
An Open Source Persian Computational Grammar
Shafqat Mumtaz Virka, Elnaz Abolahrarb

aDepartment of Applied IT,
 University of Gothenburg, Sweden
aRachna College of Eng. & Tech.,

 University of Eng. & Tech. Lahore, Pakistan
bDepartment of Computer Science & Eng.

Chalmers University of Technology, Sweden
E-mail: virk@chalmers.se, elnaz.abolahrar @gmail.com

Abstract
In this paper, we describe a multilingual open-source computational grammar of Persian, developed in Grammatical Framework
(GF) – A type-theoretical grammar formalism. We discuss in detail the structure of different syntactic (i.e. noun phrases, verb
phrases, adjectival phrases, etc.) categories of Persian. First, we show how to structure and construct these categories individually.
Then we describe how they are glued together to make well-formed sentences in Persian, while maintaining the grammatical features
such as agreement, word order, etc. We also show how some of the distinctive features of Persian, such as the ezafe construction, are
implemented in GF. In order to evaluate the grammar’s correctness, and to demonstrate its usefulness, we have added support for
Persian in a multilingual application grammar (the Tourist Phrasebook) using the reported resource grammar.

Keywords: Grammatical Framework, Abstract syntax, Concrete syntax.

1. Introduction
The idea of providing assistance to programmers in the
form of software libraries is not new. It can be tracked
back to 1959, when JOVIAL gave the concept of
COMPOOL (Communication Pool). In this approach, the
code and data that provide independent services are
made available in the form of software libraries.
Software libraries are now at the heart of modern
software engineering, and many programming languages
(e.g. C, C++, Java, Haskell, etc.) come with built-in
libraries. However, the idea of providing natural
language grammars as software libraries is relatively
new. It was first introduced in CLE (Core Language
Engine: Alshawi, 1992; Rayner, 2000). GF (Grammatical
Framework: Ranta, 2004) is another example that
provides natural language grammars in the form of
libraries. GF is a special purpose programming language
designed for developing natural language processing
applications. Historically, GF and its libraries have been
used to write a number of application grammars
including GF-Key1 (authoring and translation of software
specifications), TALK2 (a multilingual and multimodal
spoken dialogue system), and WebALT3 (multilingual
generation of mathematical exercises). Moreover, GF has
support for an increasing number of natural languages.
Currently, it supports 23 languages (see the status of GF
resource library4 for more details).
GF provides libraries in the form of resource grammars –
one of the two types of programs that can be written in
GF. A resource grammar is a general-purpose grammar

1http://www.key-project.org/
2http://www.talk-project.org/
3http://webalt.math.helsinki.fi/content/index_eng.html
4http://www.grammaticalframework.org/lib/doc/status.html

(Ranta, 2009a) that encodes the syntactic constructions
of a natural language. For example modification of a
noun by an adjective is a syntactic construction, and it is
developed as a part of resource grammar development. A
collection of such syntactic constructions is called a
resource grammar. A resource grammar is supposed to be
written by linguists, who have sufficient grammatical
knowledge (i.e. knowledge about word order, agreement
features, etc.) of the target natural language. The other
type of grammar that one can write in GF is an
application grammar. It is a domain specific grammar
that encodes semantic constructions. This is supposed to
be written by domain experts, who have a better
understanding of the domain specific terms. An
application grammar may use a resource grammar as a
supporting library (Ranta, 2009b) through a common
resource grammar API5.
Furthermore, every grammar in GF has two levels:
abstract syntax and concrete syntax, which are based on
Haskell Curry’s distinction of tectogrammatical and
phenogrammatical structures (Curry, 1963). The abstract
syntax is independent of any language and contains a list
of categories (cat), and a set of tree-defining rules (fun).
The concrete syntax contains rules telling how the
abstract syntax categories and trees are linearized in a
particular language. Since the abstract syntax is common
to a set of languages – languages that are part of the GF
resource library – it is possible to have multiple parallel
concrete syntaxes for one abstract syntax. This makes the
GF resource library multilingual. Development of a
resource grammar means writing linearization rules
(lincat and lin) of the abstract syntax trees for a given
natural language. This is a challenging task, as it
requires comprehensive knowledge of the target natural

5 http://www.grammaticalframework.org/lib/doc/synopsis.html
GF resource grammar API

1686

language as well as a practical programming experience
of GF. In this paper we describe the development of the
Persian resource grammar.
Persian is an Iranian language within the Indo-Iranian
branch of the Indo-European family of languages. It is
widely spoken in Iran, Afghanistan, Tajikistan, and
Uzbekistan. In Iran it is also called Farsi, and the total
number of Farsi speakers is about 60 million (Bahrani,
2011). It has a suffix predominant morphology, though
there are a small number of prefixes as well
(Megerdoomian, 2000). Persian tense system is
structured around tense, aspect and mood. Verbs agree
with their subject in number and person, and there is no
grammatical gender (Mahootiyan, 1997). Persian has a
relatively free word order (Müller, 2010), but declarative
sentences are mostly structured as “(S) (O) (PP) V”.
Optional subject (S) is followed by an optional object
(O), which is followed by an optional propositional
phrase (PP). All these optional components precede the
verb (V).
In Sections 2 and 3, we talk about morphology and
syntax (two necessary components of a grammar)
followed by an example in Section 4. Coverage and
evaluation is discussed in Section 5, while related and
future work follows in Sections 6.

