora has been growing (the catalogue of the Linguistic Data
Consortium currently consists of 450 linguistic corpora2).
However, most real-world NLP efforts tackle new domains,
languages, or tasks and lack the support and convenience
of pre-existing annotated data. Manual annotation of tex-
tual data is known to be a time- and resource-consuming
task. The task is further complicated by expectations of the
involvement of multiple annotators for the purpose of de-
veloping objective metrics based on inter-annotator agree-
ment statistics. To address this problem, an idea of dis-
tributing the effort across multiple groups/contributers has
emerged. This paper presents a light-weight web applica-
tion for collaborative, distributed annotation of text docu-
ments - Djangology. This web application provides easy

1http://www.tc37sc4.org/index.php
2http://www.ldc.upenn.edu/Catalog/

integration with existing annotation schemas, as well as a
basis for rapid development of customized web-based an-
notation tools and information models.

2. Related Work
It is not uncommon for NLP research groups to rely on
manual text annotation tools which are developed in-house
and for specific domains or tasks. However, the use of
general-purpose text annotation tools (providing various
degrees of customization capabilities) has become more
common recently. A number of stand-alone annotation ap-
plications have been made publicly available to the NLP re-
search community. Callisto (Day et al., 2004) is a Java an-
notation framework which provides a plug-in development
environment for custom annotations. MMAX2 (Müller
and Strube, 2006) and Word-Freak (Morton and LaCivita,
2003) are also Java-based stand-alone tools which support
annotation schema definitions and custom XML-based an-
notation exports. The GATE NLP framework (Cunningham
et al., 2002) integrates an annotation interface to the frame-
work’s Java GUI (Graphical User Interface). A couple of
annotation plug-ins have been developed for the Protégé 3

Java framework - iAnnotateTab (Chintan, 2005) and Know-
tator (Ogren, 2006). The Knowtator plug-in has gained
popularity and allows complex annotation schema design,
inter-annotator statistics, as well as the creation of a gold
standard based on annotations from multiple annotators.
As stand-alone applications, all of the annotation tools
above require significant involvement from the annotators
- software installation and typically non-trivial configura-
tion. Accumulating, evaluating, and consolidating annota-
tions from various annotators also involves considerable ef-
fort. Web-based distributed annotation tools have been de-

3http://protege.stanford.edu

3499



veloped to avoid the hassle of stand-alone applications and
to streamline collaborative annotation efforts. The GATE
framework (Cunningham et al., 2002) supports collabora-
tive annotation through the OLLIE client-server applica-
tion (Cunningham et al., 2003). The OLLIE client uses a
Java-enabled web browser and communicates to a server
via Java Applets. The web-based application uses GATE’s
distributed database facilities to authenticate and store user
data as well as the language resources being edited. One
drawback of the system is that communication between the
web-based client and the server is achieved via Java RMI
(Remote Method Invocation), which has limited browser
support and is known to have a number of deployment dif-
ficulties that render the approach impractical. Serengeti
(Stührenberg et al., 2007) is a project-specific Mozilla Fire-
fox plug-in that allows web-based annotation of anaphoric
relations using a pre-defined schema. Annozilla 4 is an-
other Mozilla Firefox plug-in that allows spans of text in
html/text documents to be associated with annotation types
and free text. Annotations can be stored in a RDF-format
local datastore on the user’s machine, or posted/retrieved
from a compliant Semantic Web annotation server.

3. Motivation and Case Study
The Djangology5 annotation web application was origi-
nally created to meet the needs of a collaborative annotation
project involving more than 250 international participants.
The goal of the project was to create a gold standard corpus
which is annotated with named entities of the domain
of interest: medical studies of trauma, shock, and sepsis
conditions. Abstracts from an annual conference dedicated
to the subject and hosted by the the North American
Shock Society 6 were used to identify the domain-specific
named entities via an automated process. The named entity
annotations had to then be validated by domain experts -
the contributors to the conference. The Djangology system
has been in use for two consecutive years (2008 and 2009),
and has achieved an average contributor response rate of
70%.

The needs of the project led to a set of requirements com-
mon to similar highly-distributed collaborative annotation
projects. An administration interface was needed to man-
age documents and users, as well as for the definition of
annotation schemas. Annotations created via an automated
process needed to be loaded into the system. Participants
were notified via email and presented with a link to the
web-based interface. After logging in, annotators were able
to view a list of assigned documents. An intuitive web-
based user interface was needed to allow participants to an-
notate documents with minimal instructional text. Easy and
quick annotation access was crucial to the success of the
project. As the time of domain experts is quite valuable,
complicated installation or annotation instructions would
be prohibitive. The system also needed to display inter-
annotator agreement statistics, as well as the evaluation

4http://annozilla.mozdev.org/
5The system is named after the 1949 Django Reinhardt album.

