Grammar Extraction from Treebanks for Hindi and Telugu

Prasanth Kolachina, Sudheer Kolachina, Anil Kumar Singh, Samar Husain,
Viswanatha Naidu,Rajeev Sangal and Akshar Bharati

Language Technologies Research Centre,
IIIT-Hyderabad, India
{prasanth,k, sudheer.kpg08, anil, wvnaidu, samar}@research .iiit.ac.in,sangal@iiit.ac.in

Abstract

Grammars play an important role in many Natural Language Processing (NLP) applications. The traditional approach to creating gram-
mars manually, besides being labor-intensive, has several limitations. With the availability of large scale syntactically annotated tree-
banks, it is now possible to automatically extract an approximate grammar of a language in any of the existing formalisms from a
corresponding treebank. In this paper, we present a basic approach to extract grammars from dependency treebanks of two Indian lan-
guages, Hindi and Telugu. The process of grammar extraction requires a generalization mechanism. Towards this end, we explore an
approach which relies on generalization of argument structure over the verbs based on their syntactic similarity. Such a generalization
counters the effect of data sparseness in the treebanks. A grammar extracted using this system can not only expand already existing
knowledge bases for NLP tasks such as parsing, but also aid in the creation of grammars for languages where none exist. Further, we
show that the grammar extraction process can help in identifying annotation errors and thus aid in the task of the treebank validation.

1. Introduction information in the form of weights associated with the

Large scale annotated resources such as syntactic tree-
banks, PropBank, FrameNet, VerbNet, etc. have been at
the core of Natural Language Processing (NLP) research
for quite some time. For a language like English for
which these resources were first developed, they have
proved to be indispensable in advancing the state-of-art
for hosts of applications. Following the success of efforts
like the Penn TreeBank (PTB) (Marcus et al., 1994),
Prague dependency treebank (Hajicova, 1998), several
attempts are underway to build such NLP resources for new
languages. One such ongoing effort is to create a treebank
for Hindi-Urdu (Bhatt et al., 2009; Palmer et al., 2009;
Begum et al., 2008a). Begum et al. describe a dependency
annotation scheme based on the Computational Paninian
Grammar or CPG (Bharati et al.,, 1995). The treebank
being developed using this annotation scheme currently
contains around 2500 sentences. Despite its modest size,
the Hindi treebank has helped improve considerably the
accuracies for a variety of NLP applications, especially
parsing (Bharati et al., 2008).

The role of grammars in the development of advanced NLP
systems is well known. Traditionally, the task of creating a
grammar for a language involved selecting a formalism and
encoding the patterns in that language as rules, constraints
etc. But with the availability of large scale syntactically
annotated treebanks, it is now possible to automatically
extract an approximate grammar of a language in any of
the existing formalisms from a corresponding treebank,
thus reducing human effort considerably. This method of
extracting grammars from treebanks allows for creation
and expansion of knowledge bases for parsing. Grammars
extracted through this method can be used to evaluate
the coverage of existing hand-crafted grammars. The
extraction process itself can help detect annotation errors.
Another major advantage of extracting grammars from
treebank as compared to the traditional approach of
handcrafting grammars is the availability of statistical

primitive elements in the grammar (Xia, 2001).

One of the important issues with any kind of anno-
tated corpora is data sparseness. Sparseness of annotated
data has a detrimental effect on the performance of nat-
ural language processing applications trained over such
corpora. In the case of syntactic annotation, information
about the argument structure of the verb is crucial for
applications such as parsing. For instance, there exist
differences among individual verbs in the number of
their annotated instances based on the frequency of their
occurrence. The number of annotated instances greatly
varies from verb to verb. In fact, the sparse data also poses
a challenge for grammar extraction from treebanks. One
of the ways to overcome this limitation of sparse data
in syntactic treebanks is through generalization of the
argument structure across different verbs. Furthermore,
generalization based on clustering can lead to creation of
verb classes based on the similarity of argument structure.
In this paper, we present a basic system to extract a depen-
dency grammar in the CPG formalism from treebanks for
two languages, Hindi and Telugu. Towards this end, we
explore an approach which relies on generalization of ar-
gument structure over verbs based on the similarity of their
syntactic contexts. A grammar extracted using this system
can not only expand an already existing knowledge base for
NLP tasks such as parsing, but also aid in the creation of a
useful resource. Further, the grammar extraction process
can help in identifying annotation errors and thus make the
task of the treebank validation easier.

