Learning Based Java for Rapid Development of NLP Systems

Nick Rizzolo, Dan Roth

University of lllinois at Urbana-Champaign
{rizzolo ,danr }@illinois.edu

Abstract
Today's natural language processing systems are growimng camplex with the need to incorporate a wider range of lagguesources
and more sophisticated statistical methods. In many casesecessary to learn a component with input that includegpredictions of
other learned components or to assign simultaneously thewthat would be assigned by multiple components with anessive, data
dependent structure among them. As a result, the desigrstdrag with multiple learning components is inevitably guéchnically
complex, and implementations of conceptually simple NLBteays can be time consuming and prone to error. Our new maodeli
language, Learning Based Java (LBJ), facilitates the rdgiglopment of systems that learn and perform inferencd.hzB already been
used to build state of the art NLP systems. This paper detglsnt advancements in the language which generalizertputational
model, making a wider class of algorithms available.

1. Introduction We refer to the whole of these principles as Learning Based
Programming (LBP) (Roth, 2006). Our previous work in-

As the fields of Natural Language Processing (NLP) androduced Learning Based Jai.BJ) (Rizzolo and Roth,
Computational Linguistics have matured, more sophisti-2007), a modeling langauge that represented a first step in
cated language resources and tools have become availabigis direction. It modeled a user’s program as a collection
These tools perform complicated analyses of natural lanef locally defined experts whose decisions are combined to
guage text to find named entities, identify the argumenimake them globally coherent. While this is certainly one
structure of verbs, determine the referents of pronouns angpe of decomposition LBP aims to provide, the language
nominal phrases, and more. Many such tasks involve mullacked the expressivity to specify other interesting medel
tiple learning components whose collective objective is torig paper makes three main contributions. First, we

assign values to variables that may have an expressive, dgigmonstrate that there exists a theoretical model that de-
dependent structure among them. Thus, systems that P&lzihes most, if not all, NLP approaches adeptly (Section
form these tasks have complicated, data dependent devel ). Second, we describe our improvements to the LBJ
ment cycles and run-time interactions. As suph, their imp'_elanguage and show that they enable the programmer to de-
mentations become large and unwieldy, which can restric{ o jne the theoretical model succinctly (Sections 3. ajd 4.
their usefulness as resources. Third, we introduce the conceptdéta driven compilation
Organized infrastructure solutions such as GATE (Cun- translation process in which the efficiency of the gener-
ningham et al., 2002), NLTK (Loper and Bird, 2002), and ated code benefits from the data given as input to the learn-
IBM's UIMA (Gotz and Suhre, 2004) only partially solve ing algorithms (Section 5.). Thus, the programmer spends
these issues. They aim to make separately learned comphis time designing his models instead of worrying about
nents “plug-and-play”, but they do not help manage theirthe low level details of writing efficient learning based pro
training nor do they offer solutions when the outputs of dif- grams that have been abstracted away.

ferent components contradict each other. The more recently

developedAlchemy(the most popular MLN (Richardson

and Domingos, 2006) implementation) and FACTORIE 2. A Model for NLP Systems

(McCallum et al., 2009) systems offer general purpose so-

lutions for global training and inference, but they lack theWe submit theconstrained conditional mod¢CCM) of
flexibility to decompose the problem, and general purposéChang et al., 2008) as the paradigmatic NLP modeling

algorithms quickly become intractable on the large probframework. A CCM can be represented by two weight vec-
lems encountered in NLP. tors, w and p, a set of feature function® = {gﬁl ‘ ¢;

A comprehensive solution for modeling problems in nLp X x Y — R}, and a set of constraints = {C;|C; :
(as well as other domains) would combine the advantageé? X Y — R}. Here, X is referred to as thinput spacend

of both types of systems mentioned above. It would makev |s_re1.‘erred.to as theutput space Most qften, both are
effortless the combination of arbitrary types of compogsent rr_1u|t|-d|men5|onal. Let_f be the set of pos_su;)le value_s fora
in the learned system, be they learned or hard coded (e_gl_ngle element of the input, and I#tbe 5|m|Iar_Iy defined
features and constraints). At the same time, it would al-or the output. Thert’ = X? andy = T¢ for integersp
low the modeling of large, structured problems over which®"d¢:

learning and inference can be performed globally. How-The score for an assignment to the output variaples )
ever, in contrast to the systems above, it should also allo®n an input instance € X can then be obtained via the
a flexible decomposition of such large, structured problems

so that learning and inference can be efficiently tailored to
suit the problem. Lava is a registered trademark of Sun Microsystems, Inc.