2. Morphology
Every GF resource grammar has a test lexicon of almost
450 words. These words belong to different lexical
categories (both open and closed), and have been
randomly selected for test purposes. Different
inflectional forms of these words are built through
special functions called lexical paradigms. These lexical
paradigms take the canonical form of a word and build
finite inflection tables. However, the morphological
details are beyond the scope of this paper which
concentrates on the syntactical details.

3. Syntax
While morphology is about principles and rules of
making individual words, syntax is about how these
words are grouped together to make well-formed
sentences in a particular language. In this section, we
talk about the syntax of Persian. First, in the following
subsections we discuss different syntactic categories (i.e.
noun phrases, verb phrases, adjectival phrases, etc.)
individually. Then we show how they are glued together
to make clauses and sentences in sections 3.5 and 3.6
respectively.

3.1 Noun Phrase
A noun phrase is a single word or a group of
grammatically related words that function as a noun. It
consists of a head noun, which is constructed at the
morphological level, and one or more optional modifiers.
In Persian modifiers mostly follow the noun they
modify, even though in limited cases they can precede it.
Below, we show the structure of a noun phrase (NP) in
our implementation, followed by its construction.

Structure: A NP has the following structure:

cat NP ;
lincat NP:Type = {s : NPForm=>Str;

 a : AgrPes ;
 animacy : Animacy };

Where
param NPForm = NPC Ezafe ;
param Ezafe = bEzafe | aEzafe | enClic;
param AgrPes = AgPes Number PPerson;
param Number = Sg | Pl;
param PPerson = PPers1 | PPers2| PPers3;
param Animacy = Animate | Inanimate ;

This means that a NP is a record (indicated by curly
brackets) of three fields. The purpose of different fields
of a NP is explained below.

• ‘s’ defined as ‘s:NPForm=>Str’ is interpreted
as: ‘s’ is an object of the type ‘NPForm=>Str‘,
where the type ‘NPForm=>Str’ is a table type
structure. In GF, we use such table type structures
to formulate inflection tables. In brief ‘s’ stores
different forms of a noun phrase corresponding to
the parameters ‘bEzafe’ (a form without the
ezafe6 suffix), ‘aEzafe’ (a form with the ezafe
suffix) and ‘enClic’ (a form with the enclitic
particle). For example consider the following
table for the noun ‘house’.

s . NPC bEzafe => خانھه -- Xɒːnæh

 s . NPC aEzafe => خانھه یی -- Xɒːnæh iː
s . NPC enClic =>خانھه اایی -- Xɒːnæh ɒːiː
a . AgPes Sg PPers3
animacy . Animate

These forms are then used in the construction of
clauses and/or other categories. For example in
Persian the ‘aEzafe’ form is used in modifications
like adding an adjective e.g. “ خانھه یی بزررگگ,
Xɒːnæh bzrg, big house”, and in showing
possession e.g. “ یی منخانھه , Xɒːnæh mn, my
house“. The ‘enClic’ form is used in constructions
where the noun is followed by a relative clause
e.g. “ کھه آآنجا ااست ااییخانھه , Xɒːnæh kh A:njɒː ɒːst, the
house which is there”.
• ‘a’ is the agreement parameter and stores
information about number and person of a noun
phrase. This information is used for agreement
with other categories.
• ‘animacy’ keeps the information about
whether the noun phrase is animate or inanimate.
This information is useful in the subject-verb
agreement at clause level.

6 Ezafe construction is a special grammatical feature of Persian,
which is used to link the words in phrases (Samvelian, 2007). It
is inherited from Arabic and is commonly used to express
noun-adjective linking.

1687

Construction: The head noun corresponds to the
morphological category noun (N). The morphological
category N is first converted to an intermediate category
common noun (CN), through the following function:
fun UseN : N -> CN ; -- خانھه , Xɒːnæh, house
Where a common noun has the following structure:

lincat CN = {s : Ezafe=>Number=>Str ; animacy :
Animacy};
It deals with modification of a noun by different
modifiers including but not limited to adjectives,
quantifiers, determiners, etc. We have different functions
for these modifications. Consider the following function
that is used for adjectival modification:

fun AdjCN : AP -> CN -> CN ;
خانھه یی بزررگگ -- , Xɒːnæhiː bzrg , big house

And its linearization rule for Persian is given below:

lin AdjCN ap cn = {
 s = table { bEzafe => table {
 Sg => cn.s ! aEzafe ! Sg ++ ap.s ! bEzafe;
 Pl => cn.s ! aEzafe ! Pl ++ ap.s ! bEzafe
 };
 aEzafe => table {
 Sg => cn.s ! aEzafe ! Sg ++ ap.s ! aEzafe;
 Pl => cn.s ! aEzafe ! Pl ++ ap.s ! aEzafe
 };
 enClic => table {
 Sg => cn.s ! aEzafe ! Sg ++ap.s ! enClic;
 Pl => cn.s ! aEzafe ! Pl ++ ap.s ! enClic
 };
 };
animacy = cn.animacy
 };
The above linearization rule takes an adjectival phrase
and a common noun and builds a modified common
noun. As explained previously ‘s’ in the above given
code is an inflection table from ‘Ezafe to Number to
String’, and stores different inflectional forms of a
modified common noun. Since Persian adjectives do not
inflect for number, we use the same form of an adjective,
both for ‘Sg’ and ‘Pl’ parameters of the common noun.
However, adjectives have three forms corresponding to
‘bEzafe’, ‘aEzafe’ and ‘enClic’ (see Section 3.3). As it is
clear in the above code, whenever a common noun is
modified by an adjective, the ‘aEzafe’ form of the
common noun is used. Moreover, the modifier follows
the common noun to ensure the proper word order.
GF provides a syntactic sugar for writing the above table
concisely. For example the above given code can be
replaced by the following simplified version.

lin AdjCN ap cn = {
 s = \\ez,n => cn.s ! aEzafe ! n ++ ap.s ! ez;
 animacy = cn.animacy
 } ;

Note how the ‘\\’ operator is used as a syntactic sugar
with parameter variables ‘ez’ and ‘n’ to compress the
branches of a table together. Also note that ‘!’ is used as
selection operator to select different values from the
inflection table and ‘++’ is used as a concatenation
operator.
The resulting common noun is then converted to a noun
phrase (NP) through different functions depending on the
constituents of the NP. In the simplest case a common
noun without any article can be used as a mass noun
phrase. It is constructed through the following function:

fun MassNP : CN -> NP ; -- آآبب , Aːb, water

And its linearization rule is:

lin MassNP cn = {s = \\ez => cn.s ! ez ! Sg
 a = AgPes PPers3 Sg ;
 animacy = cn.animacy
 } ;
This function takes a common noun and converts it to a
NP.

Few others functions for the construction of a NP are:

fun DetCN : Det -> CN -> NP ;
 mrd, man ,مردد --
fun AdvNP : NP -> Adv -> NP ;
 piːrs ɒːmrɒːz, Paris today, اامرووزز پارریيس --
fun DetNP : Det -> NP ;
 ɒːn pnj, these five , اایين پنج --

3.2 Verb Phrase
A verb phrase normally consists of a verb and one or
more optional complements. It is the most complicated
category in our constructions. First, we explain the
structure of the Persian verb phrase in detail, and then we
continue with the description of its construction.

Structure: In our construction a verb phrase (VP) has
the following structure:

cat VP ;
lincat VP : Type = {
 s : VPHForm => {inf : Str} ;
 obj : Str ;
 comp : AgrPes => Str;
 vComp : AgrPes => Str;
 embComp : Str ;
 inf : Str;
 adv : Str;
 } ;

Where

param VPHForm = VPTense Polarity VPPTense AgrPes
 | VPImp Polarity Number
 | VVForm AgrPes
 | VPStem1

1688

 | VPStem2 ;
param VPPTense = VPPres Anteriority

 |VPPast Anteriority
 |VPFutr Anteriority

 |VPCond Anteriority ;
param Anteriority = Simul | Anter ;

A brief explanation of different fields and their purpose
is given below:

• As explained previously ‘s’ is an inflection
table, and here, it stores the actual verb form. We
make different forms of a verb at verb phrase
level. The parameter ‘VPHForm’ in the above
code stores these different forms. A brief
overview of these forms and their usage is given
below:
- ‘VPTense’ is a constructor with context
parameters ‘Polarity’, ‘VPPTense’ and ‘AgrPes’.
It stores different forms of a verb inflecting for
‘polarity’, ‘tense’ and ‘AgrPes’ (where AgrPes =
AgPes Number PPerson). These forms are used to
make nominal declarative sentences at the clause
level.
- ‘VPImp’ stores the imperative form of a verb
inflecting for polarity and number.
- ‘VVForm’ stores the form of a verb, which is
used when a verb takes the role of a complement
of another verb (i.e. in the construction “want to
run”, ‘to run’ is used as a complement of the
auxiliary verb ‘want’. In English the infinitive of
the second verb (‘to run’) is used as the
complement of the auxiliary verb (‘want’), but in
Persian in most cases the present subjunctive
form of the second verb is used as the
complement of the auxiliary verb. We name this
form the ‘VVForm’. It inflects for number and
person.
- Finally ‘VPStem1’ and ‘VPStem2’ store the
present and past roots of the verb, which have
different forms in Persian.
• ‘obj’ is a string type field, which stores the
direct object of a verb.
• ‘comp’ is an inflection table which stores the
complements of a verb; those other than a direct
object. The complement needs to be in agreement
with the subject both in number and person.
Therefore, we keep all the inflectional forms (for
number and person) of a complement. This
parameter is used to store indirect objects of
di-transitive verbs.
• ‘vComp’ is another inflection table inflecting
for number and person. When a verb is used as a
complement of an auxiliary verb, we store it in
this field. Unlike ‘comp’ or ‘obj’, this type of
complement follows the auxiliary verb. For
example in the sentence “ می خوااھھھهد بخواابدااوو , ɒːuː
miː xuːɒːhd bxuːɒːbd, she wants to sleep”, the
verb ‘ خواابیيدنن, xuːɒːbiːdn, to sleep’ is the
complement of the auxiliary verb ‘ خوااستن,