2. Goals of the paper
The main goals of this paper are as follows:

1. To present a system that extracts grammars in the CPG
formalism from the Hindi and Telugu treebanks

2. To use the extracted grammar to improve the coverage
of an existing hand-crafted grammar for Hindi, which

3803

is being used for parsing (Bharati et al., 2009a)

3. To generalize verb argument structure information
over the extracted verb frames to address sparsity in
the annotated corpora

4. To aid in the validation of treebanks by detecting dif-
ferent types of annotation errors using the extracted
grammars

3. Related Work

In this section we briefly survey some of the work on gram-
mar extraction, generalization using syntactic similarity.
We also mention a few details about both the Indian lan-
guage treebanks that we used. Syntactic alternation can be
an important criterion while generalizing verbs. We briefly
discuss how syntactic alternation in Hindi differs from En-
glish.

3.1. Grammar Extraction

The role of grammars in NLP is more extensive than is
generally supposed. Xia (2000) points out that the task of
treebanking for a language bears much similarity to the
task of manually crafting a grammar. The treebank of a
language contains an implicit grammar for that language.
Statistical NLP systems trained over a treebank make use
of this grammar implicit in the treebank. This is why
grammar driven approaches and data driven or statistical
approaches are not necessarily mutually exclusive. It
is well known that the traditional approach of manually
crafting a high quality, large coverage grammar takes
tremendous human effort to build and maintain. In
addition, the traditional approach does not provide for
flexibility, consistency and generalization. To address these
limitations of the traditional approach to grammar develop-
ment, Xia (2001) presents two alternative approaches that
generate grammars automatically, one from descriptions
(LexOrg) and the other from treebanks (LexTract).

The LexTract system extracts explicit grammars in
the TAG formalism from a treebank. It is not, however,
limited to the TAG formalism as it can also extract CFGs
from a treebank. Large scale treebanks such as the English
Penn Treebank (PTB) are not based on existing gram-
mars. Instead, they were manually annotated following
the annotation guidelines. Since the process of creating
annotation guidelines is similar to the process of building
a grammar by hand, it can be assumed that an implicit
grammar, hidden in the annotation guidelines, generates
the structures in the treebank. This implicit grammar can
be called a treebank grammar. As suggested by Xia, the
task of grammar extraction using LexTract can be seen
as the task of converting this implicit treebank grammar
to an explicit TAG grammar. LexTract builds an LTAG
grammar in two stages. First, it converts the annotated
phrase structure trees in the PTB into LTAG derived trees.
In the second stage, it decomposes these derived trees
into a set of elementary trees which form the basic units
of an LTAG grammar. It also extracts derivation trees
which provide information about the order of operations
necessary to build the corresponding derived trees. In

her work, Xia has demonstrated the process for treebanks
of three languages: English, Chinese and Korean. She
also showed that grammars extracted using LexTract
have several applications. They can be used as stand
alone grammars for languages that do not have existing
grammars. They can be used to enhance the coverage of
already existing grammars. They can be used to compare
grammars of different languages. The derivation trees
extracted using LexTract can be used to train statistical
parsers and taggers. LexTract can also help detect certain
kinds of annotation errors and thereby, semi-automate
the process of treebank validation. A major advantage of
the LexTract approach to grammar development is that it
can provide valuable statistical information in the form of
weights associated with primitive elements.

The work we present in this paper is on the same
lines as the LexTract approach to grammar development,
but it is on a much smaller scale. It is meant to be the
first step towards building a LexTract like system for
extracting CPG grammars for Indian languages. Since we
worked with dependency treebanks of Hindi and Telugu,
we chose a dependency grammar formalism known as
Computational Paninian grammar (CPG). In fact, the
annotation guidelines followed to annotate the treebank are
based on this grammar (Bharati et al., 2009b). As such, the
grammar extraction process is much more straightforward
than the one in LexTract. In the next section, we give a
brief outline of the CPG formalism where we define the
basic terminology and briefly discuss the components of a
CPG grammar.