957



linear objective function simply the class associated with the highest scoring weight
vectory” = argmax, ¢y, wy - ®'(x).
fxy) =Y widi(x,y) =Y piCi(x,y), (1) Once again, to cast this model as a CCM, we Hpive Y,
g J and we distribute the output variable into the definitions of

and inference is performed by selecting (perhaps approx?—he features. However, in this case, valid valges 1 of

; : : ; . the output variable will also be used to index the features
mately) the highest scoring output variable assignment:
y) 9 goulp g (Punyakanok et al., 2005):

* = argmax f(x, 2 . .
y' = argm fxy) @) Ig(y)_{ 1 ify=g @
0 otherwise
While features and constraints are defined to return real val bi.5(%, 1) = Ij(y) ¢(x) (5)
ues above, they are often Boolean functions that reiunn i
1 in this context. The only difference between them is that f(x,y) = Z Wi 5¢i,5(X,Y) (6)
a feature’s weights are set by a learning algorithm, whereas &Y

a const'ramts weights are set by a domaln.expert. ThusEquation (4) effectively redefines our output space from
constraints are a mechanism for incorporating knowledg single, discrete variable into a set of Boolean variables.

into the model. Note that CCMs are not restricted to any, : : o .
. . . . E ion imply shows th ive functigrfrom
particular learning or inference algorithms. Thus, the de- quation (6) simply shows the objective functigriro

. fth del wilor th i fthe feat equation (1) with the new feature indexing scheme. It is
signer of the model can tarior the semantics ot the 1eatureg, o ar in the newl;(y) variables, and we can use equation
and weights for the task at hand.

(2) for inference.

The CCM is very general and subsumes many mOdeIm%enerative models used for multi-class classification such

formalisms. As such, many, if not all models developed in . . T
the NLP community fall under its umbrella. For the rest of as naive Bayes can also be viewed in this light (Roth, 1999).

this section, we will explore these claims in more depth. 213, Hidden Markov Models

2.1. Classical Models of Learning The standard in sequential.prediction tasks is the Higiden
. . _ Markov Model (HMM) (Rabiner, 1989). It is a generative
The simplest types of models are predictors for discretgngdel that incorporates (1) a probability of making each
variables. CCM is also general enough to model real value@ossible emission at stepand (2) a probability of being
Val’iab|eS, but I’egl’eSSion iS rarely Utilized in NLP, SO Wé wi in each possib|e state at Stepl, ]_’ both conditioned on
omit that discussion here. Below, we consider some familthe state at step These probabilities are usually organized

iar learning models that can all be realized as CCMs. Theynto emission and transition probability tablé¥e; |s;) and
are all unconstrained, so the second summation in equatiop (s, , |s;), respectively, where; € S ande; € €. Dur-

(1) can be ignored for now. ing inference, the emissions are fixed, the state variables
_ _ s; are our output variables, and our goal is to find the as-
2.1.1. Linear Threshold Units signment that maximizes likelihood or, equivalently, log-

Binary classification algorithms such as Perceptron (Roserlikelihood:
blatt, 1958) and Winnow (Littlestone, 1988) representrthei

n

hypothesis with a weight vecter whose dimensions cor- g+ _ argmaXH P(si|si—1)P(ei]si) (7
respond to features of the inp{tt;(x)}. The prediction of s
the model is thep™ = sign(w-®'(x)), the dot product be- n
tween the weight vector and the features is compared with = argmaxz log(P(si|si—1)) + log(P(eils;)) (8)
a threshold) = 0. Thus, we refer to these models as linear S =1

threshold units (LTUS).

To cast this model as a CCM, we first note that =
{-1,1} and)y = Y. There are no restrictions o or ] i )
X. Then we simply distribute the output variaiénto the ~ Following (Collins, 2002), we can cast equation (8) as a

wheres is a speciab'" state symbol placed at the begin-
ning of every sequence.

definitions of the features: CCM by first flattening the log probabilities into our weight
vector. Next, we rearrange equation (8) to factor out the
¢i(x,y) = y ¢;(x) (3)  model's weights, which are just the individual probaleiti

in the two tables:
Equations (1) and (2) can then be used for inference. All
w; and ¢/ (x) are fixed, so the objective function remains Lo (") = Ti(r) Lo (') 9

linear. n
st = argmaleog(P(é\é)) (Z Ig,é(&'&i))
2.1.2. Multi-Class Classifiers s 3,8 i=1
A popular approach to online multi-class classification in- - "
stantiates for each class a separate kF})y € T, indexed + Z log(P(3]8)) (Z Is.5 (54 5i1)>
by the same features of the inpfut;(x)} (Carlson et al., 8,8 =1
1999; Crammer and Singer, 2003). The prediction is then (10)

958



It is now clear that our features simply count the number ofas follows.