xvɒːstn, want’, therefore it will follow the
auxiliary verb.
• ‘embComp’ is a simple string and is used
when a declarative or interrogative sentence is
used as a complement of a verb. For example in
this sentence “ااوو می گویيد کھه من ددااررمم می خواابم, ɒːuː
miː gwiːd kh mn dɒːrm miː xuːɒːhm, she says
that I am sleeping”, the sentence “من ددااررمم می خواابم ,
mn dɒːrm miː xuːɒːhm , I am sleeping” is the
complement of the verb ‘گفتن , gftn, to say’. This
type of complement comes at the very end of a
clause. The reason behind storing different types
of complements in different fields is that in
Persian these different complements take different
positions within a clause (see section 3.4 for more
details).
• ‘inf’ simply stores the infinitive form of the
verb.
• ‘adv’ is a string field and stores an adverb.

Construction: The verb phrase (VP) is constructed from
the morphological category verb (V) by providing its
complements. In the simplest case a single verb without
any complements can be used as a verb phrase. We
create this verb phrase through the following function:

fun UseV : V -> VP ;
 xuːɒːbiːdn, sleep ٬، خواابیيدنن

And its linearization rule is:

lin UseV v = predV v ;

Where

oper predV : Verb -> VPH = \verb -> {
 s = \\vh =>
 case vh of {
 VPTense pol (VPPres Simul) (AgPes n p) =>

{ inf = verb.s ! VF pol (PPresent PrImperf) p n };
 VPTense pol (VPPres Anter) (AgPes n p) =>

{ inf = verb.s ! VF pol (PPresent PrPerf) p n } ;
 VPTense pol (VPPast Simul) (AgPes n p) =>

{ inf =verb.s ! VF pol (PPast PstAorist) p n } ;
 VPTense pol (VPPast Anter) (AgPes n p) =>

{ inf =verb.s ! VF pol (PPast PstPerf) p n } ;
 VPTense pol (VPFutr Simul) (AgPes n p) =>

{ inf =verb.s ! VF pol (PFut FtAorist) p n } ;
 VPTense pol (VPFutr Anter) (AgPes n p) =>

{ inf = verb.s ! VF pol (PPresent PrPerf) p n } ;
 VPTense pol (VPCond Simul) (AgPes n p) =>

{ inf = verb.s ! VF pol (PPast PstImperf) p n } ;
 VPTense pol (VPCond Anter) (AgPes n p) =>

{ inf = verb.s ! VF pol (PPast PstImperf) p n } ;
 VPImp pol n => { inf = verb.s ! Imp pol n} ;
 VVForm (AgPes n p) =>

{inf = verb.s ! Vvform (AgPes n p)} ;
 VPStem1 => { inf = verb.s ! Root1};
 VPStem2 => { inf = verb.s ! Root2}

1689

 };
 obj = {s = [] ; a = defaultAgrPes} ;
 comp = _ => [];
 vComp = _ => [] ;
 embComp = [];
 inf = verb.s ! Inf;
 adv = [];
} ;

This operation (indicated by keyword ‘oper’ in the above
code) converts a verb (a morphological category) to a
verb phrase (a syntactic category). At the morphological
level, Persian verbs inflect for tense (present/past/future),
aspect (perfective/imperfective/aorist), polarity
(positive/negative), person (1st/2nd/3rd), and number
(Sg/Pl). All these morphological forms are stored in an
inflection table at the morphological level, and are used
in this operation to make different forms at the verb
phrase level. For example, the boldfaced line in the
above code builds a part of the inflection table ‘s’. This
part stores the forms of the verb that correspond to the
(Present, Simul) combination of tense and anteriority,
and all possible combinations of polarity and agreement
(represented by variables ‘pol’ for polarity and ‘AgPes n
p’ for agreement). All the complement fields of this verb
phrase are left blank or initialized to default values.
These complements are provided through other verb
phrase construction functions including but not limited to
the followings:

fun ComplVV : VV -> VP -> VP ;
 miː xuːɒːhd bduːd, want to run (ɒːuː) ,(اا وو) می خوااھھھهد بدوودد
fun ComplVS : VS -> S -> VP ;
 ,miː guːiːd ɒːuː miː duːd (ɒːuː), (اا وو) می گویيد ااوو می ددوودد
say that she runs
fun ComplVQ : VQ -> QS -> VP ;
ددوودد می کسی چھه ااست تعجب dr tʔjb ɒːst tʃh (ɒːuː), (اا وو) ددرر
ksiː miːdvd , wonder who runs