3.2. Generalization Based on Syntactic Similarity

The problem of sparse data in Propbank has been previ-
ously addressed using syntactic similarity based general-
ization of semantic roles across verbs (Gordon and Swan-
son, 2007). We try to address the data sparseness prob-
lem by generalizing over argument structure across syntac-
tically similar verbs to arrive at an automatic verb classifi-
cation. Gordon and Swanson (2007) define syntactic simi-
larity for phrase structure trees using the notion of a parse
tree path (Gildea and Jurafsky, 2002). Gildea and Jurafsky
define a parse tree path as ‘the path from the target word
through the parse tree to the constituent in question, repre-
sented as a string of parse tree non-terminals linked by sym-
bols indicating upward and downward movement through
the tree’. This parse tree path feature is used to represent
the syntactic relationships between a predicate and its ar-
guments in a parse tree. The syntactic context of a verb is
extracted as the set of all possible parse tree paths from the
parse trees of sentences containing that verb. The syntac-
tic context of a verb is then converted into a feature vector
representation. The syntactic similarity between two verbs
is calculated using different distance measures such as Eu-
clidean distance, Chi-square statistic, cosine similarity etc.
In our work, we present an analogous measure of syntactic
similarity for the dependency structures in the Indian Lan-
guage (IL) Treebanks, which is described in section 5. We
characterize the syntactic context of a verb using a karaka
frame representation. The notion of karakas is explained in

3804

the next section.

3.3. Syntactic Alternations in Hindi

Syntactic alternations of a verb have been claimed to re-
flect its underlying semantics properties. Levin’s classifica-
tion of English verbs (Levin, 1993) based on this assump-
tion demonstrates how syntactic alternation behavior of a
verb can be correlated to its semantic properties thereby
leading to a semantic classification. There have also been
several attempts at automatically identifying distinct clus-
ters of verbs that behave similarly using clustering algo-
rithms. These empirically-derived clusters were then com-
pared against Levin’s classification (Merlo and Stevenson,
2001).

The following are some linguistic aspects of verb alterna-
tion behavior that we encountered in Hindi:

e In Hindi, the inchoative-transitive alternation pattern
cannot be considered an alternation of the same verb
stem. The verb stems in such constructions, although
morphologically related, are mostly distinct. This is
illustrated in the examples below:

Inchoative:
darawAzA KulA
door-3PSg-Nom open

"The door opened.’

Transitive:
Atifa-ne darawAzA KolA
Atif-3PSg-Erg door-3PSg open

"Atif opened the door.’

e Similarly, the diathesis alternation pattern discussed
by Levin is not exhibited by Hindi verbs.

e Since Hindi is a morphologically rich, free-word order
language, the alternations are not with respect to the
position of the constituent as is the case in English. In
Hindi, alternations are with respect to the case-endings
(or the post-positions) of the nouns, which are called
vibhaktis in CPG.

e Post-positions or vibhaktis alternation is determined
by the form that the verb stem takes in a particular
construction. In other words, the arguments of a verb
are realized using different case-endings or vibhaktis
based on the tense, aspect and modality (TAM) fea-
tures of the verb. This is illustrated in the examples
below:

abhaya rotI KatA hE
Abhay-Nom-3PSgM bread

"Abhay eats bread.’

abhaya-ne rotlI
Abhay-Erg bread-3PSgF
"Abhay ate bread.’

KAyI
eat-past.simp.-3PSgF

abhaya-ne rotI-ko KAyA
Abhay-Erg bread-Acc eat-past.simp.-default
" Abhay ate bread.’

eat-pres.simp.-3PSgM

In the above sentences, the nominal vibhaktis (case-
endings or post-positions) change according to the
TAM and agreement features of the verb. This co-
variation of vibhaktis with verb’s inflectional features
is true not only of finite verb forms but also of non-
finite verb forms. All this information is exploited in
the CPG formalism in a systematic way, as discussed
in the next section.

34.

In this sub-section, we give a very brief overview of the
treebanks used in our work. We worked with treebanks of
two Indian languages, Hindi and Telugu. The treebanks
for Hindi and Telugu contain 2403 and 1226 sentences re-
spectively. The development of these treebanks is an on-
going effort. The Hindi treebank is part of a multi-level
resource development project (Bhatt et al., 2009). Some of
the salient features of the annotation process employed in
the development of these treebanks are as follows:

Indian Language Treebanks

e The syntactic structure of sentences is based on the
dependency representation scheme.

e Dependency relations in the Hindi treebank are anno-
tated on top of a manually POS-tagged and chunked
corpus. In the Telugu treebank, the POS-tagging and
chunking was not performed manually.

e Dependency relations are defined between chunk
heads.

e The dependency tagset used to annotate dependency
relations is based on the CPG formalism which we dis-
cuss in section 4.