occurrences of eaclstate emissiol pair and each pair of n

consecutive states in the sequence. Thus, With ¢" and $ip(%y) = Y Yr & p(2)) (14)
Y = 8", we can complete our CCM definition as follows: j=1

n 1,7 ’ = 3 Iy (y; ; j 15
62300¥) = Y Tas (o) 1) Guarley) =3 Blwn dhrle)  (9)

n Constraints: If the filter predictsno, the type classifier
bg.r (%) = Y Ly (Y yi1) (12)  must predictnull . We will refer to this structural con-
i=1 straint as thdilter constraint In addition, there are the
flxy) = Z Wi 5Ps,9(X,y) + Z Wy, 05,5 (X, Y) structural constraints ensuring that no two arguments-over
&9 9,9’ lap as well as knowledge about type regularities encoded in
(13)  constraints such as

Our objective function (13) is once again linear in the vari- e no two arguments associated with any given verb may
ablesl; ;(zi,y;) andl; 4 (yi, yi—1). As Collins notes, we have typeat, fort € {0,1,2,3,4,5}, and
can then solve equation (2) efficiently with the Viterbi al-

. e if any argument associated with a verbas reference
gorithm.

typeR-At, then some other argument associated with

h he ref fi 1,2,3,4,5}.
2.2. Multivariate NLP Models musthave the referenttype, for € {0,1,2,3, 4,5}

In recent years, NLP systems have moved away from mod@onstraln.ts were defined at. the peglnnlng of this section
as returning a real value, just like features. However,

els of single output variables to incorporate many dec'fssionth t " ful Bool tout variabl

simultaneously. But these joint models must still be decom-Cey are o %nlmc_)sd_usetz_ u ashn?;/]v 00 eandou_publvarla es

posed to be tractable during both learning and inference” %:¥) € {0, 1} indicating whether some desirable prop-
rty of the other variables has been violated. In this case,

Thus, many researchers now use classical models as builg->. e : . .

ing blocks for the decomposition of their systems. They_t e defmltpn O“e.” comes in Fhe form of.lmear mqual—
use constraints to encode structural relationships betweét'es' Here is the linear definition of the filter constraint:
these bundmg blocks as well as prior knowledg(_a about their Cir(x,y) > I 1(yjr) — Tnan1 (y5.1) (16a)
global behavior. Additionally, they frequently infuse fur

ther knowledge into the system by controlling the behavior 2C5,p(%,y) < I-1(yF) = T (y;7) +1 (16D)
of the inference algorithm. CCMs can accommodate all ofThe inequalities (16) establish th@} r(x, y) will be 1 if
these modeling techniques. the type variable for argument is nonnull - whenits fil-

A prime example of this modeling philosophy is the seman-ter variable sayso (i.e., the filter constraint has been vi-
tic role labeling (SRL) system of (Punyakanok et al., 2008) 0lated), and 0 otherwise. Unlike our feature definitions,
In SRL, the inputx represents a sentence of natural lan-these inequalities must reside outside the objective fomct
guage text. The sentence must be segmented into phras&s separate constraints on the inference problem.

which may represent arguments of a given verb in the senconstraints that establish a logical relationship between
tence. Each phrase that does represent an argument mustdtput variables can be written to enforce the other struc-
classified by its type. While a solution to this problem couldtural and domain specific constraints in our SRL problem
be learned in a joint probabilistic framework, Punyakanok,as well (Punyakanok et al., 2008). In fact, any constraint
et al. decomposed it into two independently learned comwritten in a logical form can be translated to such linear
ponents and hard constraints encoding prior knowledge erinequalities automatically (Rizzolo and Roth, 2007). We
forced only at inference time. They showed that this de-omit the descriptions of the remaining constraints for lack
composition resulted in more efficient learning requiring of space.

less training data as well as a fast inference strategy. We

now discuss the implementation of this system as aCCM.Inference: The inferen;e strategy e_mployec_j by Pun-
yakanok, et al. was motivated by empirical evidence they

Decomposition: Their system accepted an arrayof n gathered indicating that a prediction w6 from the filter
argument candidates as input. They learned, independentlyas correct a high percentage of the time. As such, they
one linear threshold unit to act as an argument candidate fichose to trust these decisions more than decisions made by
ter, and one multi-class classifier to predict argumentgype the type classifier. This behavior can be implemented in a
Both classifiers classify a single argument candidatex =~ CCM by artificially inflating the filter's scores by a constant
and were trained with features of only the ingd¥t(z) and  «.
/. (x), respectively. The filter predicts eithges or no.