The name also highlights the use of the Django web framework.
6http://www.shocksociety.org/

statistics comparing a gold standard against the automated
annotation.

4. System Description
4.1. Technical Details
Recent years have introduced new technologies for rapid
and easy development and deployment of web applications,
most notably the Ruby on Rails7 framework (developed
for the Ruby language) and the comparable Django frame-
work8 (based on the Python language). For our annotation
project, the Django web framework was selected because
the framework has excellent documentation and design,
which allows for the development of high-performing, ele-
gant web applications quickly. In addition, the Python pro-
gramming language has traditionally been in wider use in
the academic community (compared to Ruby) and a num-
ber of Python NLP frameworks and tools could be easily
integrated into the web application if necessary.
In terms of deployment, Django requires almost no config-
uration as it is based on the software design principle Con-
vention over Configuration. It supports almost all popular
database servers, including PostgreSQL, MySQL, Oracle
and SQLite. An out-of-the-box administration web inter-
face provides facilities for user and database record man-
agement, thereby reducing development time significantly.
Modifying the database schema requires minimal effort on
the developer through the use of the Active Record de-
sign pattern. Similarly, the framework provides support for
rapid development of custom pages or modifying existing
interfaces. In addition, Django supports agile development
practices through built-in automated testing and support for
rapid unit test writing.
Djangology can be deployed on any web-accessible server
and requires a Python installation, Django installation, and
connectivity to a database server 9. Source code and in-
stallation instructions can be found at the project web-
site http://djangology.sourceforge.net/. We estimate that
end-to-end installation and configuration time for a Python
and Django-savvy developer is less than an hour. Once
deployed, the application can be accessed from any web
browser - no browser plug-ins, JVM installation, or custom
security settings are necessary, as the client-server commu-
nication is based on standard HTTP and Ajax requests.
The application database schema (Figure 1(a)) and user in-
terface can be rapidly extended and customized. For ex-
ample, creating a new field to annotator accounts could be
effortlessly achieved by just adding a new attribute to the
corresponding Python model class. The corresponding web
form and underlying database schema are transparently up-
dated by the Django framework (Figures 1(b) and 1(c)).

4.2. User Interface and Workflow
The Djangology 10 application presents administrators with
an interface to create/modify annotation projects and man-
age users (Figure 2). Administrators can import documents

7http://rubyonrails.org/
8http://www.djangoproject.com/
9Quick install guide can be found at

http://docs.djangoproject.com/en/dev/intro/install/
10http://sourceforge.net/projects/djangology/

3500



(single document or batch mode) into a project, define the
project annotation schema, create annotator accounts, and
assign annotators to specific projects and to a list of docu-
ments. Existing annotations and documents could also be
easily loaded into the system through custom Python scripts
(stand-alone Django scripts) or through direct connection
to the Djangology database. Djangology has been used to
import manually created annotations in the Knowtator for-
mat and from the BioScope Corpus (Szarvas et al., 2008)
as well as annotations created automatically by the Gate
and UIMA (Ferrucci and Lally, 2004) frameworks and the
Metamap c© system from the National Library of Medicine.
In the workflow of the system, contributors are typically
emailed their system authentication information and pre-
sented with a link to the application (Figure 3). Once
logged in, annotators can select one of their assigned docu-
ments and proceed with the web-based annotation interface.
An Ajax-based web page allows contributors to highlight a
fragment of text and assign it to one of the pre-defined an-
notation types (based on the project annotation schema).
The procedure for entering new annotations and modifying
existing annotations is intuitive and based on user interface
conventions - text selection/right-click menu selection. The
system is specifically designed to require minimum time-
investment on the part of the involved annotators. No in-
stallation, configuration, or reading user manuals is neces-
sary on the part of the contributors. Annotations are saved
to the backend database as they are entered, ensuring that
no work is lost. In order to save annotators’ effort, once a
phrase is annotated, all occurrences of the phrase in the doc-
ument are automatically annotated in the same type. Users
are also given a facility to override the automatically cre-
ated annotations or change the system’s default behavior. If
desired, contributors could also mark documents as com-
pleted to alert the project administrator of the annotation
progress.
Once annotations are gathered from various contribu-
tors, project administrators have the ability to view inter-
annotator agreement statistics - a variety of pair-wise
project-based and document-based metrics are computed
and presented in the user interface (Figure 4(a)). As anal-
ysis of inter-annotator disagreement is a common task, an
interface for a side-by-side comparison of document anno-
tations is also provided (Figure 4(b)).