4. Computational Paninian Grammar

In this section, we give a brief overview of the Computa-
tional Paninian Grammar (CPG) formalism. We only out-
line details relevant to our goal of grammar extraction. See
Bharati et al. (1995) for a detailed discussion of the CPG
formalism and the Paninian theory on which it is based. In
subsection 4.1, we introduce the basic terminology neces-
sary for an overview of this formalism.

4.1.

e The notion of karaka relations is central to Paninian
Grammar. Karaka relations are syntactico-semantic
relations between the verbs and other related con-
stituents in a sentence. Each of the participants in an
activity denoted by a verbal root is assigned a distinct
karaka. There are six different types of karaka rela-
tions in the Paninian grammar as listed below:

Terminology

1. k1: karta, participant central to the action de-
noted by the verb

2. k2: karma, participant central to the result of the
action denoted by the verb

3. k3: karana, instrument essential for the action to
take place

4. k4: sampradana, beneficiary/recipient of the ac-
tion

3805

arc-label necessity vibhakti lextype src-pos arc-dir
kl m 0 n 1 c
k2 m Olko n 1 fod
k3 d se n gt (o]
k4 d ko n 1. fof
Figure 1: Basic demand frame for the verb ‘de’ (to give)
arc-label necessity vibhakti lextype src-pos arc-dir optr
k1l m ne - - update

Figure 2: ‘yA’ transformation frame for transitive verb

5. k5: apadana, participant which remains station-
ary (or is the reference point) in an action involv-
ing separation/movement

6. k7: adhikarana, real or conceptual space/time'

For example, in the following example sentence:

samIrA-ne abhaya-ko phUla diyA
Samira-Erg Abhay-Dat flower-Acc give.past

’Samira gave a flower to Abhay.’

Samira is the karta (k1), the flower is the karma (k2)
and Abhay is the sampradana (k4). Similarly, in the
following example:

Atifa ne kueM se pAnI nikAlA
Atif-Erg well-Abl water—-Acc draw.3PSgM
"Atif drew water from the well.’

Atif is the karta (k1), well is the apadaana (kS) and
water is the karma (k2).

In addition to these karaka relations, there are some
additional relations in the Paninian scheme such as
tadarthya (or purpose)’.

e The notion of vibhakti relates to the notion of local
word groups based on case ending, preposition and
post-position markers. For a nominal word group, vib-
hakti is the post-position (also known as parsarg) oc-
curring after the noun. Similarly, in the case of verbal
word group, a head verb may be followed by auxil-
iary verbs which may remain as separate words or may
combine with the head verb. This information follow-
ing the head verb (in other words, verb stem) is col-
lectively called the vibhakti of the verb. The vibhakti
of a verb contains information about the tense, aspect
and modality (TAM) and also Agreement, which are

'In the tagset used, k7p represents spatial location, k7t repre-
sents temporal location and k7/k7v represents conceptual location.

>The complete tagset can be found at http:
//ltrc.iiit.ac.in/MachineTrans/research/
tb/dep-tagset.pdf

features assigned to the verb in a syntactic construc-
tion. Therefore, it can also be referred to as the TAM
marker of the verb.

In the previous example sentence, the nouns ’Atifa’
and ’kuAM’ have the vibhaktis *-ne’ and ’-se’ respec-
tively. The vibhakti of the verb 'nikAla’ is "'yA’ which
is also its TAM label.

Nominal vibhaktis have also been found to be impor-
tant syntactic cues for identification of semantic role
in the CPG scheme (Bharati et al., 2008).

4.2. Components of CPG: Demand Frames and
Transformation Frames

A key aspect of Paninian grammar (CPG) is that the verb
group containing a finite verb is the most important word
group (equivalent to the notion of a ’head’) of a sentence.
For other word groups in the sentence dependent on this
head, the vibhakti information of the word group is used
to map it to an appropriate karaka relation. This karaka-
vibhakti mapping is dependent on the main verb and its
TAM label. This mapping is represented by two templates:
default karaka chart (also known as basic demand frames)
and karaka chart transformation (also known as transfor-
mation frame). The default demand frame defines the map-
ping for a verb or a class of verbs with respect to a basic
reference TAM label. It specifies the karaka relations se-
lected by the verb along with the vibhaktis allowed by the
basic TAM label. The basic reference TAM label in CPG is
chosen to be "tA hE’ which is equivalent to Present Indefi-
nite/Simple Present. For any other TAM label of that verb
or verb class, a transformation rule is defined that can be ap-
plied to the default demand frame to obtain the appropriate
karaka-vibhakti mapping for that TAM combination. The
transformation rules can affect the default demand frames
in three ways, each defined as an operation in CPG:

1. Insert: A new karaka relation is inserted into the de-
mand frame along with its vibhakti mapping

2. Delete: An existing karaka relation is deleted from the
default demand frame

3. Update: A karaka-vibhakti mapping entry in the de-
fault demand frame is updated by modifying the vib-
hakti information according to the new TAM label

3806

KAyA ‘ate’

rAma

k2

seba ‘apple’

rAmane seba KAyA
Ram Erg. apple ate
Ram ate an apple.

Figure 3: Dependency structure containing ‘KA’ (to eat)

The default demand frame and a transformation frame for
the ditransitive verb ’de’ (to give) and the TAM label 'yA’
are shown below as an example.

5. Syntactic Similarity for Dependency
Structures

A key concept in much of the previous work on semantic
role labeling is the notion of a parse tree path (Gildea and
Jurafsky, 2002). The parse tree path representation is based
on PTB-style phrase structure (PS) trees. Gordon and
Swanson (2007) define syntactic similarity between words
using the parse tree path representations of their syntactic
contexts.

In the case of dependency parse structures, however,
the notion of a parse tree path is not required. This is be-
cause dependency structures are based on the idea that the
syntactic structure of a sentence consists of binary asym-
metrical modifier-modified relations between the words
of that sentence. Therefore, in a dependency structure,
the information about the syntactic relationship between
a predicate and its arguments is trivially represented as a
parent-child relationship between a head (modified) and its
dependents (modifiers). For any predicate in a dependency
structure, an argument frame representation which contains
information about the categorial type, semantic role (in the
case of labeled dependency) and other kinds of information
about each of the arguments can be extracted readily from
the tree. Such an argument frame representation in a depen-
dency structure would be equivalent to the parse tree path
representation for PSTs. We refer to these argument frame
representations of predicates extracted from a dependency
parse tree as karaka frame representations. Figure 3 shows
the dependency structure of a sentence containing the verb
KA’ (to eat). The karaka frames extracted for the verb
KA’ in this parse tree are [NP k1 ne] and [NP k2 0]. These
extracted karaka frames characterize the syntactic context
of the verb KA’ (to eat) for this sentence. The set of all
karaka frames extracted from each sentence of a given
verb characterizes the possible syntactic context of that
verb. The next step is to represent this syntactic context
as a feature vector. This is done simply by tabulating the
frequencies of each distinct karaka frame into a feature
vector representation. The resulting feature vectors are
normalized by dividing the frequencies by the number of
instances of that particular verb stem.

The syntactic similarity between two verbs is calculated as
the distance between their feature vector representations us-
ing a variety of distance metrics such as Euclidean distance,
Manhattan distance and cosine similarity.

6. Extracting a CPG grammar from the
Treebank

In this section, we describe the various steps through which
CPG grammars for Hindi and Telugu, were extracted from
the treebanks.

1. The verb nodes were identified from each sentence in
the treebank. For each verb node in the dependency
structure of a sentence, the subtree rooted at that node
is extracted. Karaka frames for this subtree are ex-
tracted as shown in the previous section. A karaka
frame corresponding to each child of the verb node
is obtained. An extracted karaka frame contains the
following information about the dependent (modifier):
category type, relation type, post-position. The in-
formation about the verb stem is also included in the
frame. In other words, the karaka frames extracted for
a verb node are lexicalized. At the end of this step, we
have a sets of karaka frames corresponding to each
verb instance in the treebank. We call these frames
’verb instance frames’.

2. A list of distinct verb stems based on their surface
form is compiled.

3. For each distinct verb stem in the verb stem list, we
take all its instances in the treebank, along with the
corresponding verb instance frames extracted in 1.
Two instance frames for a particular verb stem can dif-
fer from one another in one of the following ways:

e The same karakas are realized in different in-
stance frames by NPs marked with different post-
positions

e Some karakas which are present in some instance
frames are absent in the others

e The same karakas are realized in the differing
instance frames by different categories of the
chunks

e Two instance frames differ in most or all of the
karakas.