The type classifier selects a prediction frédmJ {null}
whereT is the set of argument types (e 40, A1, A2, ...)
andnull indicates the candidate argument is not actuallyThis will cause the model to prefer, in general, global as-
an argument. So, the CCM will include two output vari- signments that agree with the filter classifier. Note alsb tha
ablesy; r € {—1,1} andy;r € 7 U {null} for each the constraints are dilard; ie., if any constraint is violated,
argument candidate;. We can write its feature functions the score of the assignmentisc.

f(xy)=awr- - ®p(x,y) +wr - O7(x,y)

—00C (Xv y) (17)

959



nodel Argumentldentifier :: di screte[] input -> bool ean isArgument
input[ *] A TisArgument;

nodel ArgumentType :: di screte[] input -> di screte type
inputf =] A\ type;
inputf =] A\ input] *] N\ type;

static nodel pertinentData :: ArgumentCandidate candidate

-> discrete[] data

data.phraseType = candidate.phraseType();

. data.headWord candidate.headWord();

0. data.headTag candidate.headTag();

1. data.path = candidate.path();

RRO0oOoNoOR~WNE

Figure 1: The SRL system from Section 2.2. is decomposedwtdearned components whose general structure is defined
in lines 1-5. Lines 6-11 define a hard-coded model that cislldata from a Java object for later use as input variables for
the learned components.

2.3. Other CCMs in the Wild 3.1. Models

Examples of more complicated CCMs abound in the NLPA model in LBJ simply represents an objective function of
literature. (Barzilay and Lapata, 2006) describes an authe form of equation (1) in which the weightg are im-
tomatic semantic aggregator that uses constraints to comlicit (recall thatp is specified by a human; thus it is ex-
trol the number of aggregated sentences and their lengthplicit). Features and constraints are specified in a logie sy
(Marciniak and Strube, 2005) describes a general constraiax as described in Section 3.2. Once these are specified, the
framework for solving multiple NLP problems simultane- model can be instantiated so that each instance contains its
ously. (Martins et al., 2009) describes a dependency parswn weight vectors.

ing system that incorporates prior knowledge as hard con- o ) ) ] ) .
straints. These and other systems would be more easipecomposnmn: Figure 1 immediately describes the unit

maintainable, more portable, and more useful as resourc&d décomposition used to build the system. The two models

if they had been developed in a modeling formalism de_declared on lines 1 and 3 are the models that will do all the

signed specifically for them. We aim to provide such anSYStém's leaming. Thargumentidentifier model wil
environment in Learning Based Java. be a linear threshold unit, so it hadeolean output vari-

able. Its body declares features in the form of equation (3).
. d The ArgumentType model will be a multi-class classifier,
3. Learning Based Java so it has aldiscrete  output variable. Its features are de-

Learning Based Java has already been used to develop s&fared in the form of equation (5). (The syntax for writing
eral state-of-the-art resources. The LBJ POS tdgger these f_eatures_on lines 2, 4, and 5 is described in Section
ports a competitive 96.6% accuracy on the standard Walp-2-) Finally, Figure 1 declares a model used merely to ex-
Street Journal corpus. In the named entity recognizer off@ct the datawe wish to utilize in these learned models. We
(Ratinov and Roth, 2009), non-local features, gazetteerdVill see in Figure 3 how this data is given to them.
and wikipedia are all incorporated into a system thatln more detail, a model declaration’s header contains a
achieves 90.87 on the CoNLL-2003 dataset, the highest name for the model and a list of argument specifications.
score we are aware of. Finally, the co-reference resolutioffhe list is partitioned by an arrowx() indicating that the
system of (Bengtson and Roth, 2008) achieves state-of-th@rguments on the left represent input, and the arguments
art performance on the ACE 2004 dataset while employingn the right represent output variables. Input may mean
only a single learned classifier and a single constraint.  input variables, primitive types, or Java objects from the
Nevertheless, our previous work on LBJ was not expresProgrammer's main program. The variables (either input or
sive enough to represent features involving multiple otitpu@UtPut) in these examples are the ones with typegean
variables. This paper redesigns LBJ to represent, leach, arPr discrete . They are intended precisely to represent the
perform inference over arbitrary CCMs. We introduce ourX @ndy inputand output variables in equation (1).
modeling language by example. The codes in Figures 1, 2Any model may be declarestatic and it has roughly the
and 3 specify the structure of the Punyakanok, et al. sesame meaning as the same keyword when used on a Java
mantic role labeling systerh. These figures discuss how method. Models with no learnable parameters are usually
LBJ language constructs address the concerns of the SRieclared static. A model may also bard-coded though
system as described in Section 2.2. Section 3.1. discussé®ere is no keyword for this property. A hard-coded model
each in turn. Section 3.2. then describes the syntax of feds one whose output is well defined even without learn-
tures and constraints in more detail. ing any parameters. TheertinentData model on line