These functions enrich the verb phrase by providing
complements. The resulting verb phrase is then used in
making clauses, which is discussed in section 3.5.

3.3 Adjectival Phrase
In our construction an adjectival phrase has the

following structure:

lincat AP = {s : Ezafe => Str ; adv : Str} ;

Again ‘s’ stores different forms corresponding to the
parameters: ‘bEzafe’ (before Ezafe), ‘aEzafe’ (after
Ezafe), and ‘enClic’ (Enclitic). ‘adv’ is a string field
which stores the corresponding form, which is used
when an adjective is used as an adverb.
Adjectival phrases are constructed from the
morphological category adjective (A) through different
construction functions. The simplest one is:

fun PositA : A -> AP ; -- گرمم , grm , warm

This function simply converts the morphological
category adjective (A) to the syntactic category
adjectival phrase (AP). Its linearization rule for Persian
is very simple because an adjective and an adjectival
phrase have the same structure. This is as simple as given
below:

lin PositA a = a ;

It is possible to construct adjectival phrases from other
categories. We have one function for each corresponding
construction including the followings:

fun ComparA : A -> NP -> AP ;

 grm tr ɒːz mn , warmer than I , گرمم تر اازز من
fun AdjOrd : Ord -> AP ;

 grm triːn, warmest , گرمم تریين
fun CAdvAP : CAdv -> AP -> NP -> AP ;

 bh jɒːlbiː jɒːn, as cool as John , بھه جالبی جانن
fun AdAP : AdA -> AP -> AP ;

 Xiːliː grm, very warm , خیيلی گرمم

3.4 Adverbs and other Closed Categories
Adverbs are made at morphological level, but it is also
possible to construct them at syntactic level form other
categories, for example from adjectives. We have
separate construction functions for adverbs and other
closed categories e.g. pronouns, quantifiers, etc. A few of
them are listed here:

fun PositAdvAdj : A -> Adv ;

 bh grmiː , warmly , بھه گرمی
fun PossPron : Pron -> Quant ;

 mn, my (house) (Xɒːnæh iː) , (خانھه یی) من
fun AdvIP : IP -> Adv -> IP ;

 tʃh ksiː dr pɒːriːs, who in Paris , چھه کسی ددرر پارریيس

3.5 Clauses
While a phrase is a single word or a group of
grammatically related words, a clause is a single phrase
or a group of phrases. Another difference is that a clause
may have both a subject and a predicate of its own, while
a phrase cannot have both at the same time. Though,
sometimes it is possible that a clause does not have any
subject at all, and is only composed of a verb phrase.

Structure: In our construction a clause has the following
structure:

lincat Clause : Type = {s : VPHTense => Polarity =>

Order => Str} ;

Where

Param VPHTense = VPres |VPas |VFut |VPerfPres
 |VPerfPast |VPerfFut|VCondSimul
 |VCondAnter ;

This shows that a clause is a record with only one field

1690

labeled as ‘s’. It stores clauses with variable tense,
polarity and order (declarative/interrogative), which are
fixed at sentence level. The GF resource grammar API
tense system covers only 8 possibilities through the
combination of four tenses (present, past, future and
conditional) and two anteriorities (anter/simul). The
common API tense system is not adequate for Persian
tense system - which is structured around tense, aspect,
and mood. However, in our current implementation we
stick to the common API tense system, and thus cover
only eight possibilities. A better approach is to
implement the full tense system of Persian and then map
it to the common resource API tense system. This
approach has been applied in the implementation of Urdu
(Shafqat et. al 2010) and Punjabi (Shafqat et. al 2011)
tense systems.