3807

Case 1 reflects the well known phenomenon of vib-
hakti or post-position alternation for a verb trigerred
by difference in the TAM marker (section 3.3.). Case 2
relates to the distinction between mandatory and non-
mandatory dependents of a predicate. Case 3 corre-
sponds to the differences in the category type of an
argument for the same verb. Case 4 can be attributed
solely to verb ambiguity and is the most difficult prob-
lem to address.

. The karaka frames extracted for each verb from the
treebank are converted into a feature vector represent-
ing the verb’s syntactic context. As described in the
previous section, the feature vector of a verb contains
the frequencies of each distinct karaka frame extracted
for that verb normalized by the number of occurrences
of that verb. In section 8., we show how these nor-
malized karaka frame frequencies can be useful for
detecting annotation errors. The syntactic similarity
between two verbs extracted from the treebanks is es-
timated as a distance between their feature vectors. At
the end of this step, a similarity database containing
the pair-wise syntactic similarity values for all the ex-
tracted verbs is obtained.

. The final step in the grammar extraction process is
to build Basic Demand Frames and Transformation
frames (see section 4.2.) using the karaka frames for
each extracted verb. In other words, the basic demand
frame and all possible transformation frames for each
verb, need to be inferred from the karaka frames. As
can be seen from Fig 1, the basic demand frame con-
tains information about the various participants that
the verb demands and their mandatory/optional status.
In order to obtain the distinction between mandatory
and optional participants, we introduce a distinction
between the core versus non-core karaka labels, which
is similar to the distinction made in Framenet (Baker
et al., 1998). We took the following labels in the
Paninian scheme to be core: ki, kls, k2, k2p, k4 and
k4a (section 4.). It must be noted that such a distinc-
tion is not defined within the CPG framework and we
introduce the distinction to simplify the process of ex-
traction. In fact, the distinction between mandatory
and optional demands of a verb can be inferred from
the karaka frames. However, this inference might not
be reliable due to possibility of annotation errors in the
treebanks. In the case of transformation frames, the
sparseness of the annotated corpora is a problem al-
ready pointed out. Verbs differ in the number of their
annotated instances. The number of transformations
present for a verb will vary according to the number
of its annotated instances. In the treebanks we used,
there were a large number of verbs with a single in-
stance. To counter this problem, in the case of verbs
with very few annotated instances, we use the karaka
frames of similar verbs in addition to those of the verbs
to infer the transformation frames.

Language Hindi | Telugu
Sentences 2403 | 1226
Verb Types 1238 | 391
Verb Tokens 5051 | 1616
Tokens per Type 4.07 | 4.13

Verbs with Single Instances 799 199
Verbs with Multiple Instances | 439 192
Complex Predicates 934 122

Table 1: Verb statistics summary

Verb V1 verbs similar to V1 Cosine similarity
kaha (to say) batA (to tell) 0.981
doharA (to repeat) 0.802
pUCa (to ask) 0.738
batA (to tell) kaha (to say) 0.981
doharA (to repeat) 0.799
pUCa (to ask) 0.732
de (to give) Beja (to send) 0.872
sunA (cause to listen) 0.865
sOMpa (to hand over) 0.855
mila (to meet) A (to come) 0.795
blta (to elapse) 0.773
Dala (to mould) 0.773
le (to take) hatA (to remove) 0.950
deKa (to see) 0911
sulaJA (to simplify) 0.887
A (to come) pahuMca (to reach/arrive) | 0.905
cala (to walk) 0.903
ruka (to stop) 0.885
banA (to make) | uTA (to lift) 0.903
baDA (to increase) 0.897
Coda (to leave) 0.852
jA (to go) pahuMca (to reach/arrive) | 0.886
A (to come) 0.788
cala (to walk) 0.685
deKa (to see) le (to take) 0911
hatA (to remove) 0.855
raKa (to keep) 0.845