6 which contains only assignment statements is both static

2http://L2R.cs.uiuc.edaécogcomp/software.php and har(_:l-coded_. _ _ _
3Some of the features and constraints have been omitted t€onstraints: Figure 2 contains the implementations for
save space. some of the constraints in this SRL system. The first model

960



static nmodel noOverlaps :: ArgumentCandidate[] candidates -> di screte[] types
for (i : (0O .. candidates.size() - 1))
for (j : (i + 1 .. candidates.size() - 1))
#: candidates]i].overlapsWith(candidates[j])
=> types[i] :: "null" || types[j] :: "null";
static model noDuplicates :: -> di screte[] types
#: forall (v : types[0].values)
atnost 1 of (t: types) t = v;

BOoo~NoarwbE

static nodel referenceConsistency :: -> di screte[] types
0. #: forall (value : types[0].values)
11. (exists (var : types) var :: "R-" + value)
12. => (exists (var : types) var :: value);

Figure 2: Structural constraints and domain specific expmotvledge encoded as hard constraints are defined here as
separate models with no learning components.

1. nodel SRLProblem :: Argumentidentifier ai, ArgumentType at,

2. ArgumentCandidate[] candidates

3. -> bool ean[] isArgument, di screte[] types
4. for (i : (0 .. candidates.size() - 1))

5. 100: isArgument[i] <- ai (pertinentData candidatesli]);

6. 1 typesli] <- at (pertinentData candidatesi]);

7. #: “isArgument[i] => types[i] :: "null";

8. types[ *] <- noOverlaps candidates;

9. types[ *] <- noDuplicates ();

10. types[ =*] <- referenceConsistency ();

Figure 3: The SRL system from Section 2.2. This code captilmeslecomposition of the inference problem into two
learned components and several hard constraints. A widetyaf learning and inference approaches can now be applied
over this structure.

declares a structural constraint over every pair of argumerthe relationships described by one model can be established
candidates that says, “if two constraints overlap, theytcan amongst selected variables in another model. It is accom-
both have nomull type.” The other two models encode plished bybinding the inputs and outputs of the applied
knowledge about the global behaviors of the output vari-model to the inputs and outputs (respectively) in jae-
ables. The model on line 6 says, “each argument type magnt model (which iSSRLProblem in this case). Binding
appear at most once in the sentence,” and the model on linie different than assignment, because no results have been
9 says, “no reference type may appear unless it correspondsmputed. Instead, we are simply declaring that a particula
to a referent.” externally defined model’s structure appears in this model.

None of these models contain any learned weights. Howkines 5, 6, 8, 9, and 10 of Figure 3 are all examples of
ever, they are not considered hard-coded because there amodel application. They use the left arrow § operator,
usually multiple valid outputs they might produce for a which binds variables in the manner described above. The
given input, and LBJ makes no guarantee as to which willmodel application itself appears to its right, and the newly
be chosen. bound output variables appear to its left. In general, isput

i must be bound with inputs and outputs with outputs. The
Inference:  Figure 3 puts all these components together,ny exception is when the applied model is hard-coded.
in the global model. By applying the learned models oNgjnce a hard-coded model’s output is already completely
each argument candidate (as in lines 5 and 6), we construgbtermined and cannot be affected by the context in which
the objective function in equation (17). The scaling fastor j; ig applied, its output variables may be bound with input

appear at the beginning of the lines before the colon and,iaples in a parent model. We seertinentData ap-
give preference to the decisions of the filter classifiersThi Eied in this way in lines 5 and 6.

results in features of the form described by equations (14) . v, i 8-10 enf hard traints in th del
and (15). We also enforce the filter constraint as define inally, ines c-19 entorce hard constraints in thé model.

by equations (16) on line 7. Finally, the externally defined nlike the r_nodel appllcat|_ons on lines 5 an_d 6 these three
constraints are applied to the global model in lines 8-10. model applications each bind to the entire dictionary oétyp
variables. In order for this type of binding to make sense,

The SRLProblem model takes native Java objects repre-ihq indexes (which can be integers or strings) used to access

senting candidate SRL arguments as input, defines inpyhe gictionary must be consistent from the applied model to
and output variables with respect to those objects,@md  he parent model. In this case, for example, we used the
plies the learned models and hard constraints over thosg;me integers in both contexts.

variables. Model application is a mechanism through which

961



3.2. Features and Constraints and it is semantically equivalent to

The relationships between variables that we have alluded ~ atleast — n of (var: se) sentence

to throughout this paper come in the formfefturesand A atmost  n of (var: se) sentence
constraints The roles that these two constructs play in a ) ) )
CCM are very similar. Each one simultaneously 3.2.3. Extensions to First Order Logic

LBJ extends the typical semantics of these logical sentence
to allow several unorthodox types of atoms. First (and least
ground-breakinghoolean variables may appear in a fea-
ture statement anywhere an atom normally would. They are
treated as if they are 0-ary predicates.