Construction: A clause is constructed through different
clause construction functions depending on the
constituents of the clause. The most important
construction is from a noun phrase (NP) and a verb
phrase (VP) through the following function:

fun PredVP : NP -> VP -> Cl ;

 jɒːn rɒːh miːɾuːd, John walks , جانن ررااهه می رروودد

And its linearization rule for Persian is:

lin PredVP np vp = mkClause np vp ;

Where

oper mkClause : NP -> VPH -> Clause = \np,vp -> {
 s = \\vt,pol,ord =>
 let
 subj = np.s ! NPC bEzafe;
 agr = np.a ;
 vps = case <pol,vt> of {

<Pos,VPres> =>
vp.s ! VPTense Pos (VPPres Simul) agr ;

<Neg,VPres> =>
vp.s ! VPTense Neg (VPPres Simul) agr ;

<Pos,VPerfPres>=>
vp.s ! VPTense Pos (VPPres Anter) agr;

<Neg,VPerfPres> =>
vp.s ! VPTense Neg (VPPres Anter) agr;

<Pos,VPast> =>
vp.s ! VPTense Pos (VPPast Simul) agr ;

<Neg,VPast> =>
vp.s ! VPTense Neg (VPPast Simul) agr ;

<Pos,VPerfPast>=>
vp.s ! VPTense Pos (VPPast Anter) agr;

<Neg,VPerfPast>=>
vp.s !VPTense Neg (VPPast Anter) agr;

<Pos,VFut> => case vp.wish of {
 True => vp.s ! VPTense Pos (VPPres Simul) agr ;
 False => vp.s ! VPTense Pos (VPFutr Simul) agr};

<Neg,VFut> => case vp.wish of {
True => vp.s ! VPTense Neg (VPPres Simul) agr;
False => vp.s ! VPTense Neg (VPFutrSimul) agr};

<Pos,VPerfFut> => case vp.wish of {
True => vp.s ! VPTense Pos (VPPres Anter) agr ;
False => vp.s ! VPTense Pos (VPFutr Anter) agr};

<Neg,VPerfFut> => case vp.wish of {
True => vp.s ! VPTense Neg (VPPres Anter) agr ;
False => vp.s ! VPTense Neg (VPFutr Anter) agr};

<Pos,VCondSimul> =>
vp.s ! VPTense Pos (VPCond Simul) agr;

<Neg,VCondSimul> =>
vp.s ! VPTense Neg (VPCond Simul) agr;

<Pos,VCondAnter> =>
vp.s ! VPTense Pos (VPCond Anter) agr;

<Neg,VCondAnter> =>
vp.s ! VPTense Neg (VPCond Anter) agr };

quest = case ord of
 { ODir => []; OQuest => "A:yA" };

in
quest ++ subj ++ vp.adv ++ vp.comp ! np.a ++
vp.obj.s ++ vps.inf ++ vp.vComp ! np.a ++
vp.embComp

};

This operation takes a noun phrase (NP) and a verb
phrase (VP) and constructs a clause with variable tense,
polarity and order. Note how agreement information of
the noun phrase (i.e. ‘np.a’ in the above code) is used to
select the appropriate form of the verb phrase. This is
done to ensure the subject-verb agreement. The ‘let’
statement stores different constituents of a verb phrase in
different variables. Once we have all these constituents,
they can be combined with the subject noun phrase in
order to make a clause (see boldfaced code segment).
Also note that in the declarative clauses the ‘bEzafe’
(before Ezafe) form of the subject noun phrase (i.e. ‘subj’
in the above code) is used. As an example, if the noun
phrase (John) and the verb phrase (walk) were inputs to
the above function, the output would be the following
clause (only a portion of the full clause is shown):

s . VPres => Pos => ODir => جانن ررااهه می رروودد

 -- jɒːn rɒːh miː ɾuːd , John walks
s . VPres => Pos => OQuest => آآیيا جانن ررااهه می رروودد

 -- A:iːɒː jɒːn rɒːh miː ɾuːd, Does John walk?
s . VPres => Neg => ODir => ووددجانن ررااهه نمی رر

 -- jɒːn rɒːh nmiː ɾuːd, John does not walk.
s . VPres => Neg => OQuest => آآیيا جانن ررااهه نمی رروودد

 -- A:iːɒː jɒːn rɒːh nmiː ɾuːd, Does John not walk?
s . VPast => Pos => ODir => جانن ررااهه ررفت

 -- jɒːn rɒːh rft, John walked.
s . VPast => Pos => OQuest => آآیياجانن ررااهه ررفت

 -- A:iːɒː jɒːn ,rɒːh rft, Did John walk?
s . VPast => Neg => ODir => جانن ررااهه نرفت

 -- jɒːn rɒːh nrft, John did not walk.
s . VPast => Neg => OQuest => آآیيا جانن ررااهه نرفت

 -- A:iːɒː jɒːn rɒːh nrft, Did John not walk?
s . VFut => Pos => ODir => جانن ررااهه خوااھھھهد ررفت

 -- jɒːn rɒːh Xuːɒːhd rft , John will walk.
s . VFut => Pos => OQuest =آآیيا جانن ررااهه خوااھھھهد ررفت

 A:iːɒː jɒːn rɒːh Xuːɒːhd rft , Will John walk?
s . VFut => Neg => ODir => جانن ررااهه نخوااھھھهد ررفت

 -- jɒːn rɒːh nXuːɒːhd rft , John will walk.
s . VFut => Neg => OQuest => آآیيا جانن ررااهه نخوااھھھهد ررفت