Table 2: Similar Verbs for High Frequency Verbs in Hindi

7. Results

We applied the steps described in the previous section for
both Hindi and Telugu treebanks. The overall summary of
the verb statistics is presented in Table 1. As can be seen
from the table, the number of verbs with single instance is
quite high in both the treebanks. This statistic indicates the
gravity of the data sparseness issue in these corpora. The
number of complex predicates is also quite high in the case
of Hindi. We excluded sentences with complex predicates
during the grammar extraction process. Basic demand
frames were inferred for 284 verbs in Hindi and 384 verbs
in Telugu. In the case of transformation (TAM) frames,
81 frames were obtained for Hindi. However, due to the
complex vibhakti alternation phenomenon in Hindi, these
frames cannot be treated as definitive and require manual
verification. In the case of Telugu, the process of inferring
transformation (TAM) frames is comparatively simpler.
Besides, the verb inflectional paradigm is comparatively

3808

Type of error Frequency
POS-tagging 0
Chunking 1
Morphological 3
Argument Structure | 22

Table 3: Error statistics

smaller in Telugu. A total of 18 transformation (TAM)
frames were extracted from the Telugu treebank.

While inferring transformation (TAM) frames for Hindi, in
the case of verbs with single instance, annotated instances
of similar verbs were also used for inference. In Table 2,
We list 9 high frequency verbs in Hindi extracted from
the treebank. For each of these verbs, we list the 3 most
similar verbs obtained after applying our method for
estimating syntactic similarity. We also provide the cosine
similarity value for each pair. It is interesting to note that
the similairty that exists among the verbs in each set listed
in Table 2 is of different types. The sets of similar verbs
corresponding to the first three verbs (to say’, 'to tell” and
’to give’) in the table reflect a semantic similarity and can
be assigned a common underlying semantic property. It
is interesting that the similarity of syntactic context in the
case of these verbs correlates with a semantic similarity.
This is on the same lines as Levin’s proposal for verb
classification (Levin, 1993). However, not all sets of verbs
exhibit this level of similarity. Verb sets corresponding to
the last four verbs in Table 2 ("to come’, ’to make’, "to go’
and ’to see’) are similar only with respect to their surface
syntactic properties. There were also erroneous sets such
as the set for the Hindi verb ’to take’.

8. Detecting Annotation Errors

The treebanks that we worked with are relatively recent de-
velopments and their validation process is still at a very
early stage. The grammar extraction process that we fol-
low can help semi-automate this process of treebank vali-
dation. The statistical information associated with each of
the extracted karaka frames for a particular verb is helpful
for detecting treebanking errors. Karaka frames with very
low frequency are identified as containing one the follow-
ing four main types of annotation errors:

e POS-tagging errors where a word is marked with the
wrong POS tag. These errors are detected at various
stages during the extraction.

e Chunking errors where a chunk is marked with the
wrong chunk tag.

e Errors during morphological manual annotation or au-
tomatic analysis: Errors of this type include errors in
identification of verb stems, TAM labels and vibhaktis
(case—endings or post-positions) of nouns.

e Argument structure annotation errors: Errors of this
type are most crucial and are difficult to detect during
manual validation as the error frequency is very low.

As an example, for the intransitive verb ‘jA’, we show how
argument structure annotation errors can be identified from
the extracted frames:

JA
k1 NP 0 0.347826
k1l NULL_ NP 0 0.065217
kls JJP 0 0.021739
k2 NP ko 0.065217

In the above example, the relative frequency of k1s and k2
is below the threshold for error identification, whereas the
total relative frequency of k1 is above that threshold. Thus,
in this case, k1s and k2 are identified as annotation errors.
In Table 3, we show the relative frequencies of these four
types of errors over all the extracted instances of a sam-
ple of 25 randomly selected verbs. The table shows that
the number of argument structure annotation errors is much
higher than other types of errors. This is not surprising
given the complexity of the dependency annotation task
as compared to tasks such as POS-tagging, chunking and
morph analysis. Further, the argument structure errors that
were discovered in the course of grammar extraction were
cases of genuine confusibility even for trained annotators.
This shows that such instances can be incorporated in the
annotation guidelines to reduce annotation errors in the fu-
ture.

Apart from the above, we also discovered a small percent-
age (0.3) of sentences in which no verb was found during
the extraction process. The number of errors was much
larger in the case of Telugu treebank as it has not yet been
subjected to any kind of validation.

9. Conclusions and Future Work

We present a system that can extract grammars in the CPG
formalism from dependency treebanks for Hindi and Tel-
ugu. We discuss the various issues involved in the extrac-
tion process.