They are specified as predicates in a first order logic (FOLBecond, discrete variables may appear as atoms. When-
syntax in which variables play the role of objects. That syn-ever discrete variables appear as atoms without being com-
tax contains the usual connectives and quantifiers, as weflared to a value or another variable via theor!: opera-

as equality and inequality predicates (and!: respec- tors, the feature statement that contains them actualie+ep
tively) and quantifiers that can compare the quantities ofents many features, one for each set of values in the cross

e distinguishes a potential property of the variables and

e measures the presencestrengthof that property in
the variables’ current values.

objects that satisfy a predicate. product of the variables in question. Each of these fea-
tures will have its own weight in the model. For example,
3.2.1. Features given a discrete variable € { "a1" , "a2" ,"a3" } and

nft Boolean variabl®, the featureA A B represents three

To distinguish features from each other, we give the
"al" N B ,A:"a2"ANB

names These names act as the indexes on features, coeParate featuresa ::
straints, and weight vectors we saw in Section 2. The#NdA i "a3" A B
strength of the feature is the real valued result that is mulThird, a dictionary with an index of (e.g. types[ =])
tiplied by the weight with the same name. However, formay appear as an atom. When it does, each variable in the
simplicity, in this paper we will focus on Boolean features, dictionary is substituted into the feature in turn, eaclatre
whose strengths can be 0 or 1. ing a new feature statement. These new feature statements

Features’ names and values come from the variables the}/ Subjectto the same rules described above depending on
are functions of, and the structure of the feature functiond/hether the substituted variables are Boolean or distrete.
themselves. As in most programming languages, variableghus, it is easy to specify the CCM structure of a multi-
are referred to with identifiers and are used to store interesclass classifier as we saw in Section 3.1. Special provisions
ing bits of data. LBJ haBoolean discrete andreal vari-  must be made to accomodate this behavior with logical op-
ables. It also provides dictionaries in which the keys acterators other than conjunction (Cumby and Roth, 2003).
as separate variable names. Dictionaries can be accesdedJ currently does not make those provisions, but the same
with either integers or strings inside square brackets (e.cgffects are possible with quantifiers and equality predizat
tags['foo”] ) or the selection operator and an identifier New to this version of LBJ is theoolean variable, which
(e.g.tags.foo ). Both of those syntax examples will refer is an atomic feature. There is also a new operator for ma-
to the same variable. nipulating Boolean features (though we only envision it
Anywhere in the body of a model, a declarative fea-useful when applied tboolean output variables) denoted
ture statement indicates that the model will include a , an example of which appears on line 2 of Figure 1. This
weight associated with the specified feature. For examoperator changes the range of its argument f{onyi } to

ple, headWord :: "office" is a feature that evaluates {—1,1}, thereby making it possible to model linear thresh-
to trueif and only if theheadword variable takes the value old units as described in Section 2.1.1.

"office” . The name of the feature will be its entire lex-

ical form, after any interpolation that need be done in the 4. Learning and Inference

indexes of dictionaries. So far, we have shown how to define the shape and struc-

399  Constraints ture of a Constrained Conditional Model using Learning
e Based Java. The code we have written so far defines that
The same FOL syntax is available for the specification ofstructure and nothing more; it is completely agnostic to
constraints, except that each constraint statement is prgpoth learning and inference. From here, with the help of
fixed with a real-valued literal or # symbol Standing for a Sufﬁcienﬂy Comprehensive |ibrary' the average program-
oo followed by a colon. This value is thecorresponding  mer should need only select the algorithms of his choice.

o the const_raint in the _objective func_tio_n_. It represehts t For inference in particular, one of the key advantages to im-
penaltythat Is incurred iff the constraint isolated plementing a model as a CCM is that it is always possible
Constraints tend to make more frequent use of the quantio fall back on Integer Linear Programming (ILP) to solve
fiersforall , exists , atleast ,atmost , andexactly .  the inference problem. Since CCMs keep their objective
These quantifiers have essentially the same semantics as in

LBJ's prior version, though thexactly  quantifier is new. 4Constraints typically do not make use of discrete variabtes

Its form is: dictionaries as atoms, but if they do, all resulting coristsaare
exacty n of (var: se) sentence given the same value for their

962



for (i : (1 .. vars.size()-1))
newScores <- doubl e[];
for (current : vars[i].values)
for (prev : vars[i-1].values)
s = scores[prev] + problem.score {vars[i] = current; vars[i -1] = prev};
i f s > newScores[current] t hen
newScores[current] = s;
predictions[i][current] = prev;
scores = newsScores;