5. Conclusions
This paper presented a light-weight open-source framework
supporting distributed annotation projects. The framework
was built to satisfy project needs currently not supported
by existing publicly available annotation tools - minimal
time commitment on the part of distributed contributors
and minimal development and configuration effort on the
part of project administrators. We estimated that installing
both Django and Djangology takes less than one hour for
a Python-savvy programmer. As contributors can access
the annotation project and perform annotations online, no
installation and configuration time-investment is required
from annotators. An intuitive and standard user interface
facilitates active project participation.
The Django web framework allows rapid development

of extensions and customizations without limiting users
to a pre-defined set of configuration files or requiring
investment in complex, heavy-weight applications. By
open-sourcing the framework, we hope to receive valuable
feedback from the community and utilize it to prioritize
the features which we are planning to incorporate in future
releases.

6. References
P. Chintan. 2005. iAnnotate Tab.
D.H. Cunningham, D.D. Maynard, D.K. Bontcheva, and

M.V. Tablan. 2002. GATE: A framework and graphi-
cal development environment for robust NLP tools and
applications.

H. Cunningham, V. Tablan, K. Bontcheva, and M. Dim-
itrov. 2003. Language engineering tools for collabora-
tive corpus annotation. In Proceedings of Corpus Lin-
guistics. Citeseer.

D. Day, C. McHenry, R. Kozierok, and L. Riek. 2004. Cal-
listo: A configurable annotation workbench. In Interna-
tional Conference on Language Resources and Evalua-
tion. Citeseer.

D. Ferrucci and A. Lally. 2004. UIMA: an architectural
approach to unstructured information processing in the
corporate research environment. Natural Language En-
gineering, 10(3-4):327–348.

N. Ide and L. Romary. 2004. International standard for a
linguistic annotation framework. Natural language en-
gineering, 10(3-4):211–225.

T. Morton and J. LaCivita. 2003. Word-Freak: an open
tool for linguistic annotation. In Proceedings of the 2003
Conference of the North American Chapter of the As-
sociation for Computational Linguistics on Human Lan-
guage Technology: Demonstrations, pages 17–18.

C. Müller and M. Strube. 2006. Multi-level annotation of
linguistic data with MMAX2. Corpus Technology and
Language Pedagogy: New Resources, New Tools, New
Methods. Peter Lang, Frankfurt aM, Germany.

P.V. Ogren. 2006. Knowtator: A Protégé plug-in for an-
notated corpus construction. In Proceedings of the 2006
Conference of the North American Chapter of the As-
sociation for Computational Linguistics on Human Lan-
guage Technology: companion volume: demonstrations,
page 275. Association for Computational Linguistics.

M. Stührenberg, D. Goecke, N. Diewald, A. Mehler, and
I. Cramer. 2007. Web-based annotation of anaphoric re-
lations and lexical chains. In Proceedings of the ACL
Linguistic Annotation Workshop, pages 140–147.

G. Szarvas, V. Vincze, R. Farkas, and J. Csirik. 2008. The
BioScope corpus: annotation for negation, uncertainty
and their scope in biomedical texts. In Proceedings of
the Workshop on Current Trends in Biomedical Natu-
ral Language Processing, pages 38–45. Association for
Computational Linguistics.

A Figures

3501



(a) The Djangology database schema is transparently created and managed by the application.

(b) Both the database schema and the web forms can be effortlessly extended by simply
modifying the underlying Django model objects. In this example, a new field is added
to annotator accounts.

(c) Model object modification are immediately reflected in the web inter-
face.

Figure 1: Djangology allows rapid customizations.

3502



(a) A web interface allowing administrators to manage projects and users

(b) A web interface allowing administrators to define/modify projects

Figure 2: Sample pages demonstrating the Djangology administration interface

3503



(a) Annotators are sent authentication
information via email and a link to ac-
cess the web application

(b) List of documents assigned to a project contributor

(c) An intuitive interface allowing annotation editing based on the project annotation schema as defined by the project administrator

Figure 3: Sample pages demonstrating the interface used by project annotators

3504



(a) Project administrators can view inter-annotator agreement statistics

(b) Side-by-side document comparison page allowing project administrator to analyze sources of annotation disagreement

Figure 4: Inter-annotator agreement and error analysis tools

3505


	Introduction
	Related Work
	Motivation and Case Study
	System Description
	Technical Details
	User Interface and Workflow

	Conclusions
	References
	Figures