 --A:iːɒː jɒːn rɒːh nXuːɒːhd rft,Will John not walk?
s . VPerfPres => Pos => ODir => جانن ررااهه ررفت ااست

 -- jɒːn rɒːh rft ɒːst , John has walked.
s . VPerfPres => Pos => OQuest => آآیيا جانن ررااهه ررفت ااست

1691

-- A:iːɒː jɒːn rɒːh rft ɒːst , Has John walked?
s . VPerfPres => Neg => ODir => جانن ررااهه نرفت ااست

-- jɒːn rɒːh nrft ɒːst , John has not walked.
s . VPerfPres => Neg => OQuest =>آآیيا جانن ررااهه نرفت ااست

-- A:iːɒː jɒːn rɒːh nrft ɒːst , Has John walked?
s . VPerfPast => Pos => ODir =>جانن ررااهه ررفت بودد

-- jɒːn rɒːh rft buːd , John had walked.
s . VPerfPast => Pos => OQuest => جانن ررااهه ررفت بودد آآیيا

-- A:iːɒː jɒːn rɒːh rft buːd , Had John walked?
s . VPerfPast => Neg => ODir => جانن ررااهه نرفت بودد

-- jɒːn rɒːh nrft buːd , John had not walked.
s . VPerfPast => Neg => OQuest => جانن ررااهه نرفت بودد

-- A:iːɒː jɒːn rɒːh nrft buːd , Had John not walked?
 s . VPerfFut => Pos => ODir =>جانن ررااهه ررفت ااست

-- jɒːn rɒːh rft ɒːst , John will has walked.
s . VPerfFut => Pos => OQuest =>آآیيا جانن ررااهه ررفت ااست

-- A:iːɒː jɒːn rɒːh rft ɒːst ,Will John has walked?

This covers only one way of making clauses, there exist
others as well, for example:

fun PredSCVP : SC -> VP -> Cl ;

 ɒːiːn kh miː ruːd xuːb , اایين کھه ااوو می رروودد خوبب ااست
ɒːst,it is good that she goes.

3.6 Sentences
As mentioned and shown previously, a clause has
variable tense, polarity, and order. Fixing these
parameters results in declarative sentences. This is done
through different functions, where the most important
one is as follows:

fun UseCl : Temp -> Pol -> Cl -> S ;

Where

The parameter ‘Temp’ is a combination of two
parameters: one for tense and the other for anteriority.
Thus, the function ‘UseCl’ takes tense, anteriority,
polarity and a clause as its input and produces a sentence
as output. Therefore, if we fix the variable features of the
example clause given in the ‘Clause’ section, we will get
the following sentence - where tense is fixed to simple
present, anteriority to simul, and polarity to positive.

s . جانن ررااهه می رروودد , jɒːn rɒːh miː ɾuːd , John walks

This shows how we can make declarative sentences.
Other types of sentences, i.e. interrogative sentences and
relative sentences are built through the following
functions respectively:

UseQCl : Temp -> Pol -> QCl -> QS ;
UseRCl : Temp -> Pol -> RCl -> RS ;

4. An Example
Here we give an example to demonstrate how our
Persian resource grammar works at morphology and
syntax levels. Consider the translation of the following
sentence from English to Persian.
“He lives in my house”
Figure 1 (below) shows the automatically generated

parse tree of the above sentence.

Figure 1: Parse Tree

At the lowest level we have the lexical entries. These
lexical entries are used to construct different syntactic
categories. These constructions are made according to
the grammatical rules, which are declared at the
abstract-level. For example the category noun phrase
(NP) can be built from a Det (determiner) and a CN
(common noun). In the abstract syntax we have the
following rule for this construction:

fun DetCN : Det -> CN -> NP ;

Our goal, as a resource grammar developer, is to provide
the correct linearization rule for this abstract
tree-building function in Persian. This is achieved
through implementation of the concrete syntax
(described in the syntax section) for Persian. The
morphological part ensures that the correct forms of
words are created, while the syntactical part handles
other grammatical features such as agreement, word
order, etc.
The following diagram shows the automatically
generated word alignments for the example sentence: “he
lives in my house”. The language pair is (English,
Persian).

Figure 2: Word Alignments

5. Coverage and Evaluation
Our Persian resource grammar has 44 different
categories and 190 syntax functions to cover different
syntactic constructions. This covers a fair enough portion
of the language but not everything. The reason for not
being able to cover the whole language is the chosen
approach of a common abstract syntax for a set of

1692

languages in the resource grammar library. In principle,
this approach makes it impossible to cover every aspect
of every language. An example missing construction for
Persian is the causative construction. Such missing
constructions are supposed to be implemented in an extra
language specific module, which is one direction for
future work.
Testing a resource grammar is different from testing NLP
applications in general, where testing is done against
some text corpus. Testing resource grammars is much
like testing software libraries (Ranta, 2009b). In this type
of testing, a library is tested by developing some
application grammars on top of the resource grammars.
Phrasebook is a multilingual application grammar that
was developed as part of the MOLTO-Project7. This
application grammar has support for 15 languages. In
order to evaluate our resource grammar we have added
support for Persian to it. We achieved satisfactory results
when a test case of 250 examples was generated. The
application is open to test the accuracy and quality of
translations, and is available on the MOLTO homepage.
Another possible way of testing is to generate a set of
trees, linearize them, and observe their correctness. This
approach has been applied to generate the synopsis8
document, which contains a set of translated examples.
The grammar was released when we reached a
satisfactory performance level, with some known issues
reported in the library documentation.