CoNOr~WDNE

Figure 4: A code sample from an LBJ implementation of thegitalgorithm. On line 5, the model returns the score of a
partial assignment to the output variables. This is a coatprtal building block for many inference algorithms.

functions linear and their features and constraints in &log ing algorithms. First, output variables can contain both la
language, they can be automatically translated to ILP optibels and predicted values. This comes in handy when writ-
mization problems. While ILP is intractable in general, it ing a supervised learning algorithm. Second, a model can
has been successful in practice on a variety of tasks, evearct as a feature extractor that returrfeature vectar Fea-
when incorporating long range constraints (Punyakanok etures can be extracted using either the labels or the current
al., 2008; Denis and Baldridge, 2007; Martins et al., 2009) predicted values in the output variables. Third, the lan-
However, if the task at hand demands a more problem spejuage contains syntactic sugar that lets models be treated

cific approach, LBJ can help. as weight vectors for the purpose of performing linear al-
gebra with respect to feature vectors. Combined with the
4.1. Inference ability to query for the scores of partial assignments as de-

cribed above, the programmer has the necessary tools for

Inference in LBJ is often as simple as naming the algorithnT ™"~ ) ) :
uilding custom learning solutions quickly.

and the output variables to apply it to. This is the case i
the following code, where we see the implementation for

an approximate solution to our running SRL example. 5. Data Driven Compilation
1.sol ver SRLinference :: SRLProblem problem The biggest advantage to developing a machine learning
2. Greedy.solve problem.isArgument| *];

framework as a stand-alone language as opposed to a li-
brary for an existing general purpose langauge is that it
Firstit applies a greedy algorithm to tisrgument  vari-  opens many opportunities for automatically improving the
ables, literally executing the argmax in equation (2) overefficiency of the code based on high level analyses. LBJ ex-
each output variable individually. The resulting assign-ploits these analyses with a unique twist, since much of the
ments for these variables are now fixed, making the job ofnformation necessary to generate the final program code
the next inference algorithm called a little easier. is only available in the training data. Thus, we say that an
However, it is often the case that the structure of the probLBJ compiler performsiata-driven compilation Feature
lem indicates a particularly appropriate algorithm thaswa extraction is perhaps the biggest beneficiary of data driven
not anticipated in the LBJ library. For example, the HMM compilation.

(Section 2.1.3.) is efficiently solved by Viterbi. Of course In most NLP systems, a lexicon associating each feature
LBJ has a Viterbi implementation, and Figure 4 shows awith a unique integer index is built from the training data.
snippet from it. But from this snippet, we can see an im-These integers are used to index the weight vector, which is
portant bit of LBJ's syntactic sugar that makes writing in- implemented simply as an array. Many NLP systems create
ference algorithms easier. On line 5, the model is queried separate entry in the lexicon’s hash table for every unique
for the score of a partial assignment to the output variableseature. Since many NLP systems have millions of fea-
A partial assignment score query can be performed ovelures, the resulting code will use a lot of memory and will
any subset of output variables. The result is the usual evabe slowed by the abundance of accesses to the hash table.
uation of equation (1), except every feature and constraintexicons created by LBJ, on the other hand, only store in-
function whose evaluation depends on a variable outside thgexes associated with the discrete values each input and
partial assignment is assumed to return 0. In the context adutput variable are observed to take. For any discrete vari-
a CCM specified in LBJ, the programmer also has accesgble that can take one @f possible values, each value is
to the names of the variables and can thereby pick out thegssociated with a number between 0 &nd 1 inclusive
structure to guide his inference procedure. Thus, a host gh the lexicon. Then they organize the feature index space

3. ILP.solve problem.types]| *];

ad hoc inference implementations become possible. so that features that have the same topology while merely
. comparing their constituent variables with different \edu
4.2. Learning are grouped together. This will happen frequently, since

Like inference algorithms, learning algorithms can be im-featuresthat use discrete variables and dictionariepassat

plemented externally and linked to LBJ. However, LBJ also@'€ quite common.
provides several facilities that make it easier to writeriea Under this organized feature index space, we can now com-

963



pute recursively, as functions of the indexes of their subexM. Collins. 2002. Discriminative Training Methods for
pressions, the indexes of the larger formulas that areeactiv. . Hidden Markov Models: Theory and Experiments with
given a variable assignment. These indexing functions get Perceptron Algorithms. IRroc. of EMNLP

their behavior from the connectives used in the feature fork. Crammer and Y. Singer. 2003. Ultraconservative On-
mulae. For example, if a featuykis a conjunction of two line Algorithms for Multiclass Problemslournal of Ma-
formulae f; and f, its active indexes will take the form  chine Learning Research