In order to address the issue of data sparseness, we explore
a generalization approach based on syntactic similarity of
verbs. We define the notion of syntactic similarity of verbs
in a dependency representation using the karaka frame rep-
resentation. The definition is relevant for dependency rep-
resentation in any formalism. Applying this syntactic sim-
ilarity to the verbs extracted from the treebanks, we ob-
tain the pair-wise similarities over the entire set of verbs.
Using this similarity database, the verbs can be clustered
and an unsupervised verb classification can be obtained.
The resulting verb clusters can be compared against ear-
lier works on theoretical classification of Hindi verbs into
verb classes (Begum et al., 2008b) which is one of our im-
mediate future works.

We also show how statistical information obtained dur-
ing the extraction process can enable detection of different
kinds of annotation errors. A detailed study of how to incor-
porate the information provided by the grammar extraction
process into a treebank validation system is also part of our
future work.

The system that we present in this paper is still under de-
velopment.

3809

10. References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The berkeley framenet project. In Proceedings of
the 17th international conference on Computational lin-
guistics, pages 8690, Montreal, Quebec, Canada. Asso-
ciation for Computational Linguistics.

R. Begum, S. Husain, A. Dhwaj, D.M. Sharma, L. Bai,
and R. Sangal. 2008a. Dependency annotation scheme
for Indian languages. Proceedings of International Joint
Conference on Natural Language Processing.

Rafiya Begum, Samar Husain, Lakshmi Bai, and
Dipti Misra Sharma. 2008b. Developing Verb Frames
for Hindi. In Proceedings of the Sixth International Lan-
guage Resources and Evaluation (LREC’08), Morocco.

Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal.
1995. Natural Language Perspective: A Paninian Per-
spective.

Akshar Bharati, Samar Husain, Bharat Ambati, Sambhav
Jain, Dipti Misra Sharma, and Rajeev Sangal. 2008.
Two semantic features make all the difference in pars-
ing accuracy. In Proceedings of the 6th International
Conference on Natural Language Processing (ICON-
08), CDAC Pune, India.

Akshar Bharati, Samar Husain, Dipti Misra Sharma, and
Rajeev Sangal. 2009a. Two stage constraint based hy-
brid approach to free word order language dependency
parsing. In Proceedings of the 11th International Con-
ference on Parsing Technologies (IWPT’09), pages 77—
80, Paris, France.

Akshar Bharati, Dipti Misra Sharma, Samar Husain, Lak-
shmi Bai, Rafiya Begum, and Rajeev Sangal. 2009b.
Anncorra: Treebanks for indian languages, guidelines
for annotating hindi treebank.

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer, Owen
Rambow, Dipti Sharma, and Fei Xia. 2009. A
multi-representational and multi-layered treebank for
hindi/urdu. In Proceedings of the Third Linguistic Anno-
tation Workshop, held in conjunction with ACL-IJCNLP,
Singapore.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of
semantic roles. Computational Linguistics, 28(3):245—
288.

A. Gordon and R. Swanson. 2007. Generalizing seman-
tic role annotations across syntactically similar verbs. In
Association for Computational Linguistics, volume 45,
page 192.

E. Hajicova. 1998. Prague Dependency Treebank: From
Analytic to Tectogrammatical Annotation. In Proceed-
ings of TSD’98.

Beth Levin. 1993. English Verb Classes and Alternations.
The University of Chicago Press.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. 1994.
Building a large annotated corpus of English: The Penn
Treebank. Computational linguistics, 19(2):313-330.

P. Merlo and S. Stevenson. 2001. Automatic Verb Clas-
sification based on Statistical Distribution of Argument
Structure. Computational Linguistics, 27(3):373-408.

M. Palmer, O. Rambow, R. Bhatt, D.M. Sharma,
B. Narasimhan, and F. Xia. 2009. Hindi Syntax: Anno-

tating Dependency, Lexical Predicate-Argument Struc-
ture, and Phrase Structure. In Proceedings of ICON-
2009: 7th International Conference on Natural Lan-
guage Processing, Hyderabad.

Fei Xia, Martha Palmer, and Aravind Joshi. 2000. A uni-
form method of grammar extraction and its applications.
In Proceedings of the 2000 Joint SIGDAT conference on
Empirical methods in natural language processing and
very large corpora, pages 53—-62, Hong Kong.

Fei Xia. 2001. Automatic Grammar Generation from Two
Different Perspectives. Ph.D. thesis, University of Penn-
sylvania.

3810