6. Related and Future Work
A Persian computational grammar was reported in
(Bahrani 2011). This grammar is based on Generalized
Phrase Structure Grammar (GPSG) model. Considering
nouns, verbs, adjectives, etc. as basic structures, X-bar
theory is used to define noun phrases, verb phrases,
adjectival phrases, etc. This grammar is monolingual and
can be used in applications, which need a syntactic
analysis of the language. On the contrary, the grammar
we developed is multilingual and can be used to develop
different kinds of application grammars, ranging from
text-translators to language generation applications,
dialogue systems, etc.
(Müller, 2010) reported a Persian grammar implemented
in TRALE system (Meurers, 2002). The grammar is
based on the Head-driven Phrase Structure Grammar
(HPSG) and is still under construction. Its coverage is
limited due to the missing lexical items (i.e. verbs,
numerals, clitic forms of a copula, etc.)
As mentioned above, the reported grammar does not
cover all aspects of Persian. One direction for future
work is to explore missing constructions and implement
them in a separate language specific module.
Another possible direction for future work is the
development of more application grammars on top of the
reported resource grammar.

7MOLTO home page http://www.molto-project.eu/
8http://www.grammaticalframework.org/lib/doc/synopsis.html

7. References
Alshwai H., 1992. The Core Language Engine. A set of

parallel grammars written in Prolog and used as
library. MIT Press, Cambridge.

Bahrani M., Hossein Sameti, Mehdi Hafezi Manshadi, A
computational grammar for Persian based on GPSG,
Lang Resources & Evaluation DOI
10.1007/s10579-011-9144-1

Curry H.B., 1963. Some logical aspects of grammatical
structure. In R. Jakobson (Dd.), structure of Language
and its Mathmatical Aspects: Proceedings of the
Twelfth Symposium in Applied Mathmatis, pp. 55-68.
American Mathmatical Society, 1961.

Mahootiyan S., 1997, Persian. Routledge.
Megerdoomian K., 2000. Persian computational

morphology: A unification-based approach
Memoranda in Computer and Cognitive Science:
MCCS-00-320. pp. 1
(http://www.zoorna.org/papers/MCCS320.pdf) (Last
accessed February 2012).

Meurers W. D., G. Penn, and F. Richter, A web-based
instructional platform for constraint-based grammar
formalisms and parsing, in Proceedings of the
Effective Tools and Methodologies for Teaching NLP
and CL, 2002, pp. 18–25.

Müller S., Ghayoomi M., 2010. PerGram: A TRALE
Implementation of an HPSG Fragment of Persian,
Proceedings of the International Multiconference on
Computer Science and Information Technology pp.
461–467 ISBN 978-83-60810-22-4,ISSN 1896-7094

Ranta A. 2004. Grammatical Framework: A Type-
Theoretical Grammar Formalism. The Journal of
Functional Programming 14(2) (2004) 145–189.

Ranta A., 2009a. LiLT Volume 2, Issue 2. The GF
Resource Grammar Library. Copyright © 2009, CSLI
Publications.

Ranta A., 2009b. Grammars as Software Libraries. From
Semantics to Computer Science. Cambridge University
Press, Cambridge, pp. 281-308.

Ranta A., 2011. Grammatical Framework: Programming
with Multilingual Grammars, CSLI Publications,
Stanford, 2011, 340 pp., ISBN-10: 1-57586-626-9
(Paper), 1-57586-627-7 (Cloth).

Rayner M. D., 2000. Carter P. Bouillon, Digalakis V.,
and Wiren M., The spoken Language Translator.
Cambridge University Press.

Samvelian P., 2007. A (phrasal) affix analysis of the
Persian Ezafe, Journal of Linguistics, vol. 43, pp.
605–645.

Shafqat M. Virk, M. Humayoun, A. Ranta, 2010. An
Open Source Urdu Resource Grammar. Proceedings of
the 8th Workshop on Asian Language Resources. In
conjunction with Coling 2010.

Shafqat M. Virk, M. Humayoun, A. Ranta, 2011 An Open
Source Punjabi Resource Grammar. Proceedings of
Recent Advances in Natural Language Processing
(RANLP), pages 70–76, Hissar, Bulgaria, 12-14
September 2011.

1693