Z(f) = kpZ(f1) + Z(f2) + Qy, whereky, is the number C. Cumby and D. Roth. 2003. Feature Extraction Lan-
of features in the same group Ashat differ only by value guages for Propositionalized Relational LearninglJn
comparisons made iff;, and(2 is an offset that ensures  CAI Workshop on Learning Statistical Models from Re-
the index space of begins immediately after the previous |ational Data

feature’s index space ended. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
Disjunction complicates things a little, since many featur ~ 2002. GATE: A Framework and Graphical Development
in a group of disjunctive features can be active simulta- Environmentfor Robust NLP Tools and Applications. In

neously. For example, when the features: "foo" Proc. of ACL
\V B :: "bar" andA :: "foo" V B :: "baz" are P. Denis and J. Baldridge. 2007. Joint Determination of
grouped together, both will be active if the varial#ds Anaphoricity and Coreference Resolution using Integer

set to"foo" . The result is that sets of active indexes are Programming. IrProc. of NAACL

returned up the recursion, and the parent formula’s indeX. Gotz and O. Suhre. 2004. Design and Implementation
computation loops over the cross product of these sets to of the UIMA Common Analysis SystemBM Systems
compute its indexes. Journal

The constants in the index formulae can be computed d\l- Litflestone. 1988. Learning Quickly When Irrelevant
compile time, after an initial pass over the data, but before Attributes Abound: A New Linear-threshold Algorithm.
training begins. The end resultis a lexicon orders of magni- Machine Learning

tude smaller and generated code that performs swift featurg- Loper and S. Bird. 2002. NLTK: the Natural Language
extraction, making any algorithm implemented in the lan-  Toolkit. In Proceedings of the ACL-02 Workshop on Ef-

guage more efficient. fective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics
6. Conclusion T. Marciniak and M. Strube. 2005. Beyond the Pipeline:

In this paper we described a modeling formalism for mul- Discrete Optimization in NLP. I®roc. of CONLL
hap g Andre Martins, Noah Smith, and Eric Xing. 2009. Con-

tivariate models (CCM) and showed that it is appropriate = . . . .
. . cise Integer Linear Programming Formulations for De-
for a wide variety of NLP tasks. We then developed a pro- .
pendency Parsing. IAroc. of ACL

gramming language (LBJ) for specifying the models and .
peforming learning and inference over them. Finally, weA' MC?""”“”" K S.ChUItZ' and S Smgh. 2009'. FACTO-
showed that the feature extraction syntax of the language RIE' Probabilistic Programming via Imperatively De-
can be compiled to code efficient in both space and time, fined Factor Graphs. INIPS ) .

Using LBJ, we believe NLP systems that use learning and” Punygkanok, D. Roth, W. Yih, and D: Zimak. 2005.
inference can be developed rapidly, since the developerwil -€a/ning and Inference over Constrained Output. In

spend most of his time thinking about the modeling of his Proc. of IJCAI i
problem from a high level. V. Punyakanok, D. Roth, and W. Yih. 2008. The Impor-

tance of Syntactic Parsing and Inference in Semantic
Acknowledgements Role Labeling.Computational Linguistics

. _ ) L. R. Rabiner. 1989. A Tutorial on Hidden Markov Models
The authors would like to thank Ming-Wei Chang, James 4.4 selected Applications in Speech RecognitiBro-
Clarke, and Vivek Srikumar for many insightful conversa- ceedings of the IEEE

tions. This work was supported by NSF grant NSF SoD+ atinoy and D. Roth. 2009. Design Challenges and Mis-

HCER-0613885. conceptions in Named Entity Recognition. Proc. of
CoNLL
, 7. References o M. Richardson and P. Domingos. 2006. Markov Logic
R. B.arz_nay and M. Lapata. 2006. Aggrega_ltlon via Set Par-  \jatworks.Machine Learning Journal
titioning for Natural Language Generation. ioc. of N. Rizzolo and D. Roth. 2007. Modeling Discriminative
HLT/NAACL ) Global Inference. IProc. of ICSC
E. Bengtson and D. Roth. 2008, Unders_tandmg the Valug: posenblatt. 1958. The Perceptron: A Probabilistic
of Features for Coreference Resolution. fnoc. of Model for Information Storage and Organization in the

EMNLP. Brain. Psych. Rev(Reprinted inNeurocomputingMIT
A. Carlson, C. Cumby, J. Rosen, and D. Roth. 1999. The p g 1988).).

SNoW Learning Architecture. Technical report, UIUC 5 soih 1999 Learning in Natural Language.Aroc. of
Computer Science Department. .IJCAI. ' ' '

M. Chang, L. Ratinov, N. Rizzolo, and D. Roth. 2008. 5 ro4 2006 Learning Based Programmirignova-

'I&ijrmg and Inference with Constraints. Rioc. of tions in Machine Learning: Theory and Applications

964



